A New Product for Soft Sets with its Decision-Making: Soft Gamma-Product

  • Aslıhan Sezgin Department of Mathematics and Science Education, Faculty of Education, Amasya University, Amasya, Türkiye
  • Eylül Şenyiğit Department of Mathematics, Graduate School of Natural and Applied Sciences, Amasya University, Amasya, Türkiye
  • Murat Luzum Department of Mathematics, Faculty of Science, Van Yüzüncü Yıl University, Van, Türkiye
Keywords: soft set, soft gamma-product, soft subset, soft equal relation

Abstract

Soft sets provide a strong mathematical foundation for managing uncertainty and give creative answers to parametric data challenges. In soft set theory, soft set operations are essential components. The “soft gamma-product,” a novel product operation for soft sets, is presented in this study along with a detailed analysis of its algebraic features with respect to different kinds of soft equalities and subsets. We further explore the soft gamma-product’s relation with other soft set operations by examining its distributions over other soft set activities. Using the uni-int operator and uni-int decision function within the soft gamma-product for the uni-int decision-making approach, which finds an ideal collection of components from accessible possibilities, we end with an example showing the method's efficacy of many applications. Since the theoretical underpinnings of soft computing techniques are based on sound mathematical concepts, this study makes a substantial contribution to the literature on soft sets.

References

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X

Molodtsov, D. A. (1999). Soft set theory-first results. Computers and Mathematics with Applications, 37(4-5), 19-31. https://doi.org/10.1016/S0898-1221(99)00056-5

Maji, P. K., Roy, A. R., & Biswas, R. (2002). An application of soft sets in a decision making problem. Computers and Mathematics with Applications, 44(8-9), 1077-1083. https://doi.org/10.1016/S0898-1221(02)00216-X

Chen, D.-G., Tsang, E. C. C., & Yeung, D. S. (2003). Some notes on the parameterization reduction of soft sets. In Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (pp. 1442-1445). Xi’an. https://doi.org/10.1109/ICMLC.2003.1259720

Chen, D., Tsang, E. C. C., Yeung, D. S., & Wang, X. (2005). The parametrization reduction of soft sets and its applications. Computers and Mathematics with Applications, 49(5-6), 757-763. https://doi.org/10.1016/j.camwa.2004.10.036

Xiao, Z., Chen, L., Zhong, B., & Ye, S. (2005). Recognition for soft information based on the theory of soft sets. In J. Chen (Ed.), IEEE Proceedings of International Conference on Services Systems and Services Management (pp. 1104-1106). https://doi.org/10.1109/ICSSSM.2005.1500166

Mushrif, M. M., Sengupta, S., & Ray, A. K. (2006). Texture classification using a novel, soft-set theory based classification algorithm. In P. J. Narayanan, S. K. Nayar, & H. T. Shum (Eds.), Computer Vision - ACCV 2006. Lecture Notes in Computer Science (Vol. 3851). Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612032_26

Herawan, M. T., & Deris, M. M. (2009). A direct proof of every rough set is a soft set. In Third Asia International Conference on Modelling & Simulation (pp. 119-124). Bundang, Indonesia. https://doi.org/10.1109/AMS.2009.148

Herawan, M. T., & Deris, M. M. (2010). Soft decision making for patients suspected influenza. In D. Taniar, O. Gervasi, B. Murgante, E. Pardede, & B. O. Apduhan (Eds.), Computational Science and Its Applications - ICCSA 2010. Lecture Notes in Computer Science (Vol. 6018). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12179-1_34

Herawan, T. (2005). Soft set-based decision making for patients suspected influenza-like illness. International Journal of Modern Physics: Conference Series, 1(1), 1-5.

Çağman, N., & Enginoğlu, S. (2010). Soft set theory and uni-int decision making. European Journal of Operational Research, 207(2), 848-855. https://doi.org/10.1016/j.ejor.2010.05.004

Çağman, N., & Enginoğlu, S. (2010). Soft matrix theory and its decision making. Computers and Mathematics with Applications, 59(10), 3308-3314. https://doi.org/10.1016/j.camwa.2010.03.015

Gong, X., Xiao, Z., & Zhang, X. (2010). The bijective soft set with its operations. Computers and Mathematics with Applications, 60(8), 2270-2278. https://doi.org/10.1016/j.camwa.2010.08.017

Xiao, Z., Gong, K., Xia, S., & Zou, Y. (2010). Exclusive disjunctive soft sets. Computers and Mathematics with Applications, 59(6), 2128-2137. https://doi.org/10.1016/j.camwa.2009.12.018

