Synthesis, Spectroscopic and X-Ray Structure Determination of a New Mononuclear Terbium (III) Complex from the Ligand N,N'-1,5-bis(pyridylmethylidene) Carbonohydrazone (H2L)

  • Thierno Moussa Seck Department of Chemistry, University Cheikh Anta Diop, Dakar, 10700, Senegal
  • Mbossé Ndiaye Gueye Department of Chemistry, University Cheikh Anta Diop, Dakar, 10700, Senegal
  • Ibrahima Elhadj Thiam Department of Chemistry, University Cheikh Anta Diop, Dakar, 10700, Senegal
  • Ousmane Diouf Department of Chemistry, University Cheikh Anta Diop, Dakar, 10700, Senegal
  • Mohamed Gaye Department of Chemistry, University Cheikh Anta Diop, Dakar, 10700, Senegal
  • Pascal Retailleau Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France
Keywords: carbonohydrazone, terbium (III), square antiprism, crystal structure

Abstract

In the title compound, [Tb(H2L)2(H2O)3].3Cl.4(H2O).(C2H5OH), the Tb3+ is nine-coordinated in a distorted monocapped square antiprismgeometry by four nitrogen atoms, two oxygen atoms from the ligand molecules of the tridentate N,N'-1,5-bis(pyridylmethylidene) carbonohydrazone) (H2L) and three oxygen atoms of coordinating water molecules. The structure of the complex was elucidated by X-ray diffraction analysis. Suitable crystals were grown by slow evaporation of ethanol solution. The compound crystallizes in the triclinic crystal system with a space group of Pī. The asymmetric unit of the compound contains two neutral ligand molecules, oneterbium ion, three coordinated water molecules, five and half uncoordinated water molecules and one uncoordinated ethanol molecule. In the crystal, the complex cations are linked by hydrogen bonds into layers. These layers, chloride anions and non-coordinating water molecules are connected by O—H···O, O—H···N, O—H···Cl, N—H···O, N—H···Cl and C—H···Cl hydrogen bonds into a three-dimensional structure.

References

Nayak, D., & Lahiri, S. (1999). Application of radioisotopes in the field of nuclear medicine. Journal of Radioanalytical and Nuclear Chemistry, 242, 423-432. https://doi.org/10.1007/BF02345573

Jin, L., Wu, Y., Wang, Y., Liu, S., Zhang, Y., Li, Z., Chen, X., Zhang, W., Xiao, S., & Song, Q. (2019). Mass-manufactural lanthanide-based ultraviolet B microlasers. Advanced Materials, 31, 1807079. https://doi.org/10.1002/adma.201807079

Bao, G. (2020). Lanthanide complexes for drug delivery and therapeutics. Journal of Luminescence, 228, 117622. https://doi.org/10.1016/j.jlumin.2020.117622

Zhong, Y., Gu, J., Su, Y., Zhao, L., Zhou, Y., & Peng, J. (2022). Real-time screening of hepatotoxins in natural medicine by peroxynitrite responsive lanthanide-based NIR-II luminescent probes. Chemical Engineering Journal, 433, 133263. https://doi.org/10.1016/j.cej.2021.133263

Launiere, C.A., & Gelis, A.V. (2016). High precision droplet-based microfluidic determination of americium(III) and lanthanide(III) solvent extraction separation kinetics. Industrial & Engineering Chemistry Research, 55, 2272-2276. https://doi.org/10.1021/acs.iecr.5b04691

Kim, D., & Lee, K.T. (2021). Effect of lanthanide (Ln=La, Nd, and Pr) doping on electrochemical performance of Ln2NiO4+δ−YSZ composite cathodes for solid oxide fuel cells. Ceramics International, 47, 2493-2498. https://doi.org/10.1016/j.ceramint.2020.09.092

Bell, D.J., Natrajan, L.S., & Riddell, I.A. (2022). Design of lanthanide-based metal–organic polyhedral cages for application in catalysis, sensing, separation and magnetism. Coordination Chemistry Reviews, 472, 214786. https://doi.org/10.1016/j.ccr.2022.214786

Mikami, K., Terada, M., & Matsuzawa, H. (2002). Asymmetric catalysis by lanthanide complexes. Angewandte Chemie International Edition, 41, 3554-3572. https://doi.org/10.1002/1521-3773(20021004)41:19<3554::AID-ANIE3554>3.0.CO;2-P

Li, R., Wang, M., Liu, X., & Feng, X. (2022). Near-infrared luminescence and magnetism of several lanthanide polymers by biphenyl carboxylic acid ligand. Inorganica Chimica Acta, 539, 121029. https://doi.org/10.1016/j.ica.2022.121029

