Syntheses & Antioxidant Activity of 1-Isonicotinoyl-4-phenylthiosemicarbazide and Crystal Structures of N-Phenyl-5-(pyridin-4-yl)-1,3,4-oxadiazol-2-amine Hydrochloride and 4-Phenyl-3-(pyridin-4-yl)-1H-1,2,4-triazole-5(4H)-thione derived from 1 Isonicotinoyl-4-phenylthiosemicarbazide

  • Ndama Faye Department of Chemistry, University Cheikh Anta Diop, Dakar, 10700, Sénégal
  • Bédié Mbow Department of Chemistry, University Cheikh Anta Diop, Dakar, 10700, Sénégal
  • Aïssatou Alioune Gaye Department of Chemistry, University Cheikh Anta Diop, Dakar, 10700, Sénégal
  • Cheikh Ndoye Department of Chemistry, University Cheikh Anta Diop, Dakar, 10700, Sénégal
  • Mayoro Diop Department of Chemistry, University Cheikh Anta Diop, Dakar, 10700, Sénégal
  • Grégory Excoffier Aix Marseille University, CNRS, Centrale Marseille, FSCM, Spectropole, Marseille, France
  • Mohamed Gaye Department of Chemistry, University Cheikh Anta Diop, Dakar, 10700, Sénégal
Keywords: isonicotinic hydrazide, isothiocynate, oxadiazole, triazole

Abstract

The title compound C13H12N4OS (I) is synthetized from isonicotinic hydrazide and isothiocynate. Compounds C13H11N4OCl (II) and C13H10N4S (III) where obtained upon reaction of (I) with Fe(II) or Mn(II) salts. Compound (II) is heterocyclic 1,3,4-oxadiazole while compound (III) is heterocyclic 1,2,4-triazole. The 1,3,4-oxadiazol derivative is almost planar with dihedral angle of 2.66 (8) and 5.14 (8)° between 1,3,4-oxadiazole ring and phenyl and pyridinium rings respectively; the dihedral angle between the phenyl and pyridinium rings is 3.92 (8)°. The 1,2,4-triazole derivative is non-planar. The phenyl and pyridyl rings form dihedral angles of 58.35 (5) and 58.33 (5)°, respectively, with the 1,2,4-triazole ring; the dihedral angle between the phenyl and pyridyl rings is 36.85 (4)°. In the compound (II) intramolecular hydrogen bonds of type N—H···Cl, C—H···N and C—H···Cl resulting in S(6) ring stabilize the structure. Intermolecular hydrogen bonds of type N—H···N, C—H···N, C—4···Cl link the molecule thus forming a three-dimensional network. In the structure of compound (III), intermolecular hydrogen bonds of type N—H···N, C—H···N, C—H···S1,link the monomer in a three-dimensional network.

References

Obaid, R. J., Mughal, E. U., Naeem, N., Al-Rooqi, M. M., Sadiq, A., Jassas, R. S., Moussa, Z., & Ahmed, S. A. (2022). Pharmacological significance of nitrogen-containing five and six-membered heterocyclic scaffolds as potent cholinesterase inhibitors for drug discovery. Process Biochemistry, 120, 250-259. https://doi.org/10.1016/j.procbio.2022.06.009

Artem’ev, G. A., Rusinov, V. L., Kopchuk, D. S., Savchuk, M. I., Santra, S., Ulomsky, E. N., Zyryanov, G. V., Majee, A., Du, W., Charushinab, V. N., & Chupakhin, О. N. (2022). Synthetic approaches to 1,2,4-triazolo[5,1-c][1,2,4]triazin-7-ones as basic heterocyclic structures of the antiviral drug Riamilovir (“Triazavirin”) active against SARS-CoV-2 (COVID-19). Organic & Biomolecular Chemistry, 20(9), 1828-1837. https://doi.org/10.1039/D1OB02125G

Al-Jumaili, M. H. A., Hamad, A. A., Hashem, H. E., Hussein, A. D., Muhaidi, M. J., Ahmed, M. A., Albanaa, A. H. A., Siddique, F., & Bakr, E. A. (2023). Comprehensive review on the Bis–heterocyclic compounds and their anticancer efficacy. Journal of Molecular Structure, 1271, 133970. https://doi.org/10.1016/j.molstruc.2022.133970

Swain, S. S., Pati, S., & Hussain, T. (2022). Quinoline heterocyclic containing plant and marine candidates against drug-resistant Mycobacterium tuberculosis: A systematic drug-ability investigation. European Journal of Medicinal Chemistry, 232, 114173. https://doi.org/10.1016/j.ejmech.2022.114173