Feng, F., Li, Y., & Çağman, N. (2012). Generalized uni-int decision making schemes based on choice value soft sets. European Journal of Operational Research, 220(1), 162-170. https://doi.org/10.1016/j.ejor.2012.01.015

Feng, Q., & Zhou, Y. (2014). Soft discernibility matrix and its applications in decision making. Applied Soft Computing, 24, 749-756. https://doi.org/10.1016/j.asoc.2014.08.042

Kharal, A. (2014). Soft approximations and uni-int decision making. The Scientific World Journal, 4, 327408. https://doi.org/10.1155/2014/327408

Dauda, M. K., Mamat, M., & Waziri, M. Y. (2015). An application of soft set in decision making. Jurnal Teknologi, 77(13), 119-122. https://doi.org/10.11113/jt.v77.6367

Inthumathi, V., Chitra, V., & Jayasree, S. (2017). The role of operators on soft set in decision making problems. International Journal of Computational and Applied Mathematics, 12(3), 899-910.

Atagün, A. O., Kamacı, H., & Oktay, O. (2018). Reduced soft matrices and generalized products with applications in decision making. Neural Computing and Applications, 29, 445-456. https://doi.org/10.1007/s00521-016-2542-y

Kamacı, H., Saltık, K., Akız, H. F., & Atagün, A. O. (2018). Cardinality inverse soft matrix theory and its applications in multicriteria group decision making. Journal of Intelligent & Fuzzy Systems, 34(3), 2031-2049. https://doi.org/10.3233/JIFS-17876

Yang, J. L., & Yao, Y. Y. (2020). Semantics of soft sets and three-way decision with soft sets. Knowledge-Based Systems, 194, 105538. https://doi.org/10.1016/j.knosys.2020.105538

Petchimuthu, S., Garg, H., Kamacı, H., & Atagün, A. O. (2020). The mean operators and generalized products of fuzzy soft matrices and their applications in MCGDM. Computational and Applied Mathematics, 39(2), 1-32. https://doi.org/10.1007/s40314-020-1083-2

Zorlutuna, İ. (2021). Soft set-valued mappings and their application in decision making problems. Filomat, 35(5), 1725-1733. https://doi.org/10.2298/FIL2105725Z

Maji, P. K., Biswas, R., & Roy, A. R. (2003). Soft set theory. Computers and Mathematics with Applications, 45(1), 555-562. https://doi.org/10.1016/S0898-1221(03)00016-6

Pei, D., & Miao, D. (2005). From soft sets to information systems. In X. Hu, Q. Liu, A. Skowron, T. Y. Lin, R. R. Yager, & B. Zhang (Eds.), Proceedings of Granular Computing (2) (pp. 617-621). IEEE. https://doi.org/10.1109/GRC.2005.1547365

Ali, M. I., Ali, M. I., Feng, F., Liu, X., Min, W. K., & Shabir, M. (2009). On some new operations in soft set theory. Computers and Mathematics with Applications, 57(9), 1547-1553. https://doi.org/10.1016/j.camwa.2008.11.009

Yang, C. F. (2008). A note on: “Soft set theory” [Computers & Mathematics with Applications 45 (2003), 4-5, 555-562]. Computers and Mathematics with Applications, 56(7), 1899-1900. https://doi.org/10.1016/j.camwa.2008.03.019

Feng, F., Li, Y. M., Davvaz, B., & Ali, M. I. (2010). Soft sets combined with fuzzy sets and rough sets: a tentative approach. Soft Computing, 14, 899-911. https://doi.org/10.1007/s00500-009-0465-6

Jiang, Y., Tang, Y., Chen, Q., Wang, J., & Tang, S. (2010). Extending soft sets with description logics. Computers and Mathematics with Applications, 59(6), 2087-2096. https://doi.org/10.1016/j.camwa.2009.12.014

Ali, M. I., Shabir, M., & Naz, M. (2011). Algebraic structures of soft sets associated with new operations. Computers and Mathematics with Applications, 61(9), 2647-2654. https://doi.org/10.1016/j.camwa.2011.03.011

Yang, C. F. (2008). A note on soft set theory. Computers and Mathematics with Applications, 56(7), 1899-1900. https://doi.org/10.1016/j.camwa.2008.03.019

Neog, I. J., & Sut, D. K. (2011). A new approach to the theory of soft set. International Journal of Computer Applications, 32(2), 1-6.

