Tin(IV) Halides Zero-dimensional based Inorganic-Organic Hybrid Materials: Crystal Structures and Hirshfeld Surface Analysis
Abstract
Two tetramethylguanidinium halostannate inorganic-organic hybrid compounds was isolated and structurally investigated by single crystal X-ray crystallography and Hirshfeld surface analysis. The compound [(C6H14N3)2SnCl6] (1), crystallizes in the orthorhombic space group Fddd with Z = 8 / Z’ = 0.25, a = 7.3474(3) Å, b = 22.3678(8) Å, c = 28.4908(10) Å and V = 4682.3(3) Å3. The compound [(C6H14N3)2SnBr6] (2), crystallizes in the orthorhombic space group Fddd with Z = 8 / Z’ = 0.25, a = 7.5767(5) Å, b = 23.0591(17) Å, c = 29.008(2) Å and V = 5068.0(6) Å3. The isolation of 1 undergoes a redox process from Sn(II) to Sn(IV) in solution and in a non-controlled atmosphere. Both compounds 1 and 2 describe TMG+ ions with a central carbon atom in a trigonal–planar fashion. With respect to this CN3 plane, the pairs of dimethylammonium groups are twisted by 13.70 (8) and 32.21 (8)° for 1, 14.88 (13) and 31.95(13)° for 2. The SnX6 dianions evidence a slightly distorted octahedron (Oh) about Sn centre for hybrids 1 and 2. Within the structures of the hybrid materials 1 and 2, N-H···Cl inter-species hydrogen bonding patterns between the inorganic stannate and the organic entities give rise a one-dimensional chain, wherein inorganic and organic species alternate. The propagation of the chain generates rings. The weak C-H···X hydrogen bonds formed from the methyl groups to adjacent tetramethylguanidinium-stannate chains result in a supramolecular three-dimensional hydrogen-bonded network. The Hirshfeld surface analysis shows existence of both strong and weak hydrogen bonding interactions. Inspection of 1 and 2 by the Hirshfeld surface analysis, show isostructural behavior. Hybrids 1 and 2 are the first crystal reports of a tetramethylguanidinium tetra- or hexa-halostannate.
References
Zhang, L., Luo, Z., Wang, W., Liu, Y., He, X., & Quan, Z. (2022). Organic cation-directed modulation of emissions in zero-dimensional hybrid tin bromides. Inorganic Chemistry, 61(37), 14857-14863. https://doi.org/10.1021/acs.inorgchem.2c02438
Daub, M., Haber, C., & Hillebrecht, H. (2017). Synthesis, crystal structures, optical properties, and phase transitions of the layered guanidinium-based hybrid perovskites [C(NH2)3]2MI4; M = Sn, Pb. European Journal of Inorganic Chemistry, 2017(7), 1120-1126. https://doi.org/10.1002/ejic.201601499
Stoumpos, C.C., Mao, L., Malliakas, C.D., & Kanatzidis, M.G. (2017). Structure–band gap relationships in hexagonal polytypes and low-dimensional structures of hybrid tin iodide perovskites. Inorganic Chemistry, 56(1), 56-73. https://doi.org/10.1021/acs.inorgchem.6b02764
Zhou, C., Lin, H., Shi, H., Tian, Y., Pak, C., Shatruk, M., Zhou, Y., Djurovich, P., Du, M. H., & Ma, B. (2018). A zero‐dimensional organic seesaw‐shaped tin bromide with highly efficient strongly stokes‐shifted deep‐red emission. Angewandte Chemie International Edition, 57(4), 1021-1024. https://doi.org/10.1002/anie.201710383
Zhou, C., Tian, Y., Wang, M., Rose, A., Besara, T., Doyle Nicholas, K., Yuan, Z., Wang Jamie, C., Clark, R., Hu, Y., Siegrist, T., Lin, S., & Ma, B. (2017). Low‐dimensional organic tin bromide perovskites and their photoinduced structural transformation. Angewandte Chemie International Edition, 56(31), 9018-9022. https://doi.org/10.1002/anie.201702825
Herrmann, H., Walter, P., Kaifer, E., & Himmel, H.J. (2017). Incorporation of a redox‐active bis(guanidine) in low‐dimensional tin and lead iodide structures. European Journal of Inorganic Chemistry, 2017(47), 5539-5544. https://doi.org/10.1002/ejic.201700840
Kaiba, A., Al Otaibi, F., Geesi, M.H., Riadi, Y., Aljohani, T.A., & Guionneau, P. (2021) A new organic–inorganic hybrid compound (NH3(CH2)C6H4CO2H)[SnCl6]: Synthesis, crystal structure, vibrational, optical, magnetic properties and theoretical study. Journal of Molecular Structure, 1234, 130129. https://doi.org/10.1016/j.molstruc.2021.130129
