Bi-univalent Function Subfamilies Associated with the (p,q)-derivative Operator Subordinate to Lucas-Balancing Polynomials

  • Sondekola Rudra Swamy Department of Information Science and Engineering, Acharya Institute of Technology, Bengaluru-560 107, Karnataka, India https://orcid.org/0000-0002-8088-4103
  • Abbas Kareem Wanas Department of Mathematics, College of Science, University of Al-Qadisiyah, Al-Qadisiyah 58001, Iraq
  • Paduvalapattana Kempegowda Mamatha School of Mathematics, Alliance University, Central Campus, Chikkaadage Cross, Chandapura-Anekal Main Road, Bengaluru-562 106, Karnataka, India
  • Gulab Singh Chauhan Department of Computer Science, Acharya University, Karakul, Uzbekistan
  • Yerragunta Sailaja Department of Mathematics, RV College of Engineering, Bengaluru-560 059, Karnataka, India https://orcid.org/0000-0002-9155-9146
Keywords: analytic functions, Lucas-Balancing polynomials, subordination, (p,q)-derivative operator, bi-univalent functions, Fekete-Szegő functional

Abstract

In the open disc $\{\zeta\in\mathbb{C}:|\zeta| <1\}$ $=\mathfrak{D}$, we present a family of bi-univalent functions $g(\zeta)=\zeta+\sum\limits_{j=2}^{\infty}d_j\zeta^j$ associated with the $(p,q)$-derivative operator and Lucas-Balancing polynomials. For members of this family, we obtain the upper bounds for $|d_2|$, $|d_3|$, and $|d_3-\xi d_2^2|$, $\xi \in\mathbb{R}$. The new implications of the main results are also discussed, along with relevant connections to earlier research.

Downloads

Download data is not yet available.

References

Amourah, A., Frasin, B. A., Swamy, S. R., & Sailaja, Y. (2022). Coefficient bounds for Al-Oboudi type bi-univalent functions connected with a modified sigmoid activation function and k-Fibonacci numbers. Journal of Mathematical and Computer Science, 27, 105-117. https://doi.org/10.22436/jmcs.027.02.02

Altınkaya, Ş., & Yalçın, S. (2020). Lucas polynomials and applications to a unified class of bi-univalent functions equipped with (P,Q)-derivative operators. TWMS Journal of Pure and Applied Mathematics, 11 (1), 100-108.

Altınkaya, Ş., & Yalçın, S. (2020). Certain classes of bi-univalent functions of complex order associated with quasi-subordination involving (p,q)-derivative operator. Kragujevac Journal of Mathematics, 44(4), 639-649. https://doi.org/10.46793/KgJMat2004.639A

Al-Oboudi, F. M. (2004). On univalent functions defined by a generalized Salagean operator. International Journal of Mathematics and Mathematical Sciences, 27, 1429-1436. https://doi.org/10.1155/S0161171204108090

Araci, S., Duran, U., Acikgoz, M., & Srivastava, H. M. (2016). A certain (p,q)-derivative operator and associated divided differences. Journal of Inequalities and Applications, 2016(301), 8 pp. https://doi.org/10.1186/s13660-016-1240-8

Arik, M., Demircan, E., Turgut, T., Ekinci, L., & Mungan, M. (1992). Fibonacci oscillators. Zeitschrift für Physik C Particles and Fields, 55, 89-95. https://doi.org/10.1007/BF01558292

Behera, A., & Panda, G. K. (1999). On the sequence of roots of triangular numbers. The Fibonacci Quarterly, 37(2), 98-105. https://doi.org/10.1080/00150517.1999.12428864

Berczes, A., Liptai, K., & Pink, I. (2020). On generalized balancing sequences. The Fibonacci Quarterly, 48(2), 121-128. https://doi.org/10.1080/00150517.2010.12428112

Brannan, D. A., & Taha, T. S. (1985). On some classes of bi-univalent functions. In S. M. Mazhar, A. Hamoui, & N. S. Faour (Eds.), Mathematical Analysis and its Applications (pp. 53-60). Kuwait: KFAS Proceedings Series, Vol. 3. Pergamon Press (Elsevier Science Limited), Oxford; see also Studia Universitatis Babeş-Bolyai Mathematica, 31 (2), 70-77. https://doi.org/10.1016/B978-0-08-031636-9.50012-7

Brannan, D. A., & Clunie, J. G. (1979). Aspects of contemporary complex analysis. Proceedings of the NATO Advanced Study Institute held at University of Durham. New York: Academic Press.

Brodimas, G., Jannussis, A., & Mignani, R. (1991). Two-parameter quantum groups. Dipartimento di Fisica Università di Roma "La Sapienza" I.N.F.N. - Sezione di Roma, preprint ID No. 820.

Bukweli-Kyemba, J. D., & Hounkonnou, M. N. (2013). Quantum deformed algebras: coherent states and special functions. arXiv preprint, arXiv:1301.0116.