Fu, L. (2011). Notes on soft set operations. ARPN Journal of Systems and Softwares, 1(6), 205-208.

Ge, X., & Yang, S. (2011). Investigations on some operations of soft sets. World Academy of Science, Engineering and Technology International Journal of Mathematical and Computational Sciences, 5(3), 370-373.

Singh, D., & Onyeozili, I. A. (2012). Some conceptual misunderstanding of the fundamentals of soft set theory. ARPN Journal of Systems and Softwares, 2(9), 251-254.

Singh, D., & Onyeozili, I. A. (2012). Some results on distributive and absorption properties on soft operations. IOSR Journal of Mathematics, 4(2), 18-30. https://doi.org/10.9790/5728-0421830

Singh, D., & Onyeozili, I. A. (2012). Notes on soft matrices operations. ARPN Journal of Science and Technology, 2(9), 861-869.

Zhu, P., & Wen, Q. (2013). Operations on soft sets revisited. Journal of Applied Mathematics, 2013, 1-7. https://doi.org/10.1155/2013/105752

Sen, J. (2014). On algebraic structure of soft sets. Annals of Fuzzy Mathematics and Informatics, 7(6), 1013-1020.

Eren, Ö. F. (2019). On operations of soft sets. Master’s Thesis, Ondokuz Mayıs University, Samsun.

Stojanovic, N. S. (2021). A new operation on soft sets: extended symmetric difference of soft sets. Military Technical Courier, 69(4), 779-791. https://doi.org/10.5937/vojtehg69-33655

Sezgin, A., & Yavuz, E. (2023). A new soft set operation: Soft binary piecewise symmetric difference operation. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 5(2), 189-208. https://doi.org/10.47112/neufmbd.2023.18

Sezgin, A., & Sarıalioğlu, M. (2024). A new soft set operation: Complementary soft binary piecewise theta (θ) operation. Journal of Kadirli Faculty of Applied Sciences, 4(2), 325-357.

Sezgin, A., & Çağman, N. (2024). A new soft set operation: Complementary soft binary piecewise difference operation. Osmaniye Korkut Ata University Journal of the Institute of Science and Technology, 7(1), 58-94. https://doi.org/10.47495/okufbed.1308379

Sezgin, A., Aybek, F. N., & Güngör, N. B. (2023). A new soft set operation: Complementary soft binary piecewise union operation. Acta Informatica Malaysia, 7(1), 38-53. https://doi.org/10.26480/aim.01.2023.38.53

Sezgin, A., Aybek, F. N., & Atagün, A. O. (2023). A new soft set operation: Complementary soft binary piecewise intersection operation. Black Sea Journal of Engineering and Science, 6(4), 330-346. https://doi.org/10.34248/bsengineering.1319873

Sezgin, A., & Demirci, A. M. (2023). A new soft set operation: Complementary soft binary piecewise star operation. Ikonion Journal of Mathematics, 5(2), 24-52. https://doi.org/10.54286/ikjm.1304566

Qin, K. Y., & Hong, Z. Y. (2010). On soft equality. Journal of Computational and Applied Mathematics, 234(5), 1347-1355. https://doi.org/10.1016/j.cam.2010.02.028

Jun, Y. B., & Yang, X. (2011). A note on the paper “Combination of interval-valued fuzzy set and soft set” [Comput. Math. Appl. 58 (2009), 521-527]. Computers and Mathematics with Applications, 61(5), 1468-1470. https://doi.org/10.1016/j.camwa.2010.12.077

Liu, X. Y., Feng, F. F., & Jun, Y. B. (2012). A note on generalized soft equal relations. Computers and Mathematics with Applications, 64(4), 572-578. https://doi.org/10.1016/j.camwa.2011.12.052

Feng, F., & Yongming, L. (2013). Soft subsets and soft product operations. Information Sciences, 232, 44-57. https://doi.org/10.1016/j.ins.2013.01.001

Abbas, M., Ali, B., & Romaguer, S. (2014). On generalized soft equality and soft lattice structure. Filomat, 28(6), 1191-1203. https://doi.org/10.2298/FIL1406191A

Abbas, M., Ali, M. I., & Romaguera, S. (2017). Generalized operations in soft set theory via relaxed conditions on parameters. Filomat, 31(19), 5955-5964. https://doi.org/10.2298/FIL1719955A