Gould, C.A., McClain, K.R., Reta, D., Kragskow, J.G.C., Marchiori, D.A., Lachman, E., Choi, E.-S., Analytis, J.G., Britt, R.D., Chilton, N.F., Harvey, B.G., & Long, J.R. (2022). Ultrahard magnetism from mixed-valence dilanthanide complexes with metal-metal bonding. Science, 375, 198-202. https://doi.org/10.1126/science.abl5470

Huang, X.-D., Ma, X.-F., Shang, T., Zhang, Y.-Q., & Zheng, L.-M. (2022). Photocontrollable magnetism and photoluminescence in a binuclear dysprosium anthracene complex. Inorganic Chemistry, in press. https://doi.org/10.1021/acs.inorgchem.2c01210

Sun, G., Xie, Y., Sun, L., & Zhang, H. (2021). Lanthanide upconversion and downshifting luminescence for biomolecules detection. Nanoscale Horizons, 6, 766-780. https://doi.org/10.1039/D1NH00299F

Laatikainen, M., Branger, C., Laatikainen, K., & Sainio, T. (2021). Ion exchange of lanthanides with conventional and ion-imprinted resins containing sulfonic or iminodiacetic acid groups. Separation Science and Technology, 56, 203-216. https://doi.org/10.1080/01496395.2019.1708938

Niu, X., Wang, M., Cao, R., Zhang, M., Liu, Z., Liu, Z., Hao, F., Sheng, L., & Xu, H. (2022). Ion exchange fabrication of lanthanide functionalized layered double hydroxides microcapsules for rapid and visual detection of anthrax biomarker. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 281, 121622. https://doi.org/10.1016/j.saa.2022.121622

da Silva, F.F., de Oliveira, C.A.F., Falcão, E.H.L., Chojnacki, J., Neves, J.L., & Alves, S. (2014). New lanthanide–CB[6] coordination compounds: relationships between the crystal structure and luminescent properties. Dalton Transactions, 43, 5435-5442. https://doi.org/10.1039/C3DT52687A

Li, R., Zhang, Y., Liu, X., Chang, X., & Feng, X. (2020). The synthesis, structural elucidation and fluorescent sensitization detection to Hg2+ based on two lanthanide-organic complexes. Inorganica Chimica Acta, 502, 119370. https://doi.org/10.1016/j.ica.2019.119370

Song, J., Li, C.-R., Xu, Q., Xu, X.-T., Sun, L.-X., & Xing, Y.-H. (2015). Synthesis, crystal structure, photoluminescence property of a series of 3d–4f coordination supramolecular complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 150, 308-315. https://doi.org/10.1016/j.saa.2015.05.070

Tan, Z., Zhou, J., Jiang, T., Zou, H.-H., & Fu, L. (2020). Syntheses, and luminescent properties of a series of new lanthanide azelates. Dyes and Pigments, 182, 108638. https://doi.org/10.1016/j.dyepig.2020.108638

Zhang, C., Ma, X., Cen, P., Jin, X., Yang, J., Zhang, Y.-Q., Ferrando-Soria, J., Pardo, E., & Liu, X. (2020). A series of lanthanide(III) metal–organic frameworks derived from a pyridyl-dicarboxylate ligand: single-molecule magnet behaviour and luminescence properties. Dalton Transactions, 49, 14123-14132. https://doi.org/10.1039/D0DT02736G

Zhao, Y., Wu, Z.-Y., Wang, R.-Y., Ge, Y.-F., & Wu, B.-L. (2020). Luminescent 3D homochiral coordination polymers of europium(III) and terbium(III) based on amino acid-functionalized isophthalic acid. Inorganic Chemistry Communications, 119, 108049. https://doi.org/10.1016/j.inoche.2020.108049

Zhang, Y.-R., Xie, X.-Z., Yin, X.-B., & Xia, Y. (2022). Flexible ligand for Metal-Organic frameworks with simultaneous Large-Pore and antenna effect emission. Chemical Engineering Journal, 443, 136532. https://doi.org/10.1016/j.cej.2022.136532

Zhu, M., Zhu, X., Wu, S., Zhang, Y., Ji, X., Chen, Q., & Gao, E. (2020). Two wheel-shaped Pr(III) and Er(III) complexes with long flexible ligand: Crystal structure, fluorescence and anticancer studies. Inorganic Chemistry Communications, 122, 108270. https://doi.org/10.1016/j.inoche.2020.108270

Puentes, R., Torres, J., Faccio, R., Bacchi, A., & Kremer, C. (2019). Lanthanide coordination polymers based on flexible ligands derived from iminodiacetic acid. Polyhedron, 170, 683-689. https://doi.org/10.1016/j.poly.2019.06.040

Sheldrick, G.M. (2015). SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 3-8. https://doi.org/10.1107/S2053273314026370

Sheldrick, G.M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 3-8. https://doi.org/10.1107/S2053229614024218