Bulut, S. (2014). Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions. C. R. Acad. Sci. Paris Sér. I, 35, 479-484. https://doi.org/10.1016/j.crma.2014.04.004

Çağlar, M., Deniz, E., & Srivastava, H. M. (2017). Second Hankel determinant for certain subclasses of bi-univalent functions. Turkish Journal of Mathematics, 41, 694-706. https://doi.org/10.3906/mat-1602-25

Cătaş, A. (2007). On certain class of p-valent functions defined by new multiplier transformations. In A. Cătaş (Ed.), Proceedings book of the international symposium on geometric function theory and applications, August 20-24, 2007, TC Istanbul Kultur University, Turkey (pp. 241-250).

Chakrabarti, R., & Jagannathan, R. (1991). A (p,q)-oscillator realization of two-parameter quantum. Journal of Physics A: Mathematical and General, 24 (13), L711. https://doi.org/10.1088/0305-4470/24/13/002

Cotîrlă, L.-I. (2021). New classes of analytic and bi-univalent functions. AIMS Mathematics, 6(10), 10642-10651. https://doi.org/10.3934/math.2021618

Davala, R. K., & Panda, G. K. (2015). On sum and ratio formulas for balancing numbers. Journal of the Indian Mathematical Society, 82(1-2), 23-32.

Durani, U., Acikgoz, M., & Araci, S. (2020). A study on some new results arising from (p,q)-calculus. TWMS Journal of Pure and Applied Mathematics, 11(1), 57-71.

Duren, P. L. (1983). Univalent functions. Grundlehren der Mathematischen Wissenschaften, Band 259. Springer-Verlag, New York.

Fekete, M., & Szegő, G. (1933). Eine Bemerkung über ungerade schlichte Funktionen. Journal of the London Mathematical Society, 89, 85-89. https://doi.org/10.1112/jlms/s1-8.2.85

Frasin, B. A., & Aouf, M. K. (2011). New subclasses of bi-univalent functions. Applied Mathematics, 24, 1569-1573. https://doi.org/10.1016/j.aml.2011.03.048

Frasin, B. A., Swamy, S. R., Amourah, A., Salah, J., & Maheshwarappa, R. H. (2023). A family of bi-univalent functions defined by (p,q)-derivative operator subordinate to a generalized bivariate Fibonacci polynomials. European Journal of Pure and Applied Mathematics, 17(4), 3801-3814. https://doi.org/10.29020/nybg.ejpam.v1714.5526

Frontczak, R. (2019). On balancing polynomials. Applied Mathematical Sciences, 13, 57-66. https://doi.org/10.12988/ams.2019.812183

Frontczak, R. (2018). A note on hybrid convolutions involving Balancing and Lucas-Balancing numbers. Applied Mathematical Sciences, 12, 1201-1208. https://doi.org/10.12988/ams.2018.87111

Frontczak, R., & Baden-Württemberg, L. (2018). A note on hybrid convolutions involving balancing and Lucas-Balancing numbers. Applied Mathematical Sciences, 12, 2001-2008.

Hussen, A., & Illafe, M. (2023). Coefficient bounds for certain subclasses of bi-univalent functions associated with Lucas-Balancing polynomials. Mathematics, 11, 4941. https://doi.org/10.3390/math11244941

Jackson, F. H. (1909). On q-functions and a certain difference operator. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 46(2), 253-281. https://doi.org/10.1017/S0080456800002751

Jackson, F. H. (1910). q-difference equations. American Journal of Mathematics, 32, 305-314. https://doi.org/10.2307/2370183

Jagannathan, R., & Rao, K. S. (2005). Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series. In Proceedings of the International Conference on Number Theory and Mathematical Physics (pp. 20-21). Srinivasa Ramanujan Centre, Kumbakonam, India.

Lewin, M. (1967). On a coefficient problem for bi-univalent functions. Proceedings of the American Mathematical Society, 18, 63-68. https://doi.org/10.1090/S0002-9939-1967-0206255-1

Liptai, K., Luca, F., Pintér, A., & Szalay, L. (2009). Generalized balancing numbers. Indian Mathematics (N.S.), 20, 87-100. https://doi.org/10.1016/S0019-3577(09)80005-0

Malyali, D. (2020). (p,q)-Hahn Difference Operator. (Master's thesis). Submitted to the Institute of Graduate Studies and Research, Eastern Mediterranean University, Gazimağusa, North Cyprus.

Motamednezhad, A., & Salehian, S. (2019). New subclasses of bi-univalent functions by (p; q)-derivative operator. Honam Mathematical Journal, 41 (2), 381-390. https://doi.org/10.5831/HMJ.2019.41.2.381

Panda, C. K., Komatsu, T., & Davala, R. K. (2018). Reciprocal sums of sequences involving balancing and Lucas-balancing numbers. Mathematical Reports, 20, 201-214.