Alshami, T. (2019). Investigation and corrigendum to some results related to g-soft equality and g f-soft equality relations. Filomat, 33(11), 3375-3383. https://doi.org/10.2298/FIL1911375A

Alshami, T., & El-Shafei, M. (2020). T-soft equality relation. Turkish Journal of Mathematics, 44(4), 1427-1441. https://doi.org/10.3906/mat-2005-117

Ali, B., Saleem, N., Sundus, N., Khaleeq, S., Saeed, M., & George, R. A. (2022). Contribution to the theory of soft sets via generalized relaxed operations. Mathematics, 10(15), 26-36. https://doi.org/10.3390/math10152636

Sezgin, A., Atagün, A. O., & Çağman, N. (in press). A complete study on and-product of soft sets. Sigma Journal of Engineering and Natural Sciences.

Çağman, N. (2021). Conditional complements of sets and their application to group theory. Journal of New Results in Science, 10(3), 67-74. https://doi.org/10.54187/jnrs.1003890

Sezgin, A., Çağman, N., Atagün, A. O., & Aybek, F. N. (2023). Complemental binary operations of sets and their application to group theory. Matrix Science Mathematic, 7(2), 91-98. https://doi.org/10.26480/msmk.02.2023.114.121

Sezgin, A., & Sarıalioğlu, M. (2024). Complementary extended gamma operation: A new soft set operation. Natural and Applied Sciences Journal, 7(1), 15-44. https://doi.org/10.38061/idunas.1482044

Sezgin, A., & Aybek, F. N. (2024). New restricted and extended soft set operations: Restricted gamma and extended gamma operations. Big Data and Computing Visions, 4(4), 272-306.

Sezgin, A., Yavuz, E., & Atagün, A. O. (2024). Comprehension of soft binary piecewise gamma operation: A new operation for soft sets. Journal of Advanced Mathematics and Mathematics Education, 7(3), 13-40.

Sezgin, A., & Aybek, F. N. (2024). A new soft set operation: Complementary soft binary piecewise gamma ( ) operation. Matrix Science Mathematic, 7(1), 27-45. https://doi.org/10.26480/msmk.01.2023.27.45

Sezer, A. S., Atagün, A. O., & Çağman, N. (2013). A new view to N-group theory: Soft N-groups. Fasciculi Mathematici, 51, 123-140.

Sezer, A. S. (2014). Certain characterizations of LA-semigroups by soft sets. Journal of Intelligent and Fuzzy Systems, 27(2), 1035-1046. https://doi.org/10.3233/IFS-131064

Sezer, A. S. (2014). A new approach to LA-semigroup theory via the soft sets. Journal of Intelligent and Fuzzy Systems, 26(5), 2483-2495. https://doi.org/10.3233/IFS-130918

Sezer, A. S., Çağman, N., & Atagün, A. O. (2014). Soft intersection interior ideals, quasi-ideals and generalized bi-ideals: A new approach to semigroup theory II. Journal of Multiple-Valued Logic and Soft Computing, 23(1-2), 161-207.

Sezgin, A. (2016). A new approach to semigroup theory I: Soft union semigroups, ideals and bi-ideals. Algebra Letters, 2016(3), 1-46.

Tunçay, M., & Sezgin, A. (2016). Soft union ring and its applications to ring theory. International Journal of Computer Applications, 151(9), 7-13. https://doi.org/10.5120/ijca2016911867

Muştuoğlu, E., Sezgin, A., & Türk, Z. K. (2016). Some characterizations on soft uni-groups and normal soft uni-groups. International Journal of Computer Applications, 155(10), 1-8. https://doi.org/10.5120/ijca2016912412

Khan, A., Izhar, M., & Sezgin, A. (2017). Characterizations of Abel Grassmann's groupoids by the properties of double-framed soft ideals. International Journal of Analysis and Applications, 15(1), 62-74.

Sezgin, A., Çağman, N., & Atagün, A. O. (2017). A completely new view to soft intersection rings via soft uni-int product. Applied Soft Computing, 54, 366-392. https://doi.org/10.1016/j.asoc.2016.10.004

Sezgin, A. (2018). A new view on AG-groupoid theory via soft sets for uncertainty modeling. Filomat, 32(8), 2995-3030. https://doi.org/10.2298/FIL1808995S

Atagün, A. O., & Sezgin, A. (2018). Soft subnear-rings, soft ideals and soft N-subgroups of near-rings. Mathematical Sciences Letters, 7(1), 37-42. https://doi.org/10.18576/msl/070106

Gulistan, M., Feng, F., Khan, M., & Sezgin, A. (2018). Characterizations of right weakly regular semigroups in terms of generalized cubic soft sets. Mathematics, 6, 293. https://doi.org/10.3390/math6120293

Mahmood, T., Rehman, Z. U., & Sezgin, A. (2018). Lattice ordered soft near rings. Korean Journal of Mathematics, 26(3), 503-517.

