Syntheses, Characterization and X-ray Crystal Structure of Trinuclear NiII—NaI—NiII Assembled with Salen-type Schiff Base
Abstract
The present investigation describes the synthesis and structural study of a metal-zinc ligand [NiL].H2O, which was used to generate a trinuclear complex formulated as {Ni(m-L)Na(m-L)Ni}.(SCN)0.6.(Cl)0.4. The title compound crystallizes in the tetragonal space group I41/acd with the following unit cell parameters: a = 185403(5) Å, c = 51.925(2) Å, V = 17849.0(3) Å3, Z = 16, R1 = 0.074 and wR2 = 0.209. Each organic molecule acts as a hexadentate ligand and bridges Ni(II) and Na(I). For both Ni(II) cations the coordination environment around the metal center can be described as distorted square planar. The Na(I) cation is eight coordinated and the polyhedron around the sodium ions is best described as a distorted square anti-prism. The means planes of the two phenyl rings with a methoxy substituent form a dihedral angle of 3.870(4)°, while the dihedral angle values of these mean planes with the means plane of the central phenyl ring are, respectively, 11.233(4)° and 14.138(3)°. The Zn–Na distance is 3.4285(7) Å. Weak hydrogen bonds involving C—H as donor and Cl, S or O as acceptor are observed.
References
Bahron, H., Khaidir, S. S., Tajuddin, A. M., Ramasamy, K., & Yamin, B. M. (2019). Synthesis, characterization, and anticancer activity of mono- and dinuclear Ni(II) and Co(II) complexes of a Schiff base derived from o-vanillin. Polyhedron, 161, 84-92. https://doi.org/10.1016/j.poly.2018.12.055
Gao, T., Xu, L.-L., Zhang, Q., Li, G.-M., & Yan, P.-F. (2012). Salen-type heteronuclear 3d–4f complexes engineering by anion PF6 with near-infrared (NIR) and luminescent properties. Inorganic Chemistry Communications, 26, 60-63. https://doi.org/10.1016/j.inoche.2012.09.017
Andruh, M. (2011). Compartmental Schiff-base ligands—a rich library of tectons in designing magnetic and luminescent materials. Chemical Communications, 47(11), 3025-3042. https://doi.org/10.1039/C0CC04506C
Nandy, M., Saha, D., Rizzoli, C., & Shit, S. (2017). Trigonal dodecahedral sodium coordination in a trinuclear copper(II)-sodium complex incorporating a salen-type compartmental Schiff base. Zeitschrift für Naturforschung B, 72(2), 133-140. https://doi.org/10.1515/znb-2016-0208
Biswas, A., Mandal, L., Mondal, S., Lucas, C. R., & Mohanta, S. (2013). More surprising differences between two closely similar compartmental ligand families and another dinuclear synthon to stabilize dinuclear-mononuclear cocrystals. CrystEngComm, 15(29), 5888-5897. https://doi.org/10.1039/C3CE40569A
Liao, A., Yang, X., Stanley, J. M., Jones, R. A., & Holliday, B. J. (2010). Synthesis and crystal structure of a new heterotrinuclear Schiff-Base Zn–Gd Complex. Journal of Chemical Crystallography, 40(12), 1060-1064. https://doi.org/10.1007/s10870-010-9794-7
Das, M., Chatterjee, & S. Chattopadhyay, S. (2011). Unique example of a trigonal dodecahedral Na+ in a compartmental Schiff base N,N′-(1,2-phenylene)-bis(3-methoxysalicylideneimine). Inorganic Chemistry Communications, 14(9), 1337-1340. https://doi.org/10.1016/j.inoche.2011.05.009
Wong, W.-K., Yang, X., Jones, R. A., Rivers, J. H., Lynch, V., Lo, W.-K., Xiao, D., Oye, M. M., & Holmes, A. L. (2006). Multinuclear luminescent Schiff-Base Zn−Nd sandwich complexes. Inorganic Chemistry, 45(11), 4340-4345. https://doi.org/10.1021/ic051866e
Wang, H., Zhang, D., Ni, Z.-H., Li, X., Tian, L., & Jiang, J. (2009). Synthesis, crystal structures, and luminescent properties of phenoxo-bridged heterometallic trinuclear propeller- and sandwich-like Schiff base complexes. Inorganic Chemistry, 48(13), 5946-5956. https://doi.org/10.1021/ic9002862
Haba, P., Sow, M. M., Sarr, M., Thiam, I. E., Diaw, M., & Gaye, M. L. (2020). Syntheses, characterization and X-ray crystal structure of polymeric heteronuclear oxo-bridged Fe/Na assembled with salen-type Schiff base and dicyanamide. Science Journal of Chemistry, 8(2), 20. https://doi.org/10.11648/j.sjc.20200802.11
Haba, P., Sow, M. M., Sarr, M., Thiam, I. E., Diaw, M., Retailleau, P., & Gaye, M. L. (2020). Syntheses, characterization, and x-ray crystal structure of heteronuclear zn/na assembled with salen-type schiff base. Science Journal of Chemistry, 8(5), 113. https://doi.org/10.11648/j.sjc.20200805.13
Sarr, M., Diop, M., Thiam, I. E., Gaye, M., Barry, A. H., Alvarez, N., & Ellena, J. (2018). Co-crystal structure of a dinuclear (Zn-Y) and a trinuclear (Zn-Y-Zn) complexes derived from a Schiff base ligand. European Journal of Chemistry, 9(2), 67-73. https://doi.org/10.5155/eurjchem.9.2.67-73.1688
