Tin(IV) Halides Zero-dimensional based Inorganic-Organic Hybrid Materials: Crystal Structures and Hirshfeld Surface Analysis

  • Mamadou Ndiaye Laboratoire des Produits Naturelles, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal
  • Serigne Fallou Pouye Laboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal and Département de Sciences Appliquées et Technologies Emergentes, Ecole Supérieure des Sciences et Techniques de l’ingénieur, Université Amadou Mahtar Mbow, Dakar, Sénégal
  • Mouhamadou Birame Diop Laboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal
  • Libasse Diop Laboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal
  • Abdoulaye Samb Laboratoire des Produits Naturelles, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal
  • Allen G. Oliver Department of Chemistry and Biochemistry, University of Notre Dame, Nieuwland, Science Hall, Notre Dame, USA
Keywords: single crystal X-ray, tetramethylguanidinium, halostannate, H-bonds, 3D structure

Abstract

Two tetramethylguanidinium halostannate inorganic-organic hybrid compounds was isolated and structurally investigated by single crystal X-ray crystallography and Hirshfeld surface analysis. The compound [(C6H14N3)2SnCl6] (1), crystallizes in the orthorhombic space group Fddd with Z = 8 / Z’ = 0.25, a = 7.3474(3) Å, b = 22.3678(8) Å, c = 28.4908(10) Å and V = 4682.3(3) Å3. The compound [(C6H14N3)2SnBr6] (2), crystallizes in the orthorhombic space group Fddd with Z = 8 / Z’ = 0.25, a = 7.5767(5) Å, b = 23.0591(17) Å, c = 29.008(2) Å and V = 5068.0(6) Å3. The isolation of 1 undergoes a redox process from Sn(II) to Sn(IV) in solution and in a non-controlled atmosphere. Both compounds 1 and 2 describe TMG+ ions with a central carbon atom in a trigonal–planar fashion. With respect to this CN3 plane, the pairs of di­methyl­ammonium groups are twisted by 13.70 (8) and 32.21 (8)° for 1, 14.88 (13) and 31.95(13)° for 2. The SnX6 dianions evidence a slightly distorted octahedron (Oh) about Sn centre for hybrids 1 and 2. Within the structures of the hybrid materials 1 and 2, N-H···Cl inter-species hydrogen bonding patterns between the inorganic stannate and the organic entities give rise a one-dimensional chain, wherein inorganic and organic species alternate. The propagation of the chain generates  rings. The weak C-H···X hydrogen bonds formed from the methyl groups to adjacent tetramethylguanidinium-stannate chains result in a supramolecular three-dimensional hydrogen-bonded network. The Hirshfeld surface analysis shows existence of both strong and weak hydrogen bonding interactions. Inspection of 1 and 2 by the Hirshfeld surface analysis, show isostructural behavior. Hybrids 1 and 2 are the first crystal reports of a tetramethylguanidinium tetra- or hexa-halostannate.

References

Zhang, L., Luo, Z., Wang, W., Liu, Y., He, X., & Quan, Z. (2022). Organic cation-directed modulation of emissions in zero-dimensional hybrid tin bromides. Inorganic Chemistry, 61(37), 14857-14863. https://doi.org/10.1021/acs.inorgchem.2c02438

Daub, M., Haber, C., & Hillebrecht, H. (2017). Synthesis, crystal structures, optical properties, and phase transitions of the layered guanidinium-based hybrid perovskites [C(NH2)3]2MI4; M = Sn, Pb. European Journal of Inorganic Chemistry, 2017(7), 1120-1126. https://doi.org/10.1002/ejic.201601499

Stoumpos, C.C., Mao, L., Malliakas, C.D., & Kanatzidis, M.G. (2017). Structure–band gap relationships in hexagonal polytypes and low-dimensional structures of hybrid tin iodide perovskites. Inorganic Chemistry, 56(1), 56-73. https://doi.org/10.1021/acs.inorgchem.6b02764

Zhou, C., Lin, H., Shi, H., Tian, Y., Pak, C., Shatruk, M., Zhou, Y., Djurovich, P., Du, M. H., & Ma, B. (2018). A zero‐dimensional organic seesaw‐shaped tin bromide with highly efficient strongly stokes‐shifted deep‐red emission. Angewandte Chemie International Edition, 57(4), 1021-1024. https://doi.org/10.1002/anie.201710383

Zhou, C., Tian, Y., Wang, M., Rose, A., Besara, T., Doyle Nicholas, K., Yuan, Z., Wang Jamie, C., Clark, R., Hu, Y., Siegrist, T., Lin, S., & Ma, B. (2017). Low‐dimensional organic tin bromide perovskites and their photoinduced structural transformation. Angewandte Chemie International Edition, 56(31), 9018-9022. https://doi.org/10.1002/anie.201702825