Mohamed, H. A., Bekheit, M. S., Ewies, E. F., Awad, H. M., Betz, R., Hosten, E. C., & Abdel-Wahab, B. F. (2023). Design of new hybrids indole/phthalimide/oxadiazole-1,2,3 triazole agents and their anticancer properties. Journal of Molecular Structure, 1274, 134415. https://doi.org/10.1016/j.molstruc.2022.134415

Dincel, E. D., Akdağ, Ç., Kayra, T., Coşar, E. D., Aksoy, M. O., Akalın-Çiftçi, G., & Ulusoy-Güzeldemirci, N. (2022). Design, synthesis, characterization, molecular docking studies and anticancer activity evaluation of novel hydrazinecarbothioamide, 1,2,4-triazole-3-thione, 4-thiazolidinone and 1,3,4-oxadiazole derivatives. Journal of Molecular Structure, 1268, 133710. https://doi.org/10.1016/j.molstruc.2022.133710

Hamoud, M. M. S., Osman, N. A., Rezq, S., A. A. Abd El-wahab, H., E. A. Hassan, A., Abdel-Fattah, H. A., D. G., Romero, A. M., Ghanima, & Ghanim, A. M. (2022). Design and synthesis of novel 1,3,4-oxadiazole and 1,2,4-triazole derivatives as cyclooxygenase-2 inhibitors with anti-inflammatory and antioxidant activity in LPS-stimulated RAW264.7 macrophages. Bioorganic Chemistry, 124, 105808. https://doi.org/10.1016/j.bioorg.2022.105808

G, M., Sridhar, G., Laxminarayana, E., & Chary, M. T. (2021). Synthesis and biological evaluation of 1,2,4-oxadiazole incorporated 1,2,3-triazole-pyrazole derivatives as anticancer agents. Chemical Data Collections, 34, 100735. https://doi.org/10.1016/j.cdc.2021.100735

Holla, B. S., Gonsalves, R., & Shenoy, S. (2000). Synthesis and antibacterial studies of a new series of 1,2-bis(1,3,4-oxadiazol-2-yl)ethanes and 1,2-bis(4-amino-1,2,4-triazol-3-yl)ethanes. European Journal of Medicinal Chemistry, 35(2), 267-271. https://doi.org/10.1016/S0223-5234(00)00154-9

Abdelfattah, A. M., Mekky, A. E. M., & Sanad, S. M. H. (2022). Synthesis, antibacterial activity and in silico study of new bis(1,3,4-oxadiazoles). Synthetic Communications, 52(11-12), 1421-1440. https://doi.org/10.1080/00397911.2022.2095211

Wang, J., Ansari, M. F., & Zhou, C.-H. (2021). Unique para-aminobenzenesulfonyl oxadiazoles as novel structural potential membrane active antibacterial agents towards drug-resistant methicillin resistant Staphylococcus aureus. Bioorganic & Medicinal Chemistry Letters, 41, 127995. https://doi.org/10.1016/j.bmcl.2021.127995

Laddi, U., Desai, S., Bennur, R., & Bennur, S. (2002). Some new 1, 3, 4-oxadiazoles as antimicrobial agents. Indian Journal of Heterocyclic Chemistry, 11(4), 319-322.

Matore, B. W., Banjare, P., Guria, T., Roy, P. P., & Singh, J. (2022). Oxadiazole derivatives: Histone deacetylase inhibitors in anticancer therapy and drug discovery. European Journal of Medicinal Chemistry Reports, 5, 100058. https://doi.org/10.1016/j.ejmcr.2022.100058

Baxendale, I. R., Ley, S. V., & Martinelli, M. (2005). The rapid preparation of 2-aminosulfonamide-1,3,4-oxadiazoles using polymer-supported reagents and microwave heating. Tetrahedron, 61(22), 5323-5349. https://doi.org/10.1016/j.tet.2005.03.062

Coppo, F. T., Evans, K. A., Graybill, T. L., & Burton, G. (2004). Efficient one-pot preparation of 5-substituted-2-amino-1,3,4-oxadiazoles using resin-bound reagents. Tetrahedron Letters, 45(16), 3257-3260. https://doi.org/10.1016/j.tetlet.2004.02.119

Jadhav, R., Pawar, S., Khilare, C., & Nikumbh, A. (2022). Synthesis and biological screening of novel series of 2-(4-hydroxy-3-methoxy-5-nitro-phenyl)-[1,3,4]oxadiazole by conventional and non-conventional techniques. Materials Today: Proceedings, under the press. https://doi.org/10.1016/j.matpr.2022.10.087