Sarr, M., Diop, M., Thiam, E. I., Gaye, M., Barry, A. H., Orton, J. B., & Coles, S. J. (2018). A new co-crystal dinuclear/trinuclear ZnII–ZnII/Zn/II–SmIII–ZnII complex with a salen-type Schiff base ligand. Acta Crystallographica Section E, 74(12), 1862-1866. https://doi.org/10.1107/S2056989018016109
Costes, J.-P., Dahan, F., Vendier, L., Shova, S., Lorusso, G., & Evangelisti, M. (2018). NiII–LnIII complexes with o-vanillin as the main ligand: syntheses, structures, magnetic and magnetocaloric properties. Dalton Trans., 47(4), 1106-1116. https://doi.org/10.1039/C7DT04293K
Mousavi, M., Béreau, V., Costes, J.-P., Duhayon, C., & Sutter, J.-P. (2011). Oligomeric and polymeric organizations of potassium salts with compartmental Schiff-base complexes as ligands. CrystEngComm, 13(19), 5908-5914. https://doi.org/10.1039/C1CE05127J
Fatima, T., Imtiaz-ud-Din, Akbar, A., Anwar, M. S., & Tahir, M. N. (2019). Six new dinuclear Schiff base complexes of Cu(II)/Ln(III) system: Synthesis, characterization, and magnetic studies. Journal of Molecular Structure, 1184, 462-467. https://doi.org/10.1016/j.molstruc.2019.02.037
Cristóvão, B., Osypiuk, D., Miroslaw, B., & Bartyzel, A. (2018). Syntheses, crystal structures, thermal and magnetic properties of new heterotrinuclear CuII–LnIII–CuII complexes incorporating N2O4-donor Schiff base ligands. Polyhedron, 144, 225-233. https://doi.org/10.1016/j.poly.2018.01.023
Zhang, L., Yang, P.-P., Li, L.-F., Hu, Y.-Y., & Mei, X.-L. (2020). A tridecanuclear ZnGd12 nanoscopic cluster exhibiting large magnetocaloric effect. Inorganica Chimica Acta, 499, 119170. https://doi.org/10.1016/j.ica.2019.119170
Monteiro, B., Coutinho, J. T., & Pereira, L. C. J. (2018). Heterometallic 3d–4f SMMs. In Lanthanide-based multifunctional materials (Pablo Martin-Ramos Manuela Ramos-Silva., Vols. 1-1, Vol. 1st Edition, pp. 233-261). Elsevier.
Zhao, S., Lü, X., Hou, A., Wong, W.-Y., Wong, W.-K., Yang, X., & Jones, R. A. (2009). Heteronuclear trimetallic and 1D polymeric 3d–4f Schiff base complexes with OCN− and SCN− ligands. Dalton Trans., (43), 9595-9602. https://doi.org/10.1039/B908682J
Dogaru, A., Liu, J.-L., Maxim, C., Marinescu, G., Clérac, R., & Andruh, M. (2020). Assembling {CuIILnIIIOsIII} heterotrimetallic octanuclear complexes and 1D coordination polymers from the same molecular modules. Polyhedron, 175, 114242. https://doi.org/10.1016/j.poly.2019.114242
Thakurta, S., Chakraborty, J., Rosair, G., Butcher, R. J., & Mitra, S. (2009). The interplay of O–H⋯O hydrogen bonding in the generation of three new supramolecular complexes of CuII, NiII and CoIII: syntheses, characterization, and structural aspects. Inorganica Chimica Acta, 362(8), 2828-2836. https://doi.org/10.1016/j.ica.2009.01.002
Sheldrick, G. M. (2015). SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica Section A, 71(1), 3-8. https://doi.org/10.1107/S2053273314026370
Sheldrick, G. M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica Section C, 71(1), 3-8. https://doi.org/10.1107/S2053229614024218
Farrugia, L. J. (2012). WinGX and ORTEP for Windows: an update. Journal of Applied Crystallography, 45(4), 849-854. https://doi.org/10.1107/S0021889812029111
Youngme, S., Chaichit, N., Pakawatchai, C., & Booncoon, S. (2002). The coordination chemistry of mono and bis(di-2-pyridylamine)copper(II) complexes: preparation, characterization, and crystal structures of [Cu(L)(NO2)2], [Cu(L)(H2O)2(SO4)], [Cu(L)2(NCS)](SCN)•0.5DMSO and [Cu(L)2(SCN)2]. Polyhedron, 21(12), 1279-1288. https://doi.org/10.1016/S0277-5387(02)01011-2
Geary, W. J. (1971). The use of conductivity measurements in organic solvents for the characterization of coordination compounds. Coordination Chemistry Reviews, 7(1), 81-122. https://doi.org/10.1016/S0010-8545(00)80009-0
Blanchard, S., Neese, F., Bothe, E., Bill, E., Weyhermüller, T., & Wieghardt, K. (2005). Square planar vs tetrahedral coordination in diamagnetic complexes of Nickel(II) containing two bidentate π-radical monoanions. Inorganic Chemistry, 44(10), 3636-3656. https://doi.org/10.1021/ic040117e
Yang, L., Powell, D. R., & Houser, R. P. (2007). Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans., (9), 955-964. https://doi.org/10.1039/B617136B
Bahron, H., Khaidir, S. S., Tajuddin, A. M., Ramasamy, K., & Yamin, B. M. (2019). Synthesis, characterization, and anticancer activity of mono- and dinuclear Ni(II) and Co(II) complexes of a Schiff base derived from o-vanillin. Polyhedron, 161, 84-92. https://doi.org/10.1016/j.poly.2018.12.055
This work is licensed under a Creative Commons Attribution 4.0 International License.