Study of the inhibitory properties of 2-((benzylthio)methyl)-1H-benzo[d]imidazole with respect to the corrosion of aluminum in a nitric acid medium

  • Hadja Rokia Toure Laboratory of Reaction and Constitution of Matter, University of Félix Houphouët Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire
  • Amara Bamba Laboratory of Reaction and Constitution of Matter, University of Félix Houphouët Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire
  • Ahissan Donatien Ehouman Laboratory Thermodynamics and Physical Chemistry of the Environment of University Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire
  • Paulin Marius Niamien Laboratory of Reaction and Constitution of Matter, University of Félix Houphouët Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire
Keywords: aluminum, 2-BTM1HBI, mass loss method, Langmuir isotherm, corrosion inhibition

Abstract

Due to its massive use, the behavior of aluminum in a 1 M nitric acid solution was studied in this work; this study which is mainly based on the inhibitory properties of 2-((benzylthio)methyl)-1H-benzo[d]imidazole (2-BTM1HBI) was carried out using the mass loss technique of temperature varying from 298 to 338 K and concentration of 10-3 mM at 5 mM. The inhibitory efficiency of 2-BTM1HBI increases with the increase of the concentration and this up to 96.09% but decreases with the increase of the temperature. The study of isotherms shows that the adsorption of the molecule studied on the surface of aluminum obeys the modified Langmuir isotherm (villamil model). The thermodynamic adsorption quantities were determined and discussed. They show that the adsorption of 2-BTM1HBI is spontaneous and exothermic with an increase in disorder. Adsorption is done in two modes: physisorption and chemsorption with a predominance of physisorption. The thermodynamic quantities of activation have shown that the dissolution process is endothermic with an increase in disorder.

References

Ambat, S., & Dwarakadasa, E. S. (1994). Studies on the influence of chloride ion and pH on the electrochemical behaviour of aluminium alloys 8090 and 2014. Journal of Applied Electrochemistry, 24, 911-616. https://doi.org/10.1007/BF00348781

Dabalà, M., Ramous, E., & Magrini, M. (2004). Corrosion resistance of cerium-based chemical conversion coatings on AA5083 aluminium alloy. Materials and Corrosion, 55, 381-386. https://doi.org/10.1002/maco.200303744

Musa, A. Y., Kadhum, A. A. H., Mohamad, A. B., Takriff, M. S., Daud, A. R., & Kamarudin, S. K. (2010). On the inhibition of mild steel corrosion by 4-amino-5-phenyl-4H-1,2,4-trizole-3-thiol. Corrosion Science, 52, 526-533. https://doi.org/10.1016/j.corsci.2009.10.009

Rosliza, R., Nik, W. B. W., Izman, S., & Prawoto, Y. (2010). Anti-corrosive properties of natural honey on Al–Mg–Si alloy in seawater. Current Applied Physics, 10, 923-929. https://doi.org/10.1016/j.cap.2009.11.074

Hill, J. A., Markley, T., Forsyth, M., Howlett, P. C., & Hinton, B. R. W. (2011). Corrosion inhibition of 7000 series aluminium alloys with cerium diphenyl phosphate. Journal of Alloys and Compounds, 509, 1683-1690. https://doi.org/10.1016/j.jallcom.2010.09.151

Hazzazi, O. A., & Abdallah, M. (2013). Pyrazole compounds as inhibitors for corrosion of aluminium in hydrochloric acid. International Journal of Electrochemical Science, 8, 8138-8152. https://doi.org/10.4236/oalib.1104927

Popova, A., Christov, M., & Zwetanova, A. (2007). Effect of the molecular structure on the inhibitor properties of azoles on mild steel corrosion in 1 M hydrochloric acid. Corrosion Science, 49(5), 2131-2143. https://doi.org/10.1016/j.corsci.2006.10.021

Ergun, Ü., & Emregül, K. C. (2014). Azole compounds as corrosion inhibitors: Part I. Journal of Materials Engineering and Performance, 23, 213-221. https://doi.org/10.1007/s11665-020-04774-1

Khaled, K. F. (2010). Electrochemical investigation and modeling of corrosion inhibition of aluminum in molar nitric acid using some sulphur-containing amines. Corrosion Science, 52, 2905-2916. https://doi.org/10.1016/j.corsci.2010.05.001

Maayta, A. K., & Al-Rawashdeh, N. A. F. (2004). Inhibition of acidic corrosion of pure aluminum by some organic compounds. Corrosion Science, 46(5), 1129-1140. https://doi.org/10.1016/j.corsci.2003.09.009

Abdallah, M. (2000). Antibacterial drugs as corrosion inhibitors for corrosion of aluminum in hydrochloric acid solution. Corrosion Science, 46(8), 1981-1996. https://doi.org/10.1016/j.corsci.2003.09.031

Obot, B., Obi-Egbedi, N. O., & Umoren, S. A. (2009). Antifungal drugs as corrosion inhibitors for aluminium in 0.1 M HCl. Corrosion Science, 51(8), 1868-1875. https://doi.org/10.1016/j.corsci.2009.05.017

Bhat, J. I., & Alva, V. D. P. (2011). A study of aluminium corrosion inhibition in acid medium by an antiemetic drug. Transactions of the Indian Institute of Metals, 64(4-5), 377-384. https://doi.org/10.1007/s12666-011-0102-9

Aljourani, J., Raessi, K., & Golozar, M. A. (2006). Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1M HCl. Corrosion Science, 51, 1836-1843. https://doi.org/10.17222/mit.2017.145

Bockris, J. O. M., & Drazic, D. (1962). The kinetics of deposition and dissolution of iron: Effect of alloying impurities. Electrochimica Acta, 7, 293-313. https://doi.org/10.1016/0013-4686(62)87007-8

