Block Hybrid Trapezoidal-type Methods for Solving Initial Value Problems in Ordinary Differential Equations

  • E. Igbinovia Department of Mathematics, University of Benin, Benin City, Nigeria
  • S. E. Ogunfeyitimi Department of Computing, Wellspring University, Benin City, Nigeria
  • M. N. O. Ikhile Department of Mathematics, University of Benin, Benin City, Nigeria
Keywords: hybrid self-starting methods, block methods, stiff systems

Abstract

In solving ordinary differential equations, tackling stiff problems necessitates the application of robust numerical methods endowed with A-stability properties. To circumvent the constraints posed by the Dahlquist barrier theorem and mitigate errors arising from step-by-step implementation of linear multistep methods, block hybrid schemes have been introduced. This study focuses on the development of novel block schemes designed for the direct approximation of solutions to stiff initial value problems. The methods proposed herein leverage both interpolation and collocation, enhancing their consistency, convergence, and accuracy in solving initial value problems. The efficacy of the devised methods is demonstrated through a comprehensive analysis of stability regions for each of the constructed block algorithms. Notably, these stability regions are proven to be unbounded for order $p\leq 15$. Comparative assessments reveal their competitiveness with existing methods. In fact, this research introduces innovative approaches to address the challenges posed by stiff initial value problems, offering enhanced stability and accuracy in comparison to established methods.

References

Cash, J. R. (2003). Efficient numerical methods for the solution of stiff initial-value problems and differential algebraic equations. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 459, 797-815. https://doi.org/10.1098/rspa.2003.1130

Dahlquist, G. (1963). A special stability problem for linear multistep methods. BIT, 3, 27-43. https://doi.org/10.1007/BF01963532

Bickart, T. A., & Rubin, W. B. (1974). Composite multistep methods and stiff stability. In R. A. Willoughby (Ed.), Stiff differential systems (pp. 293-307). Plenum Press. https://doi.org/10.1007/978-1-84-2100-2_2

Enright, W. H. (1974). Second derivative multistep methods for stiff ordinary differential equations. SIAM Journal on Numerical Analysis, 11(2), 321-331. https://doi.org/10.1137/0711029

Cash, J. R. (1981). Second derivative extended backward differentiation formula for the numerical integration of stiff systems. SIAM Journal on Numerical Analysis, 18(5), 21-36. https://doi.org/10.1137/0718003

Aiguobasinwin, I. B., & Okuonghae, R. I. (2019). A class of two-derivative two-step Runge-Kutta methods for non-stiff ODEs. Journal of Applied Mathematics, 2019, Article ID 2459809. http://doi.org/10.155/2019/2459809

Ogunfeyitimi, S. E., & Ikhile, M. N. O. (2021). Multi-block generalized Adams-type integration methods for differential algebraic equations. International Journal of Applied and Computational Mathematics, 7, 197. https://doi.org/10.1007/s40819-021-01135-x

Ogunfeyitimi, S. E., & Ikhile, M. N. O. (2022). High-order multi-block boundary value integration methods for stiff ODEs. Earthline Journal of Mathematical Sciences, 10(1), 125-168. https://doi.org/10.34198/ejms.10122.125168

Esuabana, I. M., & Ogunfeyitimi, S. E. (2024). High-order continuous extended linear multistep methods for approximating stiff systems of ODEs. Earthline Journal of Mathematical Sciences, 14(3), 501-533. https://doi.org/10.34198/ejms.14324.501533

Ehigie, J. O., Jator, S. N., Sofoluwe, A. B., & Okunuga, S. A. (2014). Boundary value technique for initial value problems with continuous second derivative multistep method of Enright. Computational and Applied Mathematics, 33(1), 81-93. https://doi.org/10.1007/s40314-013-0044-4

Obrechkoff, N. (1940). Neue Quadraturformeln. Abhandlungen der Preussischen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, 4.