Gani, R. S., Kudva, A. K., Timanagouda, K., Raghuveer, Mujawar, S. B. H., Joshi, S. D., & Raghu, S. V. (2021). Synthesis of novel 5-(2,5-bis(2,2,2-trifluoroethoxy)phenyl)-1,3,4-oxadiazole-2-thiol derivatives as potential glucosidase inhibitors. Bioorganic Chemistry, 114, 105046. https://doi.org/10.1016/j.bioorg.2021.105046

Balogh, R., Eckstein, A., Tokár, K., & Danko, M. (2023). The synthesis and spectral study of thiazolo[5,4-d]thiazole based small molecules using 1,3,4-oxadiazole as a linker for organic electronics. Journal of Photochemistry and Photobiology A: Chemistry, 434, 114217. https://doi.org/10.1016/j.jphotochem.2022.114217

Kumar, S., Kalia, V., Goyal, M., Jhaa, G., Kumar, S., Vashisht, H., Dahiya, H., Quraishi, M. A., Verma, C., & Verma, C. (2022). Newly synthesized oxadiazole derivatives as corrosion inhibitors for mild steel in acidic medium: Experimental and theoretical approaches. Journal of Molecular Liquids, 357, 119077. https://doi.org/10.1016/j.molliq.2022.119077

Cao, W.-L., Tariq, Q.-N., Li, Z.-M., Yang, J.-Q., & Zhang, J.-G. (2022). Recent advances on the nitrogen-rich 1,2,4-oxadiazole-azoles-based energetic materials. Defence Technology, 18(3), 344-367. https://doi.org/10.1016/j.dt.2021.12.002

Khattab, T. A., El-Naggar, M. E., Al-Sehemi, A. G., Al-Ghamdi, A. A., & Taleb, M. F. A. (2022). Novel fluorescent nanofibrous polyether template developed by SNAr polymerization of fluoroaryl-containing 1, 3, 4-oxadiazole: Photophysical properties, mesogenic phases and self-assembly. European Polymer Journal, 173, 111270. https://doi.org/10.1016/j.eurpolymj.2022.111270

Soni, J. P., Joshi, S. V., Chemitikanti, K. S., & Shankaraiah, N. (2021). The riveting chemistry of poly-aza-heterocycles employing microwave technique: A decade review. European Journal of Organic Chemistry, 2021(10), 1476-1490. https://doi.org/10.1002/ejoc.202001472

Kaur, N. (2015). Synthesis of Five-Membered N,N,N- and N,N,N,N-Heterocyclic Compounds: Applications of Microwaves. Synthetic Communications, 45(15), 1711-1742. https://doi.org/10.1080/00397911.2013.828756

Kaur, N. (2015). Role of microwaves in the synthesis of fused five-membered heterocycles with three N-heteroatoms. Synthetic Communications, 45(4), 403-431. https://doi.org/10.1080/00397911.2013.824981

Zhu, B., Li, W., Chen, H., Wu, M., Hu, J., Cao, H., & Liu, X. (2022). Mechanochemical synthesis of 1,2,4-triazoles via a [3+2] cycloaddition of azinium-N-imines and nitriles. Advanced Synthesis & Catalysis, 364(17), 2911-2915. https://doi.org/10.1002/adsc.202200463

Huang, H., Guo, W., Wu, W., Li, C.-J., & Jiang, H. (2015). Copper-catalyzed oxidative C(sp3)–H functionalization for facile synthesis of 1,2,4-triazoles and 1,3,5-triazines from amidines. Organic Letters, 17(12), 2894-2897. https://doi.org/10.1021/acs.orglett.5b00995

Tsai, S.-E., Yen, W.-P., Li, Y.-T., Hu, Y.-T., Tseng, C.-C., & Wong, F. F. (2017). Indium(III) chloride promoted one-pot multicomponent synthesis of 1,2,4-triazole carrying 1,2,4-triazin-6-ones from nitrile imines and N,N′-bis(trimethylsilyl) carbodiimine. Asian Journal of Organic Chemistry, 6(10), 1470-1475. https://doi.org/10.1002/ajoc.201700271

Munir, A., Khushal, A., Saeed, K., Sadiq, A., Ullah, R., Ali, G., Ashraf, Z., Mughal, E. U., Jan, M. S., Rashid, U., Hussain, I., & Mumtaz, A. (2020). Synthesis, in-vitro, in-vivo anti-inflammatory activities and molecular docking studies of acyl and salicylic acid hydrazide derivatives. Bioorganic Chemistry, 104, 104168. https://doi.org/10.1016/j.bioorg.2020.104168

