On the Solution of a Fractional-order Biological Population Model using q-Laplace Homotopy Analysis Method (qLHAM)

  • Oluwatope Richard Ojo Department of Mathematics, East Tennessee State University, Johnson City, USA
Keywords: q-Laplace-homotopy analysis, biological population model, approximate analytical solutions

Abstract

In this paper, we study a type of biological population model in its fractional order using the q-Laplace homotopy analysis method. This method, which combines the Laplace transform, q-calculus, and the homotopy analysis method developed by Shijun Liao in [11], is employed to provide approximate analytical solutions to the biological population model. Furthermore, we illustrate the dynamical behavior of this model graphically.

Downloads

Download data is not yet available.

References

Oldham, K. B., & Spanier, J. (1974). The Fractional Calculus. Academic Press, New York, USA.

Podlubny, I. (1999). Fractional Differential Equations. Academic Press, New York.

Shakeri, F., & Deghan, M. (2007). Numerical solution of a biological population model using He's variational iteration method. Computers and Mathematics with Applications, 54, 1197-1209. https://doi.org/10.1016/j.camwa.2006.12.076

El-Sayed, A. M. A., Rida, S. Z., & Arafa, A. A. M. (2009). Exact solutions of fractional-order biological population model. Communications in Theoretical Physics, 52, 992-996. https://doi.org/10.1088/0253-6102/52/6/04

Roul, P. (2010). Application of homotopy perturbation method to biological population model. AAM: International Journal, 10, 1369-1378.

Liu, Y., Li, Z., & Zhang, Y. (2011). Homotopy perturbation method to fractional biological population equation. Differential Calculus, 1, 117-127. https://doi.org/10.7153/fdc-01-07

El-Sayed, A. M. A., Rida, S. Z., & Mohamed, H. (2011). Homotopy analysis method for solving biological population model. Communications in Theoretical Physics, 56, 797-800. https://doi.org/10.1088/0253-6102/56/5/01

Kumar, D., Singh, J., & Sushila. (2013). Application of homotopy analysis transform method to fractional biological population model. Romanian Reports in Physics, 65(1), 63-75.

Srivastava, V. K., Kumar, S., Awasthi, M. K., & Singh, B. K. (2014). Two-dimensional time fractional-order biological population model and its analytical solution. Egyptian Journal of Basic and Applied Sciences, 1, 71-76. https://doi.org/10.1016/j.ejbas.2014.03.001

Sharma, S. C., & Bairwa, R. K. (2014). Exact solution of generalized time-fractional biological population model by means of the iterative Laplace transform method. International Journal of Mathematical Archive, 5(12), 40-46.

Liao, S. J. (1997). Homotopy analysis method and its applications in mathematics. Journal of Basic Science and Engineering, 5(2), 111-125.

Liao, S. J. (1998). Homotopy analysis method: A new analytic method for nonlinear problems. Applied Mathematics and Mechanics, 19, 957-962. https://doi.org/10.1007/BF02457955

Odibat, Z. M., & Shawagfeh, N. T. (2007). Generalized Taylor's formula. Applied Mathematics and Computation, 186(1), 286-293. https://doi.org/10.1016/j.amc.2006.07.102

Akinyemi, L., & Iyiola, O. (2020). A reliable technique to study nonlinear time-fractional coupled Korteweg-de Vries equations. Advances in Difference Equations, 2020(169). https://doi.org/10.1186/s13662-020-02625-w

Enyi, C. D. (2020). Efficacious analytical technique applied to fractional Fornberg-Whitman model and two-dimensional fractional population model. Symmetry, 12(1976). https://doi.org/10.3390/sym12121976

Akinyemi, L., Veeresha, P., & Ajibola, S. O. (2021). Numerical simulation for coupled nonlinear Schrödinger-Korteweg-de Vries and Maccari systems of equations. Modern Physics Letters B, 35(20), 2150339. https://doi.org/10.1142/S0217984921503395

Ajibola, S. O., Oke, A. S., & Mutuku, W. N. (2020). LHAM approach to fractional order Rosenau-Hyman and Burgers' equations. Asian Research Journal of Mathematics, 16(6), 1-14. https://doi.org/10.9734/arjom/2020/v16i630192

Ajibola, S. O., Oghre, E. O., Ariwayo, A. G., & Olatunji, P. O. (2021). On the convergence of LHAM and its application to fractional generalised Boussinesq equations for closed form solutions. Earthline Journal of Mathematical Sciences, 7(1), 25-47. https://doi.org/10.34198/ejms.7121.2547

Gurtin, M. E., & MacCamy, R. C. (1977). On the diffusion of biological population. Mathematical Biosciences, 33, 35-49. https://doi.org/10.1016/0025-5564(77)90062-1

Caputo, M. (1969). Elasticità e Dissipazione. Zanichelli, Bologna.

Published
2025-01-23
How to Cite
Ojo, O. R. (2025). On the Solution of a Fractional-order Biological Population Model using q-Laplace Homotopy Analysis Method (qLHAM). Earthline Journal of Mathematical Sciences, 15(2), 239-255. https://doi.org/10.34198/ejms.15225.239255
Section
Articles