Syntheses & Antioxidant Activity of 1-Isonicotinoyl-4-phenylthiosemicarbazide and Crystal Structures of N-Phenyl-5-(pyridin-4-yl)-1,3,4-oxadiazol-2-amine Hydrochloride and 4-Phenyl-3-(pyridin-4-yl)-1H-1,2,4-triazole-5(4H)-thione derived from 1 Isonicotinoyl-4-phenylthiosemicarbazide

  • Ndama Faye Department of Chemistry, University Cheikh Anta Diop, Dakar, 10700, Sénégal
  • Bédié Mbow Department of Chemistry, University Cheikh Anta Diop, Dakar, 10700, Sénégal
  • Aïssatou Alioune Gaye Department of Chemistry, University Cheikh Anta Diop, Dakar, 10700, Sénégal
  • Cheikh Ndoye Department of Chemistry, University Cheikh Anta Diop, Dakar, 10700, Sénégal
  • Mayoro Diop Department of Chemistry, University Cheikh Anta Diop, Dakar, 10700, Sénégal
  • Grégory Excoffier Aix Marseille University, CNRS, Centrale Marseille, FSCM, Spectropole, Marseille, France
  • Mohamed Gaye Department of Chemistry, University Cheikh Anta Diop, Dakar, 10700, Sénégal
Keywords: isonicotinic hydrazide, isothiocynate, oxadiazole, triazole


The title compound C13H12N4OS (I) is synthetized from isonicotinic hydrazide and isothiocynate. Compounds C13H11N4OCl (II) and C13H10N4S (III) where obtained upon reaction of (I) with Fe(II) or Mn(II) salts. Compound (II) is heterocyclic 1,3,4-oxadiazole while compound (III) is heterocyclic 1,2,4-triazole. The 1,3,4-oxadiazol derivative is almost planar with dihedral angle of 2.66 (8) and 5.14 (8)° between 1,3,4-oxadiazole ring and phenyl and pyridinium rings respectively; the dihedral angle between the phenyl and pyridinium rings is 3.92 (8)°. The 1,2,4-triazole derivative is non-planar. The phenyl and pyridyl rings form dihedral angles of 58.35 (5) and 58.33 (5)°, respectively, with the 1,2,4-triazole ring; the dihedral angle between the phenyl and pyridyl rings is 36.85 (4)°. In the compound (II) intramolecular hydrogen bonds of type N—H···Cl, C—H···N and C—H···Cl resulting in S(6) ring stabilize the structure. Intermolecular hydrogen bonds of type N—H···N, C—H···N, C—4···Cl link the molecule thus forming a three-dimensional network. In the structure of compound (III), intermolecular hydrogen bonds of type N—H···N, C—H···N, C—H···S1,link the monomer in a three-dimensional network.


Obaid, R. J., Mughal, E. U., Naeem, N., Al-Rooqi, M. M., Sadiq, A., Jassas, R. S., Moussa, Z., & Ahmed, S. A. (2022). Pharmacological significance of nitrogen-containing five and six-membered heterocyclic scaffolds as potent cholinesterase inhibitors for drug discovery. Process Biochemistry, 120, 250-259.

Artem’ev, G. A., Rusinov, V. L., Kopchuk, D. S., Savchuk, M. I., Santra, S., Ulomsky, E. N., Zyryanov, G. V., Majee, A., Du, W., Charushinab, V. N., & Chupakhin, О. N. (2022). Synthetic approaches to 1,2,4-triazolo[5,1-c][1,2,4]triazin-7-ones as basic heterocyclic structures of the antiviral drug Riamilovir (“Triazavirin”) active against SARS-CoV-2 (COVID-19). Organic & Biomolecular Chemistry, 20(9), 1828-1837.

Al-Jumaili, M. H. A., Hamad, A. A., Hashem, H. E., Hussein, A. D., Muhaidi, M. J., Ahmed, M. A., Albanaa, A. H. A., Siddique, F., & Bakr, E. A. (2023). Comprehensive review on the Bis–heterocyclic compounds and their anticancer efficacy. Journal of Molecular Structure, 1271, 133970.