Okuonghae, R. I., & Ikhile, M. N. O. (2013). A class of hybrid linear multistep methods with A(α)-stability properties for stiff IVPs in ODEs. Journal of Numerical Mathematics, 21, 157-172. https://doi.org/10.1515/jnum-2013-0006

Voss, D., & Abbas, S. (1997). Block predictor-corrector schemes for the parallel solution of ODEs. Computers and Mathematics with Applications, 33, 65-72. https://doi.org/10.1016/S0898-1221(97)00032-1

Ramos, H., & Rufa, M. A. (2023). One-step method with three intermediate points in a variable step-size mode for stiff differential systems. Journal of Mathematical Chemistry, 61, 673-688. https://doi.org/10.1007/s10910-022-01427-7

Gragg, W., & Stetter, H. J. (1964). Generalized multistep predictor-corrector methods. Journal of the Association for Computing Machinery, 11, 188-209. https://doi.org/10.1145/321217.321223

Gear, C. W. (1965). Hybrid methods for initial value problems in ordinary differential equations. SIAM Journal on Numerical Analysis, 2, 69-86. https://doi.org/10.1137/0702006

Gupta, G. K. (1978). Implementation of second-derivative methods using Nordsieck polynomial representation. Mathematics of Computation, 32, 13-18. https://doi.org/10.1090/S0025-5718-1978-0478630-7

Fatunla, S. O. (1989). Numerical methods for initial value problems in ordinary differential equations. Academic Press Inc, London. https://doi.org/10.1016/B978-0-12-249930-2.50012-6

Fotta, A. U., & Alabi, T. J. (2015). Block method with one hybrid point for the solution of first-order initial value problems of ordinary differential equations. International Journal of Pure and Applied Mathematics, 103(3), 511-521. https://doi.org/10.12732/ijpam.v103i3.12

Rufai, M. A., Duromola, M. K., & Ganiyu, A. A. (2016). Derivation of one-sixth hybrid block method for solving general first-order ordinary differential equations. IOSR Journal of Mathematics, 12(5), 20-27. https://doi.org/10.9790/5728-1205022027

Ismail, G. A. F., & Ibrahim, I. H. (1998). A new higher-order effective predictor-corrector method for stiff systems. Journal of Mathematical and Computer Simulation, 47, 541-552. https://doi.org/10.1016/S0378-4754(98)00136-0

Akinfenwa, O. A., Jator, S. N., & Yao, N. M. (2013). Continuous block backward differentiation formula for solving stiff ordinary differential equations. Journal of Computational and Applied Mathematics, 65, 996-1005. https://doi.org/10.1016/j.camwa.2012.03.111

Akinfenwa, O. A., & Jator, S. N. (2015). Extended continuous block backward differentiation formula for stiff systems. Fasciculi Mathematici, 55. https://doi.org/10.1515/fascmath-2015-0010

Ogunfeyitimi, S. E., & Ikhile, M. N. O. (2020). Generalized second derivative linear multistep methods based on the methods of Enright. International Journal of Applied and Computational Mathematics, 6, 76. https://doi.org/10.1007/s40819-020-00827-0

Amodio, P., Golik, W. L., & Mazzia, F. (1995). Variable-step boundary value methods based on reverse Adams schemes and their grid distribution. Applied Numerical Mathematics, 18, 5-21. https://doi.org/10.1016/0168-9274(95)00044-U

Brugnano, L., & Trigiante, D. (1998). Solving differential problems by multistep initial and boundary value methods. Gordon and Breach Science Publishers, Amsterdam.

Wu, X., & Xia, J. (2001). Two low accuracy methods for stiff systems. Applied Mathematics and Computation, 123, 141-153. https://doi.org/10.1016/S0096-3003(00)00010-2

Published
2025-02-18
How to Cite
Igbinovia, E., Ogunfeyitimi, S. E., & Ikhile, M. N. O. (2025). Block Hybrid Trapezoidal-type Methods for Solving Initial Value Problems in Ordinary Differential Equations. Earthline Journal of Mathematical Sciences, 15(3), 345-365. https://doi.org/10.34198/ejms.15325.345365
Section
Articles