Chemical Investigation of the Senegalese Marine Sponge Luffariella geometrica

  • Abou Moussa Sow Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, BP: 5005, Dakar Fann, Sénégal
  • Mohamet Diop Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, BP: 5005, Dakar Fann, Sénégal
  • Mouhamadou Fofana Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, BP: 5005, Dakar Fann, Sénégal
  • Bédié Mbow Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, BP: 5005, Dakar Fann, Sénégal
Keywords: sponge, Luffariella geometrica, γ-hydroxybutenolide, marine metabolites

Abstract

One new γ-hydroxybutenolide (1) together with the known compounds (2-7) were isolated from the Senegalese marine sponge Luffariella geometrica. Their chemical structures were established on the basis of spectroscopic methods 1D and 2D NMR, in addition to mass spectrometry and comparison with literature data.

References

Leychenko, E. (2022). Marine natural compounds with biomedical potential. Biomolecules, 12, 1242. https://doi.org/10.3390/biom12091242

Berry, E., Hardt, J.L., Clardy, J., Lurain, J.R., & Kim, J.J. (2009). Induction of apoptosis in endometrial cancer cells by psammaplysene A involves FOXO1. Gynecol. Oncol, 112, 331-336. https://doi.org/10.1016/j.ygyno.2008.10.017

Moon, D.O., Kim, M.O., Kang, S.H., Lee, K.J., Heo, M.S., Choi, K.S., Choi, Y.H., & Kim, G.Y. (2008). Induction of G2/M arrest, endoreduplication, and apoptosis by actin depolymerization agent pextenotoxin-2 in human leukemia cells, involving activation of ERK and JNK. Biochem. Pharmacol., 76, 312-321. https://doi.org/10.1016/j.bcp.2008.05.006

Honore, S., Kamath, K., Braguer, D., Wilson, L., Briand, C., & Jordan, M.A. (2003). Suppression of microtubule dynamics by discodermolide by a novel mechanism is associated with mitotic arrest and inhibition of tumor cell proliferation. Mol. Cancer Ther., 2, 1303-1311.

Okada, Y., Matsunaga, S., Van Soest, R.W.M., & Fusetani, N. (2002). Nagahamide A, an antibacterial depsipeptide from the marine sponge Theonella swinhoei. Org. Lett., 4, 3039-3042. https://doi.org/10.1021/ol0262791

Xu, M., Davis, R.A., Feng, Y., Sykes, M.L., Shelper, T., Avery, V.M., Camp, D., & Quinn, R.J. (2012). Ianthelliformisamines A–C, antibacterial bromotyrosine-derived metabolites from the marine sponge Suberea ianthelliformis. J. Nat. Prod., 75(5), 1001-1005. https://doi.org/10.1021/np300147d

Yang, I-O., Choi, H., Won, D.H., & Nam, S-J. (2014). An antibacterial 9,11-secosterol from a marine sponge Ircinia sp. Bull. Korean Chem. Soc., 35(11), 3360-3362. https://doi.org/10.5012/BKCS.2014.35.11.3360

Campos, P.-E., Herbette, G., Chendo, C., Clerc, P., Tintillier, F., de Voogd, N.J., Papanagnou, E.-D., Trougakos, I.P., Jerabek, M., Bignon, J., Le Goff, G., Ouazzani, J., & Gauvin-Bialecki, A. (2020). Osirisynes G-I, new long-chain highly oxygenated polyacetylenes from the Mayotte marine sponge Haliclona sp. Mar. Drugs, 18(7), 350. https://doi.org/10.3390/md18070350

Cho, M., Lee, Y-J., Lee, J.S., Shin, H-J., & Lee, H-S. (2020). Antioxidant properties of the manzamenones from the tropical marine sponge Plakortis sp. Natural Product Communications, 15(1). https://doi.org/10.1177/1934578X19896694

O’Rourke, A., Kremb, S., Bader, T.M., Helfer, M., Schmitt-Kopplin, P., Gerwick, W.H., Brack-Werner, R., & Voolstra, C.R. (2016). Alkaloids from the sponge Stylissa carteri present prospective scaffolds for the inhibition of human immunodeficiency Virus 1 (HIV-1). Mar. Drugs, 14(2), 28. https://doi.org/10.3390/md14020028

Babakhanyan, A.V., Ovsepyan, V.S., Kocharyan, S.T., & Panosyan, G.A. (2003). Intramolecular 1,5-hydride shift in products of Stevens 3,2-rearrangement of ammonium salts containing 3-phenyl-2-propynyl group. Russ. J. Org. Chem., 39(6), 814-819. https://doi.org/10.1023/B:RUJO.0000003157.80528.0a

Ovsepyan, V.S., Babakhanyan, A.V., Manukyan, M.O., & Kocharyan, S.T. (2004). 1,5-Hydride shift in products of Stevens 3,2-rearrangement of methyl (alkyl) (alkoxycarbonylmethyl)-3-phenyl-2-propynyl) ammonium bromides. Russ. J. Gen. Chem., 74(9), 1376-1382. https://doi.org/10..1007/s11176-005-0014-7