Patel, B. K., Irmak, N., & Ray, P. K. (2018). Incomplete balancing and Lucas-balancing numbers. Mathematical Reports, 20, 59-72.

Ray, P. K. (2015). Balancing and Lucas-balancing sums by matrix method. Mathematical Reports, 17, 225-233.

Ray, P. K., & Sahu, J. (2016). Generating functions for certain balancing and Lucas-balancing numbers. Palestine Journal of Mathematics, 5(2), 122-129. https://doi.org/10.12697/ACUTM.2016.20.14

Sadjang, P. N. (2013). On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas. arXiv preprint, arXiv:1309.3934v1, August 22.

Santhiya, S., & Thilagavathi, K. (2023). Geometric properties of analytic functions defined by the (p, q)-derivative operator involving the Poisson distribution. Journal of Mathematics, 2023, Article ID 2097976, 12 pages. https://doi.org/10.1155/2023/2097976

Selvaraj, C., Thirupathi, G., & Umadevi, E. (2017). Certain classes of analytic functions involving a family of generalized differential operators. Transylvanian Journal of Mathematics and Mechanics, 9(1), 51-61.

Srivastava, H. M., Mishra, A. K., & Gochhayat, P. (2010). Certain subclasses of analytic and bi-univalent functions. Applied Mathematics Letters, 23, 1188-1192. https://doi.org/10.1016/j.aml.2010.05.009

Srivastava, H. M., Raza, N., AbuJarad, E. S. A., Srivastava, G., & AbuJarad, M. H. (2019). Fekete-Szegö inequality for classes of (p,q)-Starlike and (p,q)-convex functions. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 113(4), 3563-3584. https://doi.org/10.1007/s13398-019-00713-5

Swamy, S. R. (2021). Coefficient bounds for Al-Oboudi type bi-univalent functions based on a modified sigmoid activation function and Horadam polynomials. Earthline Journal of Mathematical Sciences, 7(2), 251-270. https://doi.org/10.34198/ejms.7221.251270

Swamy, S. R. (2012). Inclusion properties of certain subclasses of analytic functions. International Mathematical Forum, 7(36), 1751-1760.

Swamy, S. R. (2012). Inclusion properties for certain subclasses of analytic functions defined by a generalized multiplier transformation. International Journal of Mathematical Analysis, 6(32), 1553-1564.

Swamy, S. R., & Atshan, W. G. (2022). Coefficient bounds for regular and bi-univalent functions linked with Gegenbauer polynomials. Gulf Journal of Mathematics, 13(2), 67-77. https://doi.org/10.15393/j3.art.2022.10351

Swamy, S. R., Breaz, D., Kala, V., Mamatha, P. K., Cotîrlą, L.-I., & Răpeanu, E. (2024). Initial coefficient bounds analysis for novel subclasses of bi-univalent functions linked with Lucas-Balancing polynomials. Mathematics, 12, 1325. https://doi.org/10.3390/math12091325

Swamy, S. R., Frasin, B. A., Breaz, D., & Cotîrlą, L.-I. (2024). Two families of bi-univalent functions associating the (p, q)-derivative with generalized bivariate Fibonacci polynomials. Mathematics, 12, 3933. https://doi.org/10.3390/math12243933

Swamy, S. R., Mamatha, P. K., Magesh, N., & Yamini, J. (2020). Certain subclasses of bi-univalent functions defined by Salagean operator with the (p, q)-Lucas polynomials. Advances in Mathematics: Scientific Journal, 9(8), 6017-6025. https://doi.org/10.37418/amsj.9.8.70

Tan, D. L. (1984). Coefficient estimates for bi-univalent functions. Chinese Annals of Mathematics, Series A, 5, 559-568.

Tuncer, A., Ali, A., & Abdul, M. S. (2016). On Kantorovich modification of (p, q)-Baskakov operators. Journal of Inequalities and Applications, 2016, Article 98. https://doi.org/10.1186/s13660-016-1045-9

Vijayalakshmi, S. P., Sudharsan, T. V., & Bulboaca, T. (2024). Symmetric Toeplitz determinants for classes defined by post-quantum operators subordinated to the limacon function. Studia Universitatis Babeş-Bolyai Mathematica, 69(2), 299-316. https://doi.org/10.24193/subbmath.2024.2.04

Wachs, M., & White, D. (1991). (p,q)-Stirling numbers and set partition statistics. Journal of Combinatorial Theory, Series A, 56(1), 27-46. https://doi.org/10.1016/0097-3165(91)90020-H

Published
2025-02-04
How to Cite
Swamy, S. R., Wanas, A. K., Mamatha, P. K., Chauhan, G. S., & Sailaja, Y. (2025). Bi-univalent Function Subfamilies Associated with the (p,q)-derivative Operator Subordinate to Lucas-Balancing Polynomials. Earthline Journal of Mathematical Sciences, 15(3), 273-287. https://doi.org/10.34198/ejms.15325.273287
Section
Articles

Most read articles by the same author(s)