Swain, S. S., Pati, S., & Hussain, T. (2022). Quinoline heterocyclic containing plant and marine candidates against drug-resistant Mycobacterium tuberculosis: A systematic drug-ability investigation. European Journal of Medicinal Chemistry, 232, 114173.

Mohamed, H. A., Bekheit, M. S., Ewies, E. F., Awad, H. M., Betz, R., Hosten, E. C., & Abdel-Wahab, B. F. (2023). Design of new hybrids indole/phthalimide/oxadiazole-1,2,3 triazole agents and their anticancer properties. Journal of Molecular Structure, 1274, 134415.

Dincel, E. D., Akdağ, Ç., Kayra, T., Coşar, E. D., Aksoy, M. O., Akalın-Çiftçi, G., & Ulusoy-Güzeldemirci, N. (2022). Design, synthesis, characterization, molecular docking studies and anticancer activity evaluation of novel hydrazinecarbothioamide, 1,2,4-triazole-3-thione, 4-thiazolidinone and 1,3,4-oxadiazole derivatives. Journal of Molecular Structure, 1268, 133710.

Hamoud, M. M. S., Osman, N. A., Rezq, S., A. A. Abd El-wahab, H., E. A. Hassan, A., Abdel-Fattah, H. A., D. G., Romero, A. M., Ghanima, & Ghanim, A. M. (2022). Design and synthesis of novel 1,3,4-oxadiazole and 1,2,4-triazole derivatives as cyclooxygenase-2 inhibitors with anti-inflammatory and antioxidant activity in LPS-stimulated RAW264.7 macrophages. Bioorganic Chemistry, 124, 105808.

G, M., Sridhar, G., Laxminarayana, E., & Chary, M. T. (2021). Synthesis and biological evaluation of 1,2,4-oxadiazole incorporated 1,2,3-triazole-pyrazole derivatives as anticancer agents. Chemical Data Collections, 34, 100735.

Holla, B. S., Gonsalves, R., & Shenoy, S. (2000). Synthesis and antibacterial studies of a new series of 1,2-bis(1,3,4-oxadiazol-2-yl)ethanes and 1,2-bis(4-amino-1,2,4-triazol-3-yl)ethanes. European Journal of Medicinal Chemistry, 35(2), 267-271.

Abdelfattah, A. M., Mekky, A. E. M., & Sanad, S. M. H. (2022). Synthesis, antibacterial activity and in silico study of new bis(1,3,4-oxadiazoles). Synthetic Communications, 52(11-12), 1421-1440.

Wang, J., Ansari, M. F., & Zhou, C.-H. (2021). Unique para-aminobenzenesulfonyl oxadiazoles as novel structural potential membrane active antibacterial agents towards drug-resistant methicillin resistant Staphylococcus aureus. Bioorganic & Medicinal Chemistry Letters, 41, 127995.

Laddi, U., Desai, S., Bennur, R., & Bennur, S. (2002). Some new 1, 3, 4-oxadiazoles as antimicrobial agents. Indian Journal of Heterocyclic Chemistry, 11(4), 319-322.

Matore, B. W., Banjare, P., Guria, T., Roy, P. P., & Singh, J. (2022). Oxadiazole derivatives: Histone deacetylase inhibitors in anticancer therapy and drug discovery. European Journal of Medicinal Chemistry Reports, 5, 100058.

Baxendale, I. R., Ley, S. V., & Martinelli, M. (2005). The rapid preparation of 2-aminosulfonamide-1,3,4-oxadiazoles using polymer-supported reagents and microwave heating. Tetrahedron, 61(22), 5323-5349.

Coppo, F. T., Evans, K. A., Graybill, T. L., & Burton, G. (2004). Efficient one-pot preparation of 5-substituted-2-amino-1,3,4-oxadiazoles using resin-bound reagents. Tetrahedron Letters, 45(16), 3257-3260.