Herrmann, H., Walter, P., Kaifer, E., & Himmel, H.J. (2017). Incorporation of a redox‐active bis(guanidine) in low‐dimensional tin and lead iodide structures. European Journal of Inorganic Chemistry, 2017(47), 5539-5544. https://doi.org/10.1002/ejic.201700840

Kaiba, A., Al Otaibi, F., Geesi, M.H., Riadi, Y., Aljohani, T.A., & Guionneau, P. (2021) A new organic–inorganic hybrid compound (NH3(CH2)C6H4CO2H)[SnCl6]: Synthesis, crystal structure, vibrational, optical, magnetic properties and theoretical study. Journal of Molecular Structure, 1234, 130129. https://doi.org/10.1016/j.molstruc.2021.130129

Su, B., Song, G., Molokeev, M.S., Lin, Z., & Xia, Z. (2020). Synthesis, crystal structure and green luminescence in zero-dimensional tin halide (C8H14N2)2SnBr6. Inorganic Chemistry, 59(14), 9962-9968. https://doi.org/10.1021/acs.inorgchem.0c01103

Nazarenko, O., Kotyrba, M.R., Yakunin, S., Wörle, M., Benin, B.M., Rainò, G., Krumeich, F., Kepenekian, M., Even, J., Katan, C., & Kovalenko, M.V. (2019). Guanidinium and mixed cesium-guanidinium tin(II) bromides: Effects of quantum confinement and out-of-plane octahedral tilting. Chemistry of Materials, 31(6), 2121-2129. https://doi.org/10.1021/acs.chemmater.9b00038

Zhou, C., Lin, H., Tian, Y., Yuan, Z., Clark, R., Chen, B., van de Burgt, L. J., Wang, J. C., Zhou, Y., Hanson, K., Meisner, Q. J., Neu, J., Besara, T., Siegrist, T., Lambers, E., Djurovich, P., & Ma, B. (2018). Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency. Chemical Science, 9(3), 586-593. https://doi.org/10.1039/c7sc04539e

Zhu, H. L., Liang, Z., Huo, Z., Ng, W. K., Mao, J., Wong, K. S., Yin, W.-J. & Choy, W. C. H. (2018). Low‐bandgap methylammonium‐rubidium cation Sn‐rich perovskites for efficient ultraviolet–visible–near infrared photodetectors. Advanced Functional Materials, 28 (16), 1706068. https://doi.org/10.1002/adfm.201706068

Zhou, C., Tian, Y., Yuan, Z., Lin, H., Chen, B., Clark, R., Dilbeck, T., Zhou, Y., Hurley, J., Neu, J., Besara, T., Siegrist, T., Djurovich, P., & Ma, B. (2017). Highly efficient broadband yellow phosphor based on zero-dimensional tin mixed-halide perovskite. ACS Applied Materials & Interfaces, 9(51), 44579-44583. https://doi.org/10.1021/acsami.7b12862

Szafranski, M., & Stahl, K. (2016). Phase transitions in layered diguanidinium hexachlorostannate(IV). Crystal Growth & Design, 16(4), 2157-2166. https://doi.org/10.1021/acs.cgd.5b01830

Noel, N.K., Stranks, S.D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A.-A., Sadhanala, A., Eperon, G.E., Pathak, S.K., Johnston, M.B., Petrozza, A., Herz, L.M., & Snaith, H.J. (2014). Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science, 7(9), 3061-3068. https://doi.org/10.1039/C4EE01076K

Hao, F., Stoumpos, C.C., Guo, P., Zhou, N., Marks, T.J., Chang, R.P.H., & Kanatzidis, M.G. (2015). Solvent-mediated crystallization of CH3NHSnI3 films for heterojunction depleted perovskite solar cells. Journal of the American Chemical Society, 137(35), 11445-11452. https://doi.org/10.1021/jacs.5b06658

Giorgi, G., Fujisawa, J.-I., Segawa, H., & Yamashita, K. (2015). Organic–inorganic hybrid lead iodide perovskite featuring zero dipole moment guanidinium cations: A theoretical analysis. Journal of Physical Chemistry C, 119(9), 4694-4701. https://doi.org/10.1021/acs.jpcc.5b00051

Dimesso, L., Quintilla, A., Kim, Y.-M., Lemmer, U., & Jaegermann, W. (2016). Investigation of formamidinium and guanidinium lead tri-iodide powders as precursors for solar cells. Materials Science and Engineering B, 204, 27-33. https://doi.org/10.1016/j.mseb.2015.11.006

Szafrański, M., & Stahl, K. (2007). Crystal structure and phase transitions in perovskite-like C(NH2)3SnCl3. Journal of Solid State Chemistry, 180(8), 2209-2215. https://doi.org/10.1016/j.jssc.2007.05.024

Szafrański, M., & Stahl, K. (2000). Pressure-induced decoupling of the order-disorder and displacive contributions to the phase transition in diguanidinium tetrachlorostannate. Physical Review B, 62(13), 8787-8793. https://doi.org/10.1103/PhysRevB.62.8787

Diop, M.B., Sarr, M., Cissé, S., Diop, L., Oliver, A.G., & Akkurt, M. (2020). A “Zero-Dimensional Hybrid” tin(IV) chloride from a Sn-C bond cleavage: Synthesis, infrared and X-ray single-crystal molecular characterization. International Journal of Engineering Research and Applications, 10(10), 17-23. https://doi.org/10.9790/9622-1010031723

Apex2, Crystallographic Software, Suite, Bruker AXS Inc., Madison, Wisconsin, USA, 2014.