Vallet, M., Chong, Y-M., Tourneroche, A., Genta-Jouve, G., Hubas, C., Lami, R., Gachon, C.M.M., Klochkova, T., Chan, K-G., & Prado, S. (2020). Novel α-hydroxy γ-butenolides of kelp endophytes disrupt bacterial cell-to-cell signaling. Front. Mar. Sci., 7, 601. https://doi.org/10.3389/fmars.2020.00601

Sperry, S., & Crews, P. (1996). A novel alkaloid from the Indo-Pacific sponge Clathria basilana. Tetrahedron Lett., 37(14), 2389-2390. https://doi.org/10.1016/0040-4039(96)00333-4

Kehraus, S., König, G.M., & Wright, A.D. (2002). A new cytotoxic calyculinamide derivative, geometricin A, from the Australian sponge Luffariella geometrica. J. Nat. Prod., 65, 1056-1058. https://doi.org/10.1021/np010544u

Bernart, M., & Gerwick, W.H. (1990). 3-(Hydroxyacetyl)indole a plant growth regulator from the oregon red algae Prionitis lanceolata. Phytochemistry, 29(12), 3697-3698. https://doi.org/10.1016/0031-9422(90)85315-7

Dillman, R.L., & Cardellina II, J.H. (1991). Aromatic secondary metabolites from the sponge Tedania ignis. J. Nat. Prod., 54(4), 1056-1061. https://doi.org/10.1021/np50076a021

Ayer, W.A., & Trifonov, L.S. (1994). Aromatic compounds from liquid cultures of Lactarius deliciosus. J. Nat. Prod., 57(6), 839-841. https://doi.org/10.1021/np50108a026

Hoffmann, H.M.R., Haase, K., Ismail, Z.M., Preftitsi, S., & Weber, A. (1982). Synthesis of α,β-unsaturated and other reactive acyl cyanides. Chem. Ber., 115, 3880-3885. https://doi.org/10.1002/cber.19821151219

Pfaltz, A., & Anwar, S. (1984). Synthesis of α-aminoketones via selective reduction of acyl cyanides. Tetrahedron Lett., 25(28), 2977-2980. https://doi.org/10.1016/s0040-4939(01)81341-1

Frelon, S., Douki, T., & Cadet, J. (2002). Radical oxidation of the adenine moiety of nucleoside and DNA: 2-Hydroxy-2’-deoxyadenosine is a minor decomposition product. Free Radical Research, 36(5), 499-508. https://doi.org/10.1080/10715760290025889

Kamiya, H., Ito, M., Nishi, K., & Harashima, H. (2016). In vivo selection of active deoxyribonucleoside kinase by a mutagenic nucleoside analogue. Journal of Biotechnology, 228, 52-57. https://doi.org/10.1016/j.jbiotec.2016.04.046

Komori, T., Sanechika, Y., Ito, Y., Matsuo, J., Nohara, T., Kawasaki, T., & Schulten, H.R. (1980). Biologisch aktive Glykoside aus Asteroidea, I. Strukturen eines neuen Cerebrosidgemischs und von Nucleosiden aus dem Seestern Acanthaster planci. Leibigs Ann. Chem., 653-668. https://doi.org/10.1002/jlac.198019800502

Wang, B., Dong, J., Zhou, X.F., Lee, K.J., Huang, R.M., Zhang, S., & Liu, Y.H. (2009). Nucleosides from the marine sponge Haliclona sp. Z. Naturforsh C, 64, 143-148. https://doi.org/10.1515/znc-2009-1-223

Huang, R.M., Zhou, X.F., Peng, Y., Yang, X.W., Xu, T.H., & Liu, Y.H. (2011). Nucleosides from the marine sponge Callyspongia sp. Chem. Nat. Compd., 46, 1010-1011. https://doi.org/10.1007/s10600-011-9815-6

Diop, M., Sow, A.M., Fofana, M., Samb, D., Ndiaye, I., Bonhomme, D., & Mehiri, M. (2022). A novel tribrominated indole nucleoside from the Senegalese marine sponge Diplastrella sp. J. Appl. Chem., 15(7), 10-13. https://doi.org/10.9790/5736-1507021013

Diop, M., Sow, A.M., Fofana, M., Mbow, B., & Samb, D. (2023). Cystodytin L, a Pyridoacridine Alkaloid from the Senegalese Tunicate Cystodytes sp. Earthline Journal of Chemical Sciences, 9(2), 177-188. https://doi.org/10.34198/ejcs.9223.177188

Published
2023-02-20
How to Cite
Sow, A. M., Diop, M., Fofana, M., & Mbow , B. (2023). Chemical Investigation of the Senegalese Marine Sponge Luffariella geometrica. Earthline Journal of Chemical Sciences, 10(1), 49-56. https://doi.org/10.34198/ejcs.10123.4956
Section
Articles

Most read articles by the same author(s)