Bio-sorption of methylene blue using Datura stramonium leaves as adsorbent

  • Maty Mossane Diouf Department of Chemistry, Faculty of Sciences and Technology, University Cheikh Anta Diop, Dakar, 10700, Senegal
  • Ramatoulaye Diouf Department of Chemistry, Faculty of Sciences and Technology, University Cheikh Anta Diop, Dakar, 10700, Senegal
  • Aïssatou Alioune Gaye Department of Chemistry, Faculty of Sciences and Technology, University Cheikh Anta Diop, Dakar, 10700, Senegal
  • Alioune Fall Department of Chemistry, Faculty of Sciences and Technology, University Cheikh Anta Diop, Dakar, 10700, Senegal
Keywords: dye, isotherm, kinetic, adsorption, methylene blue, Datura stramonium

Abstract

Present study was accomplished to prospect the viability of using the Datura stramonium leaves powder (DS) as an adsorbent to remove the methylene blue from aqueous solution. The physico-chemical characteristics of the studied adsorbent were examined. The optimum parameters such as contact time, particle size, absorbent dose, initial methylene blue concentration, and pH were investigated by performing batch experiments models. The kinetics and the isotherms adsorption were evaluated by varying the initial concentration and using the optimum parameters. The optimum of contact time is 30min, with a removal capacity of 89.60 %. The optimal adsorbent concentration to reach the maximum removal of methylene blue (89.54 %) is 18 g/L. An initial methylene blue concentration of 50 ppm is ideal to reach the maximum capacity of removal (92.72 %). The optimum particle size is 80 mm. The kinetics of the adsorption process are in accordance with the pseudo-second order model. Experimental values of the adsorption capacity are close proximity to the optimum values predicted by the pseudo-second order model. Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Harkin-Jura and Hasley isotherms were applied to represent the data obtained from the adsorption studies. The highest R2 values were related to Freundlich, Dubinin-Radushkevich and Hasley isotherm models.

References

Sharma, J., Sharma, S., & Soni, V. (2021). Classification and impact of synthetic textile dyes on Aquatic Flora: A review. Regional Studies in Marine Science, 45, 101802. https://doi.org/10.1016/j.rsma.2021.101802

Berradi, M., Hsissou, R., Khudhair, M., Assouag, M., Cherkaoui, O., Bachiri, A. E., & Harfi, A. E. (2019). Textile finishing dyes and their impact on aquatic environs. Heliyon, 5(11), e02711. https://doi.org/10.1016/j.heliyon.2019.e02711

Islam, T., Repon, Md. R., Islam, T., Sarwar, Z., & Rahman, M. M. (2023). Impact of textile dyes on health and ecosystem: a review of structure, causes, and potential solutions. Environmental Science and Pollution Research, 30(4), 9207-9242. https://doi.org/10.1007/s11356-022-24398-3

Sudarshan, S., Harikrishnan, S., Rathi Bhuvaneswari, G., Alamelu, V., Aanand, S., Rajasekar, A., & Govarthanan, M. (2022). Impact of textile dyes on human health and bioremediation of textile industry effluent using microorganisms: current status and future prospects. Journal of Applied Microbiology, 134(2), lxac064. https://doi.org/10.1093/jambio/lxac064

Kavil, Y. N., Shaban, Y. A., Alelyani, S. S., Al-Farawati, R., Orif, M. I., Ghandourah, M. A., Schmidt, M., Turki, A. J., & Zobidi, M. (2020). The removal of methylene blue as a remedy of dye-based marine pollution: a photocatalytic perspective. Research on Chemical Intermediates, 46(1), 755-768. https://doi.org/10.1007/s11164-019-03988-w

Wang, X., Zhi, L., & Müllen, K. (2008). Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Letters, 8(1), 323-327. https://doi.org/10.1021/nl072838r

Konstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Applied Catalysis B: Environmental, 49(1), 1-14. https://doi.org/10.1016/j.apcatb.2003.11.010

Moorthy, A. K., Rathi, B. G., Shukla, S. P., Kumar, K., & Bharti, V. S. (2021). Acute toxicity of textile dye Methylene blue on growth and metabolism of selected freshwater microalgae. Environmental Toxicology and Pharmacology, 82, 103552. https://doi.org/10.1016/j.etap.2020.103552

Ramamurthy, K., Priya, P. S., Murugan, R., & Arockiaraj, J. (2024). Hues of risk: investigating genotoxicity and environmental impacts of azo textile dyes. Environmental Science and Pollution Research, 31(23), 33190-33211. https://doi.org/10.1007/s11356-024-33444-1

Dutta, S., Adhikary, S., Bhattacharya, S., Roy, D., Chatterjee, S., Chakraborty, A., Banerjee, D., Ganguly, A., Nanda, S., & Rajak, P. (2024). Contamination of textile dyes in aquatic environment: Adverse impacts on aquatic ecosystem and human health, and its management using bioremediation. Journal of Environmental Management, 353, 120103. https://doi.org/10.1016/j.jenvman.2024.120103

Al-Tohamy, R., Ali, S. S., Li, F., Okasha, K. M., Mahmoud, Y. A.-G., Elsamahy, T., Jiao, H., Fu, Y., & Sun, J. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicology and Environmental Safety, 231, 113160. https://doi.org/10.1016/j.ecoenv.2021.113160

Rovira, J., & Domingo, J. L. (2019). Human health risks due to exposure to inorganic and organic chemicals from textiles: A review. Environmental Research, 168, 62-69. https://doi.org/10.1016/j.envres.2018.09.027

Sanromán, M. A., Pazos, M., Ricart, M. T., & Cameselle, C. (2005). Decolourisation of textile indigo dye by DC electric current. Engineering Geology, 77(3), 253-261. https://doi.org/10.1016/j.enggeo.2004.07.016

Moyo, S., Makhanya, B. P., & Zwane, P. E. (2022). Use of bacterial isolates in the treatment of textile dye wastewater: A review. Heliyon, 8(6), e09632. https://doi.org/10.1016/j.heliyon.2022.e09632

Punzi, M., Anbalagan, A., Börner, R. A., Svensson, B.-M., Jonstrup, M., & Mattiasson, B. (2015). Degradation of a textile azo dye using biological treatment followed by photo-Fenton oxidation: Evaluation of toxicity and microbial community structure. Chemical Engineering Journal, 270, 290-299. https://doi.org/10.1016/j.cej.2015.02.042

Chollom, M. N., Rathilal, S., Alfa, D., & Pillay, V. L. (2015). The applicability of nanofiltration for the treatment and reuse of textile reactive dye effluent. Water SA, 41(3), 398-405. https://doi.org/10.4314/wsa.v41i3.12

Donkadokula, N. Y., Kola, A. K., Naz, I., & Saroj, D. (2020). A review on advanced physico-chemical and biological textile dye wastewater treatment