SAINT (Version 8.34A), Area Detector Integration Software, Bruker AXS Inc., Madison, Wisconsin, USA, 2012.

Bruker AXS Inc., Madison, Wisconsin, USA, 2014.

Sheldrick, G.M. (2015). SHELXT - Integrated space-group and crystal structure determination. Acta Crystallographica, A71(1), 3-8. https://doi.org/10.1107/S2053273314026370

Sheldrick, G.M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica, C71(1), 3-8. https://doi.org/10.1107/S2053229614024218

Apex3, Crystallographic Software, Suite, Bruker AXS, Madison, Wisconsin, USA, 2016.

Krause, L., Herbst-Irmer, R., Sheldrick, G.M., & Stalke, D. (2015). Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. Journal of Applied Crystallography, 48, 3-10. https://doi.org/10.1107/S1600576714022985

Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2), 339-341. https://doi.org/10.1107/S0021889808042726

Spackman, P.R., Turner, M.J., McKinnon, J.J., Wolff, S.K., Grimwood, D.J., Jayatilaka, D., & Spackman, M.A. (2021). CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. Journal of Applied Crystallography, 54(3), 1006-1011. https://doi.org/10.1107/S1600576721002910

Giltzau, N.O., & Köckerling, M. (2018). Bis(tetramethylguanidinium) hexachloridotellurate(IV). IUCrData, 3(10), x181488. https://doi.org/10.1107/S2414314618014888

Ndiaye, M., Samb, A., Diop, L., & Maris, T. (2016). Crystal structure of catena-poly[N,N,N′,N′-tetramethylguanidinium [(chloridocadmate)-di-μ-chlorido]]. Acta Crystallographica, E72(1), 1-3. https://doi.org/10.1107/S2056989015020836

Ndiaye, M., Samb, A., Diop, L., & Maris, T. (2016). Crystal structure of bis–(N,N,N′,N′-tetramethylguanidinium) tetrachloridocuprate(II). Acta Crystallographica, E72(7), 1047 1049. https://doi.org/10.1107/S2056989016010161

Rgaieg, R., Karoui, K., & Zouari, R. (2017). Synthesis, crystal structure and electrical properties of (C5H13NCl)2SnCl6. Phase Transitions, 90(10), 1034-1048. https://doi.org/10.1080/01411594.2017.1302086

Zhou, L., Zhang, L., Li, H., Shen, W., Li, M., & He, R. (2021). Defect passivation in air‐stable tin(IV)‐halide single crystal for emissive self‐trapped excitons. Advanced Functional Materials, 31(51), 2108561. https://doi.org/10.1002/adfm.202108561

Liu, Y., Li, Y.-K., Ying, T.-T., Tan, Y.-H., Tang, Y.-Z., Han, D.-C., Du, P.-K., & Zhang, H. (2021). Multisequential reversible phase transition materials with semiconducting and fluorescence properties: (C8H18BrN)2SnBr6. New Journal of Chemistry, 45(44), 20721-20725. https://doi.org/10.1039/D1NJ04448F

Ishida, H., Furukawa, Y., & Kashino, S. (1999). Bis(guanidinium) hexachlorostannate(IV). Acta Crystallographica, C55(12), 1995-1997. https://doi.org/10.1107/S0108270199012032

Calov, U., Schneider, M., & Leibnitz, P. (1991). Guanidiniumhexafluorometallate von Titan, Silicium, Germanium und Zinn. Guanidiniumpentafluorooxoniobat und Guanidiniumtetrafluorodioxowolframat. Zeitschrift für anorganische und allgemeine Chemie, 604(1), 77-83. https://doi.org/10.1002/zaac.19916040111

Published
2023-02-22
How to Cite
Ndiaye, M., Pouye, S. F., Diop, M. B., Diop, L., Samb, A., & Oliver, A. G. (2023). Tin(IV) Halides Zero-dimensional based Inorganic-Organic Hybrid Materials: Crystal Structures and Hirshfeld Surface Analysis. Earthline Journal of Chemical Sciences, 10(1), 57-76. https://doi.org/10.34198/ejcs.10123.5776
Section
Articles

Most read articles by the same author(s)