Jadhav, R., Pawar, S., Khilare, C., & Nikumbh, A. (2022). Synthesis and biological screening of novel series of 2-(4-hydroxy-3-methoxy-5-nitro-phenyl)-[1,3,4]oxadiazole by conventional and non-conventional techniques. Materials Today: Proceedings, under the press.

Gani, R. S., Kudva, A. K., Timanagouda, K., Raghuveer, Mujawar, S. B. H., Joshi, S. D., & Raghu, S. V. (2021). Synthesis of novel 5-(2,5-bis(2,2,2-trifluoroethoxy)phenyl)-1,3,4-oxadiazole-2-thiol derivatives as potential glucosidase inhibitors. Bioorganic Chemistry, 114, 105046.

Balogh, R., Eckstein, A., Tokár, K., & Danko, M. (2023). The synthesis and spectral study of thiazolo[5,4-d]thiazole based small molecules using 1,3,4-oxadiazole as a linker for organic electronics. Journal of Photochemistry and Photobiology A: Chemistry, 434, 114217.

Kumar, S., Kalia, V., Goyal, M., Jhaa, G., Kumar, S., Vashisht, H., Dahiya, H., Quraishi, M. A., Verma, C., & Verma, C. (2022). Newly synthesized oxadiazole derivatives as corrosion inhibitors for mild steel in acidic medium: Experimental and theoretical approaches. Journal of Molecular Liquids, 357, 119077.

Cao, W.-L., Tariq, Q.-N., Li, Z.-M., Yang, J.-Q., & Zhang, J.-G. (2022). Recent advances on the nitrogen-rich 1,2,4-oxadiazole-azoles-based energetic materials. Defence Technology, 18(3), 344-367.

Khattab, T. A., El-Naggar, M. E., Al-Sehemi, A. G., Al-Ghamdi, A. A., & Taleb, M. F. A. (2022). Novel fluorescent nanofibrous polyether template developed by SNAr polymerization of fluoroaryl-containing 1, 3, 4-oxadiazole: Photophysical properties, mesogenic phases and self-assembly. European Polymer Journal, 173, 111270.

Soni, J. P., Joshi, S. V., Chemitikanti, K. S., & Shankaraiah, N. (2021). The riveting chemistry of poly-aza-heterocycles employing microwave technique: A decade review. European Journal of Organic Chemistry, 2021(10), 1476-1490.

Kaur, N. (2015). Synthesis of Five-Membered N,N,N- and N,N,N,N-Heterocyclic Compounds: Applications of Microwaves. Synthetic Communications, 45(15), 1711-1742.

Kaur, N. (2015). Role of microwaves in the synthesis of fused five-membered heterocycles with three N-heteroatoms. Synthetic Communications, 45(4), 403-431.

Zhu, B., Li, W., Chen, H., Wu, M., Hu, J., Cao, H., & Liu, X. (2022). Mechanochemical synthesis of 1,2,4-triazoles via a [3+2] cycloaddition of azinium-N-imines and nitriles. Advanced Synthesis & Catalysis, 364(17), 2911-2915.

Huang, H., Guo, W., Wu, W., Li, C.-J., & Jiang, H. (2015). Copper-catalyzed oxidative C(sp3)–H functionalization for facile synthesis of 1,2,4-triazoles and 1,3,5-triazines from amidines. Organic Letters, 17(12), 2894-2897.

Tsai, S.-E., Yen, W.-P., Li, Y.-T., Hu, Y.-T., Tseng, C.-C., & Wong, F. F. (2017). Indium(III) chloride promoted one-pot multicomponent synthesis of 1,2,4-triazole carrying 1,2,4-triazin-6-ones from nitrile imines and N,N′-bis(trimethylsilyl) carbodiimine. Asian Journal of Organic Chemistry, 6(10), 1470-1475.

Munir, A., Khushal, A., Saeed, K., Sadiq, A., Ullah, R., Ali, G., Ashraf, Z., Mughal, E. U., Jan, M. S., Rashid, U., Hussain, I., & Mumtaz, A. (2020). Synthesis, in-vitro, in-vivo anti-inflammatory activities and molecular docking studies of acyl and salicylic acid hydrazide derivatives. Bioorganic Chemistry, 104, 104168.