Shaban, S. M., Aiad, I., El-Sukkary, M. M., Soliman, E. A., & El-Awady, M. Y. (2015). Inhibition of mild steel corrosion in acidic medium by vanillin cationic surfactants. Journal of Molecular Liquids, 203, 20-28. https://doi.org/10.1016/j.molliq.2014.12.033

Shaban, S. M., Aiad, I., Moustafa, A. H., & Aljoboury, O. H. (2019). Some alginates polymeric cationic surfactants: Surface study and their evaluation as biocide and corrosion inhibitors. Journal of Molecular Liquids, 273, 164-176. https://doi.org/10.1016/j.molliq.2018.10.017

Noor, E. A., & Al-Moubaraki, A. H. (2008). Thermodynamic study of metal corrosion and inhibitor adsorption processes in mild steel/1-methyl-4[4(-X)-styryl pyridinium iodides/hydrochloric acid systems. Materials Chemistry and Physics, 110, 145-154. https://doi.org/10.1016/j.matchemphys.2008.01.028

Abdulridha, A. A., Albo Hay Allah, M. A., Makki, S. Q., Sert, Y., Salman, H. E., & Balakit, A. A. (2020). Corrosion inhibition of carbon steel in 1M H2SO4 using new azo-schiff compound: Electrochemical, gravimetric, adsorption, surface and DFT studies. Journal of Molecular Liquids, 315, 1-29. https://doi.org/10.1016/j.molliq.2020.113690

Adejo, S. O., & Ekwenchi, M. M. (2014). Resolution of adsorption characterisation ambiguity through the Adejo-Ekwenchi adsorption isotherm: A case study of leaf extract of Hyptis suaveolens Poit as green corrosion inhibitor of corrosion of mild steel in 2 M HCl. Journal of Emerging Trends in Engineering and Applied Sciences, 8(5), 201-205. https://doi.org/10.10520/EJC157010

Adejo, S. O., Ekwenchi, M. M., Ahile, J. U., Gbertyo, J. A., & Kaior, A. (2014). Resolution of adsorption characterisation ambiguity through the Adejo-Ekwenchi adsorption isotherm: A case study of leaf extract of Hyptis suaveolens Poit as green corrosion inhibitor of corrosion of mild steel in 2 M HCl. Journal of Emerging Trends in Engineering and Applied Sciences, 5, 201-205. https://doi.org/10.10520/EJC157010

Adejo, S. O., Ekwenchi, M. M., Olatunde, P. O., & Agbajeola, F. (2014). Adsorption characteristics of ethanol root extract of Portulaca oleracea as eco-friendly inhibitor of corrosion of mild steel in H2SO4 medium. IOSR Journal of Applied Chemistry, 7, 55-60. https://doi.org/10.9790/5736-07415560

Li, Y., Zhao, P., Liang, Q., & Hou, B. (2005). Berberine as a natural source inhibitor for mild steel in 1 M H2SO4. Applied Surface Science, 252(5), 1245-1253. https://doi.org/10.1016/j.apsusc.2005.02.094

Umoren, S. A., Obot, I. B., Apkabio, L. E., & Etuk, S. E. (2008). Adsorption and corrosive inhibitive properties of Vigna unguiculata in alkaline and acidic media. Pigment & Resin Technology, 37(2), 98-105. https://doi.org/10.1108/03699420810860455

Dehri, I., & Ozcan, M. (2010). Investigation of adsorption of isoniazid derivatives at mild steel/hydrochloric acid interface: Electrochemical and weight loss methods. Materials Chemistry and Physics, 123, 666-677. https://doi.org/10.1016/j.matchemphys.2010.05.035

Ehouman, A. D., Bamba, A., Kouadio, Y. V., Kalifa, M., Kouakou, A. R., Bamba, K., Niamien, P. M., & Yao, B. (2023). Evaluation of the synergy effect of some halide ions in the inhibition of copper corrosion in a HNO3 environment in the presence of piroxicam. Global Journal of Pure and Applied Sciences, 29, 153-163. https://dx.doi.org/10.4314/gjpas.v29i2.6

Ehouman, A. D., Bamba, A., Djeni Leto, D., Adou, E., Kouakou, A. R., Toure, H. R., Bamba, K., Niamien, P., & Yao, B. (2023). Study of the inhibitory performance of bisoprolol against copper corrosion in nitric acid. Chemical Science Review and Letters, 12(45), 23-36. https://doi.org/10.37273/chesci.cs205312567

Ehouman, D. A., Amara, B., Kalifa, M., Eric, K., Massogbè, D., Ali, S., & Rodrigue, A. K. (2023). Meloxicam performances for copper corrosion inhibition in 1M HNO3: Experimental and theoretical approaches. Current Physical Chemistry, 13(1), 20-36. https://dx.doi.org/10.2174/1877946813666221117101443

Ehouman, A. D., Bamba, A., Toure, H., Adou, E., Kouakou, A. R., Mariko, K., Dja, A., Niamien, P., & Yao, B. (2023). Inhibition effect of tenoxicam on copper corrosion in HNO3: Experimental study and DFT. American Journal of Materials Science and Engineering, 11(1), 7-15. https://doi.org/10.12691/ajmse-11-1-2

Published
2024-07-30
How to Cite
Toure, H. R., Bamba, A., Ehouman, A. D., & Niamien, P. M. (2024). Study of the inhibitory properties of 2-((benzylthio)methyl)-1H-benzo[d]imidazole with respect to the corrosion of aluminum in a nitric acid medium . Earthline Journal of Chemical Sciences, 11(3), 471-487. https://doi.org/10.34198/ejcs.11324.471487
Section
Articles