Ladder-like Organostannoxane: Synthesis and Crystal Structure of the Second Polymorph {[(C6H5)2Sn]2[(C6H5)2ClSn]2(μ3-O)2(μ2-OH)2}∙[DMF]2

  • Modou Sarr Laboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal
  • Mouhamadou Birame Diop Laboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal
  • Mouhamadou Sembene Boye Laboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal and Département de Physique-Chimie, Faculté des Sciences et Technologies de l’Education et de la Formation (FASTEF), Université Cheikh Anta Diop, Dakar, Sénégal
  • Aminata Diassé-Sarr Laboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal
  • Libasse Diop Laboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal
  • Allen G. Oliver Department of Chemistry and Biochemistry, University of Notre Dame, Nieuwland, Science Hall, Notre Dame, USA
Keywords: organostannoxane, tetranuclear organotin(IV) ladder, trigonal bipyramid, crystal structure, polymorph

Abstract

A ladder-like organostannoxane identified as a polymorph of bis-[chloro-(m2-hydroxo)-(m3-oxo)-tetraphenyl-di-tin] dimethylformamide solvate, {[(C6H5)2Sn]2[(C6H5)2ClSn]23-O)22-OH)2}[DMF]2 (1), has been synthesized and structurally characterized by means of single-crystal X-ray diffraction analysis. Compound 1 crystallizes in the monoclinic space group P21/c with a = 23.4137(12) Å, b = 11.2525(6) Å, c = 20.2719(11) Å, β = 100.461(2)°, V = 5252.1(5) Å3, Z = 4 and Z’ = 1. The XRD discloses that the polymorph reported in this work is the full molecule which does not crystallize about any inversion center. Complex 1 exhibits a tetranuclear organotin(IV) ladder-like structure containing two external chlorides. The tetranuclear structure is comprised of a three-rung-staircase Sn4O4 cluster which consists of a ladder of four Sn2O2 units. The central Sn2O2 core forms dihedral angles of 4.00(7)° and 1.62(8)° with its two fused four-membered rings, describing a slightly bent ladder. This folding is further noticed with the dihedral angle between the two external Sn2O2 cores of 4.65(8)°. In the structure, two types of distorted trigonal bipyramid geometry at tin centers like-arrangement are disclosed. The most Sn–O bridges bond lengths describe a static trans effect affording dissymmetrical bonds. The dimethylformamide solvate molecules form a dihedral angle of 74.5(2)° and are interlinked to the tetranuclear organotin(IV) ladder via O–H···O hydrogen bond patterns. Additional inner C–H···Cl and C–H···O hydrogen bonds as well the C–H···O interactions are present. Moreover, the intermolecular C–H···O hydrogen bonds do not contribute to direct the crystal structure framework; they do not play an important function in forming a supramolecular architecture.

References

Hoti, N., Zhu, D.E., Song, Z., Wu, Z., Tabassum, S., & Wu, M. (2004). P53-dependent apoptotic mechanism of a new designer bimetallic compound tri-phenyl tin benzimidazolethiol copper chloride (TPT-CuCl2): In vivo studies in Wistar rats as well as in vitro studies in human cervical cancer cells. Journal of Pharmacology and Experimental Therapeutics, 311, 22-33.https://doi.org/10.1124/jpet.104.069104

Wang, S., Li, Q.-L., Zhang, R.-F., Du, J.-Y., Li, Y.-X., & Ma, C.-L. (2019). Novel organotin(IV) complexes derived from 4-carboxybenzenesulfonamide: Synthesis, structure and in vitro cytostatic activity evaluation. Polyhedron, 158, 15-24. https://doi.org/10.1016/j.poly.2018.10.048

Person, R.J., & Whalen, M.M. (2010). Effects of butyltin exposures on MAP kinase-dependent transcription regulators in human natural killer cells. Toxicology Mechanisms and Methods, 20, 227-233. https://doi.org/10.3109/15376511003746034

Carraher, C., Roner, M., Lynch, M., Moric-Johnson, A., Miller, L., Slawek, P., Mosca, F., & Frank, J. (2018). Organotinpoly(ester ethers) from salicylic acid and their ability to inhibit human cancer cell lines. Journal of Clinical Research in Oncology, 1(1), 1-11. https://doi.org/10.33309/2639-8230.010103

Syed Annuar, S.N., Kamaludin, N.F., Awang, N., & Chan, K.M. (2021). Cellular basis of organotin(IV) derivatives as anticancer metallodrugs: a review. Frontiers in Chemistry, 9, 657599. https://doi.org/10.3389/fchem.2021.657599

Carraher, Jr., C. (2017). Introduction to polymer chemistry (4th ed.). NY: CRC Press; Taylor and Francis. https://doi.org/10.1201/9781315369488