Mangarao, N., Mahaboob Basha, G., Ramu, T., Srinuvasarao, R., Prasanthi, S., & Siddaiah, V. (2014). Brønsted acid-catalyzed simple and efficient synthesis of 1,2,4-triazoles and 1,2,4-oxadiazoles using 2,2,2-trichloroethyl imidates in PEG. Tetrahedron Letters, 55(1), 177-179.

Abdellatif, K. R. A., Abdelall, E. K. A., Elshemy, H. A. H., Philoppes, J. N., Hassanein, E. H. M., & Kahk, N. M. (2021). Optimization of pyrazole-based compounds with 1,2,4-triazole-3-thiol moiety as selective COX-2 inhibitors cardioprotective drug candidates: Design, synthesis, cyclooxygenase inhibition, anti-inflammatory, ulcerogenicity, cardiovascular evaluation, and molecular modeling studies. Bioorganic Chemistry, 114, 105122.

Yang, P., Luo, J.-B., Wang, Z.-Z., Zhang, L.-L., Feng, J., Xie, X.-B., Shi, Q.-S., & Zhang, X.-G. (2021). Synthesis, molecular docking, and evaluation of antibacterial activity of 1,2,4-triazole-norfloxacin hybrids. Bioorganic Chemistry, 115, 105270.

Zengin, M., Unsal Tan, O., Arafa, R. K., & Balkan, A. (2022). Design and synthesis of new 2-oxoquinoxalinyl-1,2,4-triazoles as antitumor VEGFR-2 inhibitors. Bioorganic Chemistry, 121, 105696.

Kaproń, B., Łuszczki, J. J., Siwek, A., Karcz, T., Nowak, G., Zagaja, M., Andres-Mach, M., Stasiłowicz, A., Cielecka-Piontek, J., Kocki, J., & Plech, T. (2020). Preclinical evaluation of 1,2,4-triazole-based compounds targeting voltage-gated sodium channels (VGSCs) as promising anticonvulsant drug candidates. Bioorganic Chemistry, 94, 103355.

Dhanavath, R., Dharavath, R., Kothula, D., Bitla, S., Yaku, G., Birdaraju, S., Puchakayala, M. R., & Atcha, K. R. (2022). Synthesis and biological evaluation of novel 2-arylquinoline-3-fused thiazolo[2,3-c]1,2,4-triazole heterocycles as potential antiproliferative and antimicrobial agents. Journal of Heterocyclic Chemistry, 59(7), 1198-1212.

Sadeghian, S., Emami, L., Mojaddami, A., khabnadideh, S., Faghih, Z., Zomorodian, K., Rashidi, M., & Rezaei, Z. (2023). 1,2,4-Triazole derivatives as novel and potent antifungal agents: Design, synthesis and biological evaluation. Journal of Molecular Structure, 1271, 134039.

Deng, X., Gujjar, R., El Mazouni, F., Kaminsky, W., Malmquist, N. A., Goldsmith, E. J., Rathod, P. K., & Phillips, M. A. (2009). Structural plasticity of malaria dihydroorotate dehydrogenase allows selective binding of diverse chemical scaffolds. Journal of Biological Chemistry, 284(39), 26999-27009.

Patel, K. R., Brahmbhatt, J. G., Pandya, P. A., Daraji, D. G., Patel, H. D., Rawal, R. M., & Baran, S. K. (2021). Design, synthesis and biological evaluation of novel 5-(4-chlorophenyl)-4-phenyl-4H-1,2,4-triazole-3-thiols as an anticancer agent. Journal of Molecular Structure, 1231, 130000.

Gani, R. S., Timanagouda, K., Madhushree, S., Joshi, S. D., Hiremath, M. B., Mujawar, S. B. H., & Kudva, A. K. (2020). Synthesis of novel indole, 1,2,4-triazole derivatives as potential glucosidase inhibitors. Journal of King Saud University - Science, 32(8), 3388-3399.

