On the Solution of a Fractional-order Biological Population Model using q-Laplace Homotopy Analysis Method (qLHAM)
Abstract
In this paper, we study a type of biological population model in its fractional order using the q-Laplace homotopy analysis method. This method, which combines the Laplace transform, q-calculus, and the homotopy analysis method developed by Shijun Liao in [11], is employed to provide approximate analytical solutions to the biological population model. Furthermore, we illustrate the dynamical behavior of this model graphically.
References
Oldham, K. B., & Spanier, J. (1974). The Fractional Calculus. Academic Press, New York, USA.
Podlubny, I. (1999). Fractional Differential Equations. Academic Press, New York.
Shakeri, F., & Deghan, M. (2007). Numerical solution of a biological population model using He's variational iteration method. Computers and Mathematics with Applications, 54, 1197-1209. https://doi.org/10.1016/j.camwa.2006.12.076
El-Sayed, A. M. A., Rida, S. Z., & Arafa, A. A. M. (2009). Exact solutions of fractional-order biological population model. Communications in Theoretical Physics, 52, 992-996. https://doi.org/10.1088/0253-6102/52/6/04
Roul, P. (2010). Application of homotopy perturbation method to biological population model. AAM: International Journal, 10, 1369-1378.
Liu, Y., Li, Z., & Zhang, Y. (2011). Homotopy perturbation method to fractional biological population equation. Differential Calculus, 1, 117-127. https://doi.org/10.7153/fdc-01-07
El-Sayed, A. M. A., Rida, S. Z., & Mohamed, H. (2011). Homotopy analysis method for solving biological population model. Communications in Theoretical Physics, 56, 797-800. https://doi.org/10.1088/0253-6102/56/5/01
Kumar, D., Singh, J., & Sushila. (2013). Application of homotopy analysis transform method to fractional biological population model. Romanian Reports in Physics, 65(1), 63-75.
Srivastava, V. K., Kumar, S., Awasthi, M. K., & Singh, B. K. (2014). Two-dimensional time fractional-order biological population model and its analytical solution. Egyptian Journal of Basic and Applied Sciences, 1, 71-76. https://doi.org/10.1016/j.ejbas.2014.03.001
Sharma, S. C., & Bairwa, R. K. (2014). Exact solution of generalized time-fractional biological population model by means of the iterative Laplace transform method. International Journal of Mathematical Archive, 5(12), 40-46.
Liao, S. J. (1997). Homotopy analysis method and its applications in mathematics. Journal of Basic Science and Engineering, 5(2), 111-125.
Liao, S. J. (1998). Homotopy analysis method: A new analytic method for nonlinear problems. Applied Mathematics and Mechanics, 19, 957-962. https://doi.org/10.1007/BF02457955
Odibat, Z. M., & Shawagfeh, N. T. (2007). Generalized Taylor's formula. Applied Mathematics and Computation, 186(1), 286-293. https://doi.org/10.1016/j.amc.2006.07.102
Akinyemi, L., & Iyiola, O. (2020). A reliable technique to study nonlinear time-fractional coupled Korteweg-de Vries equations. Advances in Difference Equations, 2020(169). https://doi.org/10.1186/s13662-020-02625-w
Enyi, C. D. (2020). Efficacious analytical technique applied to fractional Fornberg-Whitman model and two-dimensional fractional population model. Symmetry, 12(1976). https://doi.org/10.3390/sym12121976
Akinyemi, L., Veeresha, P., & Ajibola, S. O. (2021). Numerical simulation for coupled nonlinear Schrödinger-Korteweg-de Vries and Maccari systems of equations. Modern Physics Letters B, 35(20), 2150339. https://doi.org/10.1142/S0217984921503395
Ajibola, S. O., Oke, A. S., & Mutuku, W. N. (2020). LHAM approach to fractional order Rosenau-Hyman and Burgers' equations. Asian Research Journal of Mathematics, 16(6), 1-14. https://doi.org/10.9734/arjom/2020/v16i630192
Ajibola, S. O., Oghre, E. O., Ariwayo, A. G., & Olatunji, P. O. (2021). On the convergence of LHAM and its application to fractional generalised Boussinesq equations for closed form solutions. Earthline Journal of Mathematical Sciences, 7(1), 25-47. https://doi.org/10.34198/ejms.7121.2547
Gurtin, M. E., & MacCamy, R. C. (1977). On the diffusion of biological population. Mathematical Biosciences, 33, 35-49. https://doi.org/10.1016/0025-5564(77)90062-1
Caputo, M. (1969). Elasticità e Dissipazione. Zanichelli, Bologna.
This work is licensed under a Creative Commons Attribution 4.0 International License.