Etaiw, S.E.H., Abd El-Aziz, D.M., & Ali, E.A. (2019). Crystal structure, cytotoxicity and biological activity of hydrogen bonded networks based on dimethyltin (IV) and bipodal ligands. Journal of Organometallic Chemistry, 894, 43-60. https://doi.org/10.1016/j.jorganchem.2019.05.007

Devendra, R., Edmonds, N.R., & Sohnel, T. (2015). Organotin carboxylate catalyst in urethane formation in a polar solvent: an experimental and computational study. RSC Advances, 5, 48935-48945. https://doi.org/10.1039/C5RA03367E

Carraher, C.E., Roner, M.R., Miller, L., Shahi, K., Trang, N.T., Moric-Johnson, A., Barot, G., Battin, A., & Alhuniti, M.H. (2014). Control of colorectal cancer using organotin polymers. Journal of the Chinese Advanced Materials Society, 2, 303-325. http://dx.doi.org/10.1080/22243682.2014.966274

Diop, T., Diop, M.B., Diop, C.A.K., Diassé-Sarr, A., Sidibé, M., Dumitru, F., & van der Lee, A. (2022). Synthesis and structural characterization of new ladder-like organostannoxanes derived from carboxylic acid derivatives: [C5H4N(p-CO2)]2[Bu2Sn]4(μ3-O)2(μ2-OH)2, [Ph2CHCO2]4[Bu2Sn]4(μ3-O)2, and [(p-NH2)-C6H4-CO2]2[Bu2Sn]4(μ3-O)2(μ2-OH)2. Main Group Metal Chemistry, 45, 1-9. https://doi.org/10.1515/mgmc-2022-0008

Banti, C.N., Hadjikakou, S.K., Sismanoglu, T., & Hadjiliadis, N. (2019). Antiproliferative and antitumor activity of organotin(IV) compounds. An overview of the last decade and future perspectives. Journal of Inorganic Biochemistry, 194, 114-152. https://doi.org/10.1016/j.jinorgbio.2019.02.003

Arjmand, F., Parveen, S., Tabassum, S., & Pettinari, C. (2014). Organotin antitumor compounds: their present status in drug development and future perspectives. Inorganica Chimica Acta, 423, 26-37.https://doi.org/10.1016/j.ica.2014.07.066

Wang, Q.F., Ma, C.L., He, G.F., & Li, Z. (2013). Synthesis and characterization of new tin derivatives derived from 3,5,6-trichlorosalicylic acid: Cage, chain and ladder X-ray crystal structures. Polyhedron, 49, 177-182.https://doi.org/10.1016/j.poly.2012.09.057

García-Zarracino, R., Höpfl, H., & Rodríguez, M.G. (2009). Bis(tetraorganodistannoxanes) as secondary building block units (SBUs) for the generation of porous materials − A three-dimensional honeycomb architecture containing adamantane-type water clusters. Crystal Growth & Design, 9, 1651-1654. https://doi.org/10.1021/cg801313u

Beckmann, J., Jurkschat, J., Rabe, K., Schürmann, M., & Dakternieks, D. (2001). New insights in asymmetric tetraorganodistannoxane ladder formation. A NMR-spectroscopic and crystallographic study. Zeitschrift für Anorganische und Allgemeine Chemie, 627, 458-464. https://doi.org/10.1002/1521-3749(200103)627:3<458::AID-ZAAC458>3.0.CO;2-N

Wen, G-H., Zhang, R-F., Li, Q-L., Zhang, S-L., Ru, J., Du, J-Y., & Ma, C.L. (2018). Synthesis, structure and in vitro cytostatic activity study of the novel organotin(IV) derivatives of p-aminobenzenesulfonic acid. Journal of Organometallic Chemistry, 861, 151-158. https://doi.org/10.1016/j.jorganchem.2018.02.033

Balas, V.I., Banti, C.N., Kourkoumelis, N., Hadjikakou, S.K., Geromichalos, G.D., Sahpazidou, D., Male, L., Hursthouse, M.B., Bednarz, B., Kubicki, M., Charalabopoulos, K., & Hadjiliadis, N. (2012). Structural and in vitro biological studies of organotin(IV) precursors; selective inhibitory activity against human breast cancer cells, positive to estrogen receptors. Australian Journal of Chemistry, 65, 1625-1637. https://doi.org/10.1071/CH12448

Kresinski, R.A., Staples, R.J., & Fackler Jnr, J.P. (1994). Structure of dichlorobis(μ-hydroxo)bis(μ3-oxo)octaphenyltetratin(IV), [Sn4Cl2(O)2(OH)2(C6H5)8]. Acta Crystallographica, C50, 40-41. https://doi.org/10.1107/S0108270193006018

