On Extension of Existing Results on the Diophantine Equation: \(\sum_{r=1}^n w_r^2+\frac{n}{3} d^2=3\left(\frac{n d^2}{3}+\sum_{r=1}^{\frac{n}{3}} w_{3 r-1}^2\right)\)

  • Nyakebogo Abraham Osogo Department of Mathematics and Actuarial Science, Kisii University, P. O. Box 408-40200, Kisii, Kenya
  • Kimtai Boaz Simatwo Department of Mathematics, Masinde Muliro University of Science and Technology, P.O.Box 190-50100, Kakamega, Kenya
Keywords: sequences, diophantine equation, integer, polynomial, factorization

Abstract

Let $w_r$ be a given sequence in arithmetic progression with common difference $d$. The study of diophantine equation, which are polynomial equations seeking integer solutions has been a very interesting journey in the field of number theory. Historically, these equations have attracted the attention of many mathematicians due to their intrinsic challenges and their significance in understanding the properties of integers. In this current study we examine a diophantine equation relating the sum of square integers from specific sequences to a variable $d$. In particular, on extension of existing results on the diophantine equation: $\sum_{r=1}^{n} w^2_r +\frac{n}{3}d^2= 3(\frac{nd^2}{3} +\sum^{\frac{n}{3}}_{n=1} w^{2}_{3r-1})$ is introduced and partially characterized.

References

Bombieri, E., & Bourgain, J. (2015). A problem on sums of two squares. International Mathematics Research Notices, 2015(11), 3343-3407. https://doi.org/10.1093/imrn/rnu005

Cai, Y. (2016). Waring-Goldbach problem: two squares and higher powers. Journal de Théorie des Nombres de Bordeaux, 28(3), 791-810. https://doi.org/10.5802/jtnb.964

Cavallo, A. (2019). An elementary computation of the Galois groups of symmetric sextic trinomials. arXiv preprint arXiv:1902.00965. https://doi.org/10.48550/arXiv.1902.00965

Christopher, A. D. (2016). A partition-theoretic proof of Fermat's two squares theorem. Discrete Mathematics, 339(4), 1410-1411. https://doi.org/10.1016/j.disc.2015.12.002

Fathi, A., Mobadersany, P., & Fathi, R. (2012). A simple method to solve quartic equations. Australian Journal of Basic and Applied Sciences, 6(6), 331-336.

Kimtai, B. S., & Mude, L. H. (2023). On generalized sums of six, seven, and nine cubes. Science Mundi, 3(1), 135-142. https://doi.org/10.51867/scimundi.3.1.14

Kouropoulos, G. P. (2021). A combined methodology for the approximate estimation of the roots of the general sextic polynomial equation. Unpublished. https://doi.org/10.21203/rs.3.rs-882192/v1

Mude, L. H., Kayiita, Z. K., & Ndung'u, K. J. (2023). Some generalized formula for sums of cube. Journal of Advances in Mathematics and Computer Science, 38(8), 47-52. https://doi.org/10.9734/jamcs/2023/v38181789

Mochimaru, Y. (2005). Solution of sextic equations. International Journal of Pure and Applied Mathematics, 23(4), 577. Academic Publications.

Mude, L. H. (2022). Some formulae for integer sums of two squares. Journal of Advances in Mathematics and Computer Science, 37(4), 53-57. https://doi.org/10.9734/jamcs/2022/v371430448

Mude, L. H. (2024). On some mixed polynomial exponential Diophantine equation: $(alpha^n + beta^n + a(alpha^s pm beta^s)^m + D = r(u^k + v^k + w^k))$ with $(alpha)$ and $(beta)$ consecutive. Journal of Advances in Mathematics and Computer Science, 39(10), 11-17. https://doi.org/10.9734/jamcs/2024/v39i101931

Mude, L. H., Ndung'u, K. J., & Kayiita, Z. K. (2024). On sums of squares involving integer sequence: $left(sum_{r=1}^{n} w_r^2 + frac{n}{3} d^2 = 3left(frac{nd^2}{3} + sum_{r=1}^{n} frac{n}{3} w_{3r-1}^2right)right)$. Journal of Advances in Mathematics and Computer Science, 39(7), 1-6. https://doi.org/10.9734/jamcs/2024/v39171906

Najman, F. (2010a). The Diophantine equation ( x^4 pm y^4 = iz^2 ) in Gaussian integers. The American Mathematical Monthly, 117(7), 637-641. https://doi.org/10.4169/000298910x496769

Najman, F. (2010b). Torsion of elliptic curves over quadratic cyclotomic fields. arXiv preprint arXiv:1005.0558. https://doi.org/10.48550/arXiv.1005.0558

Simatwo, K. B. (2024). Equal sums of four even powers. Asian Research Journal of Mathematics, 20(5), 50-54. https://doi.org/10.9734/arjom/2024/v20i5802

Tignol, J.-P. (2015). Galois' theory of algebraic equations. World Scientific Publishing Company. https://doi.org/10.1142/9719

Published
2025-01-05
How to Cite
Osogo, N. A., & Simatwo, K. B. (2025). On Extension of Existing Results on the Diophantine Equation: \(\sum_{r=1}^n w_r^2+\frac{n}{3} d^2=3\left(\frac{n d^2}{3}+\sum_{r=1}^{\frac{n}{3}} w_{3 r-1}^2\right)\). Earthline Journal of Mathematical Sciences, 15(2), 201-209. https://doi.org/10.34198/ejms.15225.201209
Section
Articles