Farrugia, L.J. (2012). WinGX and ORTEP for Windows: an update. Journal of Applied Crystallography, 45, 849-854. https://doi.org/10.1107/S0021889812029111

Singh, A.K., Pandey, O.P., & Sengupta, S.K. (2013). Synthesis, spectral and antimicrobial activity of Zn(II) complexes with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and benzaldehyde/2-hydroxyacetophenone/ indoline-2,3-dione. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 113, 393-399. https://doi.org/10.1016/j.saa.2013.04.045

Chen, Y., Xing, Z., Cao, S., & Wang, Y. (2016). Synthesis and luminescent properties of terbium complex with 2-amino-4-chlorobenzoic acid. Journal of Rare Earths, 34, 240-244. https://doi.org/10.1016/S1002-0721(16)60020-0

Geary, W.J. (1971). The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coordination Chemistry Reviews, 7, 81-122. https://doi.org/10.1016/S0010-8545(00)80009-0

Varam, Y., & Rajkumari, L. (2017). Complexation studies of N′-[(1E)-1-phenylethylidene]isonicotinohydrazide: An aroylhydrazone Schiff base and lanthanides. Journal of Molecular Liquids, 227, 127-138. https://doi.org/10.1016/j.molliq.2016.11.098

Gueye, Nd. M., Moussa, D., Thiam, E.I., Barry, A.H., Gaye, M., & Retailleau, P. (2017). Crystal structure of bis(acetato-κ2O,O')diaqua[1-(pyridin-2-ylmethylidene-κN)-2-(pyridin-2-yl-N)hydrazine-N1]terbium(III) nitrate monohydrate. Acta Crystallographica, E73, 1121-1124. https://doi.org/10.1107/S2056989017009653

Masuya, A., Igarashi, C., Kanesato, M., Hoshino, H., & Iki, N. (2015). One-pot synthesis and structural characterization of a Tb(III) coordination polymer based on a tripodal Schiff base ligand adopting an exo-bridging coordination mode. Polyhedron, 85, 76–82. https://doi.org/10.1016/j.poly.2014.08.033

Zeng, C.-H., Yang, Y.-Y., Zhu, Y.-M., Wang, H.-M., Chu, T.-S., & Ng, S.W. (2012). A new luminescent terbium 4-methylsalicylate complex as a novel sensor for detecting the purity of methanol. Photochemistry and Photobiology, 88, 860-866. https://doi.org/10.1111/j.1751-1097.2012.01123.x

Chen, S., Fan, R.-Q., Gao, S., Wang, X., & Yang, Y.-L. (2014). Synthesis, crystal structure and effect of deuterated solvents and temperature on visible and near infrared luminescence of N4-donor Schiff base lanthanide complexes. Journal of Luminescence, 149, 75-85. https://doi.org/10.1016/j.jlumin.2014.01.006

Carcelli, M., Ianelli, S., Pelagatti, P., Pelizzi, G., Rogolino, D., Solinas, C., & Tegoni, M. (2005). Synthesis and characterization of new lanthanide complexes with hexadentate hydrazonic ligands. Inorganica Chimica Acta, 358, 903-911. https://doi.org/10.1016/j.ica.2004.10.003

Wang, H.-M., Yang, Y.-Y., Zeng, C.-H., Chu, T.-S., Zhu, Y.-M., & Ng, S.W. (2013). A highly luminescent terbium–organic framework for reversible detection of mercury ions in aqueous solution. Photochemical & Photobiological Sciences, 12, 1700-1706. https://doi.org/10.1039/c3pp50105a

Kachi-Terajima, C., & Kimura, N. (2018). Crystal structures of two isotypic lanthanide(III) complexes: triaqua[2,6-diacetylpyridine bis(benzoylhydrazone)] methanollanthanide(III) trichloride methanol disolvates (LnIII = Tb and Dy). Acta Crystallographica, E74, 535-538. https://doi.org/10.1107/S2056989018004103

Biswas, B., Raghavaiah, P., Aliaga-Alcalde, N., Chen, J.-D., & Ghosh, R. (2010). Syntheses, crystal structures and properties of a new family of isostructural and isomorphous compounds of type [M(L)(NCS)3] [M=La, Gd, Tb and Dy; L=a neutral hexadentate Schiff base]. Polyhedron, 29, 2716-2721. https://doi.org/10.1016/j.poly.2010.06.021

Published
2022-10-22
How to Cite
Seck, T. M., Gueye, M. N., Thiam, I. E., Diouf, O., Gaye, M., & Retailleau, P. (2022). Synthesis, Spectroscopic and X-Ray Structure Determination of a New Mononuclear Terbium (III) Complex from the Ligand N,N’-1,5-bis(pyridylmethylidene) Carbonohydrazone (H2L). Earthline Journal of Chemical Sciences, 9(1), 121-137. https://doi.org/10.34198/ejcs.9123.121137
Section
Articles