Jana, C., Pal, M., Karaaslan, F., & Sezgin, A. (2019). (α, β)-Soft intersectional rings and ideals with their applications. New Mathematics and Natural Computation, 15(2), 333-350. https://doi.org/10.1142/S1793005719500182

Atagün, A. O., Kamacı, H., Taştekin, İ., & Sezgin, A. (2019). P-properties in near-rings. Journal of Mathematical and Fundamental Sciences, 51(2), 152-167. https://doi.org/10.5614/j.math.fund.sci.2019.51.2.5

Özlü, Ş., & Sezgin, A. (2020). Soft covered ideals in semigroups. Acta Universitatis Sapientiae, Mathematica, 10(2), 317-346. https://doi.org/10.2478/ausm-2020-0023

Sezgin, A., Atagün, A. O., Çağman, N., & Demir, H. (2022). On near-rings with soft union ideals and applications. New Mathematics and Natural Computation, 18(2), 495-511. https://doi.org/10.1142/S1793005722500247

Manikantan, T., Ramasany, P., & Sezgin, A. (2023). Soft quasi-ideals of soft near-rings. Sigma Journal of Engineering and Natural Science, 41(3), 565-574. https://doi.org/10.14744/sigma.2023.00062

Sezer, A. S., Atagün, A. O., & Çağman, N. (2014). N-group SI-action and its applications to N-Group Theory. Fasciculi Mathematici, 52, 139-153.

Sezer, A. S., Çağman, N., & Atagün, A. O. (2015). Uni-soft substructures of groups. Annals of Fuzzy Mathematics and Informatics, 9(2), 235-246.

Atagün, A. O., & Sezer, A. S. (2015). Soft sets, soft semimodules and soft substructures of semimodules. Mathematical Sciences Letters, 4(3), 235-242. http://dx.doi.org/10.12785/msl/040303

Atagün, A. O., & Sezgin, A. (2017). Int-soft substructures of groups and semirings with applications. Applied Mathematics & Information Sciences, 11(1), 105-113. https://doi.org/10.18576/amis/110113

Sezer, A. S., & Atagün, A. O. (2016). A new kind of vector space: Soft vector space. Southeast Asian Bulletin of Mathematics, 40, 753-770. http://www.seams-bull-math.ynu.edu.cn/archive.jsp

Atagün, A. O., & Sezgin, A. (2018). A new view to near-ring theory: Soft near-rings. Southeast Asian Journal of Mathematics & Mathematical Sciences, 14(3), 1-14.

Atagün, A. O., & Sezgin, A. (2022). More on prime, maximal and principal soft ideals of soft rings. New Mathematics and Natural Computation, 18(1), 195-207. https://doi.org/10.1142/S1793005722500119

Riaz, M., Hashmi, M. R., Karaaslan, F., Sezgin, A., Shamiri, M. M. A. A., & Khalaf, M. M. (2023). Emerging trends in social networking systems and generation gap with neutrosophic crisp soft mapping. Computer Modeling in Engineering & Sciences, 136, 1759-1783. https://doi.org/10.32604/cmes.2023.023327

Sezgin, A., & Çam, N. H. (2024). Soft plus-product: A new product for soft sets with its decision-making. Complexity Analysis and Applications. https://caa.reapress.com/journal/article/view/33 (in press).

Gulistan, M., & Hassan, N. (2019). A generalized approach towards soft expert sets via neutrosophic cubic sets with applications in games. Symmetry, 11(2), 289. https://doi.org/10.3390/sym11020289

Memiş, S. (2022). Another view on picture fuzzy soft sets and their product operations with soft decision-making. Journal of New Theory, (38), 1-13. https://doi.org/10.53570/jnt.1037280

Published
2025-01-07
How to Cite
Sezgin, A., Şenyiğit, E., & Luzum, M. (2025). A New Product for Soft Sets with its Decision-Making: Soft Gamma-Product. Earthline Journal of Mathematical Sciences, 15(2), 211-234. https://doi.org/10.34198/ejms.15225.211234
Section
Articles