Su, B., Song, G., Molokeev, M.S., Lin, Z., & Xia, Z. (2020). Synthesis, crystal structure and green luminescence in zero-dimensional tin halide (C8H14N2)2SnBr6. Inorganic Chemistry, 59(14), 9962-9968. https://doi.org/10.1021/acs.inorgchem.0c01103
Nazarenko, O., Kotyrba, M.R., Yakunin, S., Wörle, M., Benin, B.M., Rainò, G., Krumeich, F., Kepenekian, M., Even, J., Katan, C., & Kovalenko, M.V. (2019). Guanidinium and mixed cesium-guanidinium tin(II) bromides: Effects of quantum confinement and out-of-plane octahedral tilting. Chemistry of Materials, 31(6), 2121-2129. https://doi.org/10.1021/acs.chemmater.9b00038
Zhou, C., Lin, H., Tian, Y., Yuan, Z., Clark, R., Chen, B., van de Burgt, L. J., Wang, J. C., Zhou, Y., Hanson, K., Meisner, Q. J., Neu, J., Besara, T., Siegrist, T., Lambers, E., Djurovich, P., & Ma, B. (2018). Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency. Chemical Science, 9(3), 586-593. https://doi.org/10.1039/c7sc04539e
Zhu, H. L., Liang, Z., Huo, Z., Ng, W. K., Mao, J., Wong, K. S., Yin, W.-J. & Choy, W. C. H. (2018). Low‐bandgap methylammonium‐rubidium cation Sn‐rich perovskites for efficient ultraviolet–visible–near infrared photodetectors. Advanced Functional Materials, 28 (16), 1706068. https://doi.org/10.1002/adfm.201706068
Zhou, C., Tian, Y., Yuan, Z., Lin, H., Chen, B., Clark, R., Dilbeck, T., Zhou, Y., Hurley, J., Neu, J., Besara, T., Siegrist, T., Djurovich, P., & Ma, B. (2017). Highly efficient broadband yellow phosphor based on zero-dimensional tin mixed-halide perovskite. ACS Applied Materials & Interfaces, 9(51), 44579-44583. https://doi.org/10.1021/acsami.7b12862
Szafranski, M., & Stahl, K. (2016). Phase transitions in layered diguanidinium hexachlorostannate(IV). Crystal Growth & Design, 16(4), 2157-2166. https://doi.org/10.1021/acs.cgd.5b01830
Noel, N.K., Stranks, S.D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A.-A., Sadhanala, A., Eperon, G.E., Pathak, S.K., Johnston, M.B., Petrozza, A., Herz, L.M., & Snaith, H.J. (2014). Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science, 7(9), 3061-3068. https://doi.org/10.1039/C4EE01076K
Hao, F., Stoumpos, C.C., Guo, P., Zhou, N., Marks, T.J., Chang, R.P.H., & Kanatzidis, M.G. (2015). Solvent-mediated crystallization of CH3NHSnI3 films for heterojunction depleted perovskite solar cells. Journal of the American Chemical Society, 137(35), 11445-11452. https://doi.org/10.1021/jacs.5b06658
Giorgi, G., Fujisawa, J.-I., Segawa, H., & Yamashita, K. (2015). Organic–inorganic hybrid lead iodide perovskite featuring zero dipole moment guanidinium cations: A theoretical analysis. Journal of Physical Chemistry C, 119(9), 4694-4701. https://doi.org/10.1021/acs.jpcc.5b00051
Dimesso, L., Quintilla, A., Kim, Y.-M., Lemmer, U., & Jaegermann, W. (2016). Investigation of formamidinium and guanidinium lead tri-iodide powders as precursors for solar cells. Materials Science and Engineering B, 204, 27-33. https://doi.org/10.1016/j.mseb.2015.11.006
Szafrański, M., & Stahl, K. (2007). Crystal structure and phase transitions in perovskite-like C(NH2)3SnCl3. Journal of Solid State Chemistry, 180(8), 2209-2215. https://doi.org/10.1016/j.jssc.2007.05.024
Szafrański, M., & Stahl, K. (2000). Pressure-induced decoupling of the order-disorder and displacive contributions to the phase transition in diguanidinium tetrachlorostannate. Physical Review B, 62(13), 8787-8793. https://doi.org/10.1103/PhysRevB.62.8787
Diop, M.B., Sarr, M., Cissé, S., Diop, L., Oliver, A.G., & Akkurt, M. (2020). A “Zero-Dimensional Hybrid” tin(IV) chloride from a Sn-C bond cleavage: Synthesis, infrared and X-ray single-crystal molecular characterization. International Journal of Engineering Research and Applications, 10(10), 17-23. https://doi.org/10.9790/9622-1010031723
Apex2, Crystallographic Software, Suite, Bruker AXS Inc., Madison, Wisconsin, USA, 2014.