Mangarao, N., Mahaboob Basha, G., Ramu, T., Srinuvasarao, R., Prasanthi, S., & Siddaiah, V. (2014). Brønsted acid-catalyzed simple and efficient synthesis of 1,2,4-triazoles and 1,2,4-oxadiazoles using 2,2,2-trichloroethyl imidates in PEG. Tetrahedron Letters, 55(1), 177-179. https://doi.org/10.1016/j.tetlet.2013.10.147

Abdellatif, K. R. A., Abdelall, E. K. A., Elshemy, H. A. H., Philoppes, J. N., Hassanein, E. H. M., & Kahk, N. M. (2021). Optimization of pyrazole-based compounds with 1,2,4-triazole-3-thiol moiety as selective COX-2 inhibitors cardioprotective drug candidates: Design, synthesis, cyclooxygenase inhibition, anti-inflammatory, ulcerogenicity, cardiovascular evaluation, and molecular modeling studies. Bioorganic Chemistry, 114, 105122. https://doi.org/10.1016/j.bioorg.2021.105122

Yang, P., Luo, J.-B., Wang, Z.-Z., Zhang, L.-L., Feng, J., Xie, X.-B., Shi, Q.-S., & Zhang, X.-G. (2021). Synthesis, molecular docking, and evaluation of antibacterial activity of 1,2,4-triazole-norfloxacin hybrids. Bioorganic Chemistry, 115, 105270. https://doi.org/10.1016/j.bioorg.2021.105270

Zengin, M., Unsal Tan, O., Arafa, R. K., & Balkan, A. (2022). Design and synthesis of new 2-oxoquinoxalinyl-1,2,4-triazoles as antitumor VEGFR-2 inhibitors. Bioorganic Chemistry, 121, 105696. https://doi.org/10.1016/j.bioorg.2022.105696

Kaproń, B., Łuszczki, J. J., Siwek, A., Karcz, T., Nowak, G., Zagaja, M., Andres-Mach, M., Stasiłowicz, A., Cielecka-Piontek, J., Kocki, J., & Plech, T. (2020). Preclinical evaluation of 1,2,4-triazole-based compounds targeting voltage-gated sodium channels (VGSCs) as promising anticonvulsant drug candidates. Bioorganic Chemistry, 94, 103355. https://doi.org/10.1016/j.bioorg.2019.103355

Dhanavath, R., Dharavath, R., Kothula, D., Bitla, S., Yaku, G., Birdaraju, S., Puchakayala, M. R., & Atcha, K. R. (2022). Synthesis and biological evaluation of novel 2-arylquinoline-3-fused thiazolo[2,3-c]1,2,4-triazole heterocycles as potential antiproliferative and antimicrobial agents. Journal of Heterocyclic Chemistry, 59(7), 1198-1212. https://doi.org/10.1002/jhet.4460

Sadeghian, S., Emami, L., Mojaddami, A., khabnadideh, S., Faghih, Z., Zomorodian, K., Rashidi, M., & Rezaei, Z. (2023). 1,2,4-Triazole derivatives as novel and potent antifungal agents: Design, synthesis and biological evaluation. Journal of Molecular Structure, 1271, 134039. https://doi.org/10.1016/j.molstruc.2022.134039

Deng, X., Gujjar, R., El Mazouni, F., Kaminsky, W., Malmquist, N. A., Goldsmith, E. J., Rathod, P. K., & Phillips, M. A. (2009). Structural plasticity of malaria dihydroorotate dehydrogenase allows selective binding of diverse chemical scaffolds. Journal of Biological Chemistry, 284(39), 26999-27009. https://doi.org/10.1074/jbc.M109.028589

Patel, K. R., Brahmbhatt, J. G., Pandya, P. A., Daraji, D. G., Patel, H. D., Rawal, R. M., & Baran, S. K. (2021). Design, synthesis and biological evaluation of novel 5-(4-chlorophenyl)-4-phenyl-4H-1,2,4-triazole-3-thiols as an anticancer agent. Journal of Molecular Structure, 1231, 130000. https://doi.org/10.1016/j.molstruc.2021.130000

Gani, R. S., Timanagouda, K., Madhushree, S., Joshi, S. D., Hiremath, M. B., Mujawar, S. B. H., & Kudva, A. K. (2020). Synthesis of novel indole, 1,2,4-triazole derivatives as potential glucosidase inhibitors. Journal of King Saud University - Science, 32(8), 3388-3399. https://doi.org/10.1016/j.jksus.2020.09.026

Sheldrick, G. M. (2015). SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica Section A, 71(1), 3-8. https://doi.org/10.1107/S2053273314026370