Sheldrick, G. M. (2015). SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica Section A, 71(1), 3-8.

Sheldrick, G. M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica Section C, 71(1), 3-8.

Farrugia, L. J. (2012). WinGX and ORTEP for Windows: an update. Journal of Applied Crystallography, 45(4), 849-854.

Akhtar, P., Yaakob, Z., Ahmed, Y., Shahinuzzaman, M., & Hyder, M. K. M. (2018). Total phenolic contents and free radical scavenging activity of different parts of Jatropha species. Asian Journal of Chemistry, 30, 365-370.

Pandey, S. K., Singh, A., Singh, A., & Nizamuddin. (2009). Antimicrobial studies of some novel quinazolinones fused with [1,2,4]-triazole, [1,2,4]-triazine and [1,2,4,5]-tetrazine rings. European Journal of Medicinal Chemistry, 44(3), 1188-1197.

Dunga, A. K., Allaka, T. R., Kethavarapu, Y., Nechipadappu, S. K., Pothana, P., Ravada, K., Kashanna, J., & Kishore, P. V. V. N. (2022). Design, synthesis and biological evaluation of novel substituted indazole-1,2,3-triazolyl-1,3,4-oxadiazoles: Antimicrobial activity evaluation and docking study. Results in Chemistry, 4, 100605.

Fizer, M., Slivka, M., Mariychuk, R., Baumer, V., & Lendel, V. (2018). 3-Methylthio-4-phenyl-5-phenylamino-1,2,4-triazole hexabromotellurate: X-ray and computational study. Journal of Molecular Structure, 1161, 226-236.

Foti, M. C., Daquino, C., & Geraci, C. (2004). Electron-transfer reaction of cinnamic acids and their methyl esters with the DPPH• radical in alcoholic solutions. The Journal of Organic Chemistry, 69(7), 2309-2314.

Taha, Z. A., Ajlouni, A. M., Al Momani, W., & Al-Ghzawi, A. A. (2011). Syntheses, characterization, biological activities and photophysical properties of lanthanides complexes with a tetradentate Schiff base ligand. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 81(1), 570-577.

Lakshmithendral, K., Archana, K., Saravanan, K., Kabilan, S., & Selvanayagam, S. (2018). Crystal structures of 3-methoxy-4-[5-(4-methoxyphenyl)-1,3,4-oxadiazol-2-yl]methoxybenzonitrile and N-(4-[5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl]methoxyphenyl)acetamide. Acta Crystallographica Section E, 74(12), 1919-1922.

Vu Quoc, T., Nguyen Ngoc, L., Do Ba, D., Pham Chien, T., Nguyen Huy, H., & Van Meervelt, L. (2018). Crystal structure and Hirshfield surface analysis of 4-phenyl-3-(thiophen-3-ylmethyl)-1H-1,2,4-triazole-5(4H)-thione. Acta Crystallographica Section E, 74(6), 812-815.

Abdelrazeq, A. S., Ghabbour, H. A., El-Emam, A. A., Osman, D. A., & Garcia-Granda, S. (2020). Synthesis and crystal structure of 3-(adamantan-1-yl)-4-(2-bromo-4-fluorophenyl)-1H-1,2,4-triazole-5(4H)-thione. Acta Crystallographica Section E, 76(2), 162-166.

How to Cite
Faye, N., Mbow, B., Gaye, A. A., Ndoye, C., Diop, M., Excoffier, G., & Gaye, M. (2022). Syntheses & Antioxidant Activity of 1-Isonicotinoyl-4-phenylthiosemicarbazide and Crystal Structures of N-Phenyl-5-(pyridin-4-yl)-1,3,4-oxadiazol-2-amine Hydrochloride and 4-Phenyl-3-(pyridin-4-yl)-1H-1,2,4-triazole-5(4H)-thione derived from 1 Isonicotinoyl-4-phenylthiosemicarbazide. Earthline Journal of Chemical Sciences, 9(2), 189-208.