SAINT (Version 8.34A), Area Detector Integration Software, Bruker AXS Inc., Madison, Wisconsin, USA, 2012.
Bruker AXS Inc., Madison, Wisconsin, USA, 2014.
Sheldrick, G.M. (2015). SHELXT - Integrated space-group and crystal structure determination. Acta Crystallographica, A71(1), 3-8. https://doi.org/10.1107/S2053273314026370
Sheldrick, G.M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica, C71(1), 3-8. https://doi.org/10.1107/S2053229614024218
Apex3, Crystallographic Software, Suite, Bruker AXS, Madison, Wisconsin, USA, 2016.
Krause, L., Herbst-Irmer, R., Sheldrick, G.M., & Stalke, D. (2015). Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. Journal of Applied Crystallography, 48, 3-10. https://doi.org/10.1107/S1600576714022985
Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2), 339-341. https://doi.org/10.1107/S0021889808042726
Spackman, P.R., Turner, M.J., McKinnon, J.J., Wolff, S.K., Grimwood, D.J., Jayatilaka, D., & Spackman, M.A. (2021). CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. Journal of Applied Crystallography, 54(3), 1006-1011. https://doi.org/10.1107/S1600576721002910
Giltzau, N.O., & Köckerling, M. (2018). Bis(tetramethylguanidinium) hexachloridotellurate(IV). IUCrData, 3(10), x181488. https://doi.org/10.1107/S2414314618014888
Ndiaye, M., Samb, A., Diop, L., & Maris, T. (2016). Crystal structure of catena-poly[N,N,N′,N′-tetramethylguanidinium [(chloridocadmate)-di-μ-chlorido]]. Acta Crystallographica, E72(1), 1-3. https://doi.org/10.1107/S2056989015020836
Ndiaye, M., Samb, A., Diop, L., & Maris, T. (2016). Crystal structure of bis–(N,N,N′,N′-tetramethylguanidinium) tetrachloridocuprate(II). Acta Crystallographica, E72(7), 1047 1049. https://doi.org/10.1107/S2056989016010161
Rgaieg, R., Karoui, K., & Zouari, R. (2017). Synthesis, crystal structure and electrical properties of (C5H13NCl)2SnCl6. Phase Transitions, 90(10), 1034-1048. https://doi.org/10.1080/01411594.2017.1302086
Zhou, L., Zhang, L., Li, H., Shen, W., Li, M., & He, R. (2021). Defect passivation in air‐stable tin(IV)‐halide single crystal for emissive self‐trapped excitons. Advanced Functional Materials, 31(51), 2108561. https://doi.org/10.1002/adfm.202108561
Liu, Y., Li, Y.-K., Ying, T.-T., Tan, Y.-H., Tang, Y.-Z., Han, D.-C., Du, P.-K., & Zhang, H. (2021). Multisequential reversible phase transition materials with semiconducting and fluorescence properties: (C8H18BrN)2SnBr6. New Journal of Chemistry, 45(44), 20721-20725. https://doi.org/10.1039/D1NJ04448F
Ishida, H., Furukawa, Y., & Kashino, S. (1999). Bis(guanidinium) hexachlorostannate(IV). Acta Crystallographica, C55(12), 1995-1997. https://doi.org/10.1107/S0108270199012032
Calov, U., Schneider, M., & Leibnitz, P. (1991). Guanidiniumhexafluorometallate von Titan, Silicium, Germanium und Zinn. Guanidiniumpentafluorooxoniobat und Guanidiniumtetrafluorodioxowolframat. Zeitschrift für anorganische und allgemeine Chemie, 604(1), 77-83. https://doi.org/10.1002/zaac.19916040111
This work is licensed under a Creative Commons Attribution 4.0 International License.