Sheldrick, G. M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica Section C, 71(1), 3-8. https://doi.org/10.1107/S2053229614024218

Farrugia, L. J. (2012). WinGX and ORTEP for Windows: an update. Journal of Applied Crystallography, 45(4), 849-854. https://doi.org/10.1107/S0021889812029111

Akhtar, P., Yaakob, Z., Ahmed, Y., Shahinuzzaman, M., & Hyder, M. K. M. (2018). Total phenolic contents and free radical scavenging activity of different parts of Jatropha species. Asian Journal of Chemistry, 30, 365-370. https://doi.org/10.14233/ajchem.2018.20980

Pandey, S. K., Singh, A., Singh, A., & Nizamuddin. (2009). Antimicrobial studies of some novel quinazolinones fused with [1,2,4]-triazole, [1,2,4]-triazine and [1,2,4,5]-tetrazine rings. European Journal of Medicinal Chemistry, 44(3), 1188-1197. https://doi.org/10.1016/j.ejmech.2008.05.033

Dunga, A. K., Allaka, T. R., Kethavarapu, Y., Nechipadappu, S. K., Pothana, P., Ravada, K., Kashanna, J., & Kishore, P. V. V. N. (2022). Design, synthesis and biological evaluation of novel substituted indazole-1,2,3-triazolyl-1,3,4-oxadiazoles: Antimicrobial activity evaluation and docking study. Results in Chemistry, 4, 100605. https://doi.org/10.1016/j.rechem.2022.100605

Fizer, M., Slivka, M., Mariychuk, R., Baumer, V., & Lendel, V. (2018). 3-Methylthio-4-phenyl-5-phenylamino-1,2,4-triazole hexabromotellurate: X-ray and computational study. Journal of Molecular Structure, 1161, 226-236. https://doi.org/10.1016/j.molstruc.2018.02.054

Foti, M. C., Daquino, C., & Geraci, C. (2004). Electron-transfer reaction of cinnamic acids and their methyl esters with the DPPH• radical in alcoholic solutions. The Journal of Organic Chemistry, 69(7), 2309-2314. https://doi.org/10.1021/jo035758q

Taha, Z. A., Ajlouni, A. M., Al Momani, W., & Al-Ghzawi, A. A. (2011). Syntheses, characterization, biological activities and photophysical properties of lanthanides complexes with a tetradentate Schiff base ligand. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 81(1), 570-577. https://doi.org/10.1016/j.saa.2011.06.052

Lakshmithendral, K., Archana, K., Saravanan, K., Kabilan, S., & Selvanayagam, S. (2018). Crystal structures of 3-methoxy-4-[5-(4-methoxyphenyl)-1,3,4-oxadiazol-2-yl]methoxybenzonitrile and N-(4-[5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl]methoxyphenyl)acetamide. Acta Crystallographica Section E, 74(12), 1919-1922. https://doi.org/10.1107/S2056989018016754

Vu Quoc, T., Nguyen Ngoc, L., Do Ba, D., Pham Chien, T., Nguyen Huy, H., & Van Meervelt, L. (2018). Crystal structure and Hirshfield surface analysis of 4-phenyl-3-(thiophen-3-ylmethyl)-1H-1,2,4-triazole-5(4H)-thione. Acta Crystallographica Section E, 74(6), 812-815. https://doi.org/10.1107/S2056989018007193

Abdelrazeq, A. S., Ghabbour, H. A., El-Emam, A. A., Osman, D. A., & Garcia-Granda, S. (2020). Synthesis and crystal structure of 3-(adamantan-1-yl)-4-(2-bromo-4-fluorophenyl)-1H-1,2,4-triazole-5(4H)-thione. Acta Crystallographica Section E, 76(2), 162-166. https://doi.org/10.1107/S2056989020000092

Published
2022-12-04
How to Cite
Faye, N., Mbow, B., Gaye, A. A., Ndoye, C., Diop, M., Excoffier, G., & Gaye, M. (2022). Syntheses & Antioxidant Activity of 1-Isonicotinoyl-4-phenylthiosemicarbazide and Crystal Structures of N-Phenyl-5-(pyridin-4-yl)-1,3,4-oxadiazol-2-amine Hydrochloride and 4-Phenyl-3-(pyridin-4-yl)-1H-1,2,4-triazole-5(4H)-thione derived from 1 Isonicotinoyl-4-phenylthiosemicarbazide. Earthline Journal of Chemical Sciences, 9(2), 189-208. https://doi.org/10.34198/ejcs.9223.189208
Section
Articles