Cox, M.J., & Tiekink, E.R.T. (1994). Crystal structure of bis[chloro-1kCl-μ-hydroxo-μ-oxo-(tetraphenyl-1K2C,2K2C)ditin], [Cl(C6H5)2Sn(OH)OSn(C6H5)2]2. Z. Krist. Crystallogr, 209, 622-623. https://doi.org/10.1524/zkri.1994.209.7.622

Barba, V., Vega, E., Luna, R., Hopfl, H., Beltran, H.I., & Zamudio-Rivera, L.S. (2007). Structural and conformational analysis of neutral dinucleardiorganotin(IV) complexes derived from hexadentate Schiff base ligands. Journal of Organometallic Chemistry, 692, 731-739. https://doi.org/10.1016/j.jorganchem.2006.09.064

Yap, Q.L., Lo, K.M., & Ng, S.W. (2010). Dibromidodi-μ-hydroxido-di-μ3-oxido-octaphenyltetratin(IV). Acta Crystallographica, E66, m8. https://doi.org/10.1107/S1600536809051691

Puff, H., Bung, I., Friedrichs, E., & Jansen, A. (1983). Kristallstrukturen von isopropyl- undtrimethylsilylmethylen-substituiertenchloro-hydroxo-tetraorganyl-distannoxanen. Journal of Organometallic Chemistry, 254, 23-32. https://doi.org/10.1016/0022-328X(83)85113-4

Zhang, Q.-J., Yin, H.-D., Wen, L.-Y., & Wang, D.-Q. (2009). Dichloridoocta¬kis(2-chloro¬benz¬yl)di-μ2-hydroxido-di-μ3-oxido-tetra¬tin(IV). Acta Crystallographica, E65, m1494. https://doi.org/10.1107/S1600536809045176

Momeni, B.Z., Fathi, N., Moghadasi, M., Biglari, A., & Janczak, J. (2019). New insight into the reactions of organoplatinum(II) complexes with diorganotin dichloride and diisothiocyanate: Oxidative addition, reductive elimination and α-elimination. Journal of Organometallic Chemistry, 880, 368-377. https://doi.org/10.1016/j.jorganchem.2018.11.022

Zhang, F.-X., Wang, J.-Q., Kuang, D.-Z., Feng, Y.-L., Zhang, Z.-J., Xu, Z.-F., & He, P. (2009). Synthesis, crystal structure and quantum chemistry of the ladder bis(p-methylbenzyl)tin oxo(chlo) cluste. Chinese Journal of Inorganic Chemistry, 25, 1812-1817.

Wang, Y.-H., Ye, Z.-J., Jin, X.-H., Yao, J.-H., Chen N.-H., & Zhu D.-S. (2007). Synthesis, characterize and crystal structure of di-μ2-hydroxy-dichloro-bis-μ3-oxy-octa-benzyl-tetratin. Journal of Northeast Normal University Natural Science Edition, 39, 90-93.

Baumeister, U., Dakternieks, D., Jurkschat, K., & Schürmann, M. (2002). A rare example of an unsymmetrically substituted tetraorganodistannoxane ladder: [cyclo-Hex2(OH)SnOSn(Cl)t-Bu2]2. Main Group Metal Chemistry, 25, 521-522. https://doi.org/10.1515/MGMC.2002.25.8.521

Tiekink, E.R.T. (1991). A dimericstannoxane structure: [Sn2(Cl)(O)(OH)(C6H5)4]2.2C3H7NO. Acta Crystallographica, C47, 661-662. https://doi.org/10.1107/S0108270190009787

Mohamed, E.M., Panchanatheswaran, K., Low, J.N., & Glidewell, C. (2004). Octa-benzyl¬di¬chloro¬di-μ2-hydro¬xo-di-μ3-oxo-tetratin toluene disolvate. Acta Crystallographica, E60, m489-m491. https://doi.org/10.1107/S160053680400697X

Lo, K.M., & Ng, S.W. (2009). Dichloridoocta¬kis(4-chloro¬benz¬yl)di-μ2-hydroxido-di-μ3-oxido-tetra¬tin(IV) toluene solvate. Acta Crystallographica, E65, m593. https://doi.org/10.1107/S1600536809015128

Vollano, J.F., Day, R.O., & Holmes, R.R. (1984). Pentacoordinated molecules. 54. Hydrolysis pathway leading to the formation of novel oxo- and halo-bridged tin(IV) ladder compounds. The molecular structure of the dimericdistannoxanes [Ph2(Cl)SnOSnPh2(OH)]2.cntdot.2Me2CO and [Ph2(Cl)SnOSnPh2(Cl)]2. Organometallics, 3, 745-750. https://doi.org/10.1021/om00083a017

Foladi, S., Khazaei, P., Gharamaleki, J.A., Notash, B., & Rofouei, M.K. (2013). Dichloridodi-μ2-hydroxido-di-μ3-oxido-octa­phenyl­tetra­tin(IV) dimethyl sulfoxide disolvate. Acta Crystallographica, E69, m91. https://doi.org/10.1107/S1600536812051744

Diop, T., Ndiolene, A., Diop, M.B., Boye, M.S., van der Lee, A., Dumitru, F., Diop, C.A.K., & Sidibé, M. (2021). Synthesis, spectral (FT-IR, 1H, 13C) studies and crystal structure of [(2,6-CO2)2C5H3NSnBu2(H2O)]2•CHCl3. Zeitschrift für Naturforschung, B76, 127-132. https://doi.org/10.1515/znb-2020-0195

Diop, M.B., Seck, G. A., Sarr, M.,Diop, L., & Oliver, A.G. (2020). Co-crystallization of oxalate salts of monoprotonated amines with a double Sn-Ph bond cleavage. American Journal of Heterocyclic Chemistry, 6, 16-23. https://doi.org/10.11648/j.ajhc.20200602.11

Sarr, M., Diop, M.B., Diassé-Sarr, A., Wang, A., & Englert, U. (2020). Crystal structure of triphenyltin(IV) formate polymer, (HCO2SnPh3)n. Journal of Engineering Studies and Research, 26, 212-217. https://doi.org/10.29081/jesr.v26i3.226

Diop, M.B., Diop, L., Plasseraud, L., & Cattey, H. (2016). Triorganotin carboxylates – synthesis and crystal structure of 2-methyl-1H-imidazol-3-ium catena-O,O′-oxalatotriphenylstannate. Main Group Metal Chemistry, 39, 119-123. https://doi.org/10.1515/mgmc-2016-0016

Diop, M.B., Diop, L., & Oliver, A.G. (2016). Crystal structure of bis(2-methyl-1H-imidazol-3-ium) μ-oxalato-bis[n-butyltrichloridostannate(IV)]. Acta Crystallographica, E72, 858-860. https://doi.org/10.1107/S2056989016008434

Gueye, N., Diop, L., Molloy, K.C., & Kociok-Kohn, G. (2011). Crystal structure of C2O4(SnPh3•dimethylformamide)2. Main Group Metal Chemistry, 34, 3-4. https://doi.org/10.1515/mgmc.2011.008

Apex3 (2017). Area Detector Integration Software, Bruker AXS Inc.: Madison, Wisconsin (USA).

SAINT (2017). Data Reduction and Frame Integration Program for the CCD Area-Detector System, Bruker AXS Inc.: Madison, Wisconsin (USA).

Krause, L., Herbst-Irmer, R., Sheldrick, G.M., & Stalke, D. (2015). Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. Journal of Applied Crystallography, 48, 3-10. https://doi.org/10.1107/S1600576714022985

Sheldrick, G.M. (2015). SHELXT-Integrated space-group and crystal structure determination. Acta Crystallographica, A71(1), 3-8. https://doi.org/10.1107/S2053273314026370

Sheldrick, G.M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica, C71(1), 3-8. https://doi.org/10.1107/S2053229614024218

Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2), 339-341. https://doi.org/10.1107/S0021889808042726

Al-Shakban, M., Matthews, P.D., Lewis, E.A., Raftery, J., Vitorica-Yrezabal, I, Haigh, S.J., Lewis, D.J., & O’Brien, P. (2019). Chemical vapor deposition of tin sulfide from diorganotin(IV) dixanthates. Journal of Materials Science, 54, 2315-2323. https://doi.org/10.1007/s10853-018-2968-y

Haezam, F.N., Awang, N., Kamaludin, N.F., Jotani, M.M., & Tiekink, E.R.T. (2020). (N,N-Di¬allyl¬di¬thio¬carbamato-κ2S,S′)tri¬phenyltin(IV) and bis¬¬(N,N-di¬allyl¬di¬thio-carbamato-κ2S,S′)di¬phenyl¬tin(IV): crystal structure, Hirshfeld surface analysis and computational study. Acta Crystallographica, E76, 167-176. https://doi.org/10.1107/S2056989020000122

Spek, A.L. (2009). Structure validation in chemical crystallography. Acta Crystallographica, D65, 148-155. https://doi.org/10.1107/S090744490804362X

Published
2023-11-21
How to Cite
Sarr, M., Diop, M. B., Boye, M. S., Diassé-Sarr, A., Diop, L., & Oliver, A. G. (2023). Ladder-like Organostannoxane: Synthesis and Crystal Structure of the Second Polymorph {[(C6H5)2Sn]2[(C6H5)2ClSn]2(μ3-O)2(μ2-OH)2}∙[DMF]2. Earthline Journal of Chemical Sciences, 11(1), 83-103. https://doi.org/10.34198/ejcs.11124.083103
Section
Articles

Most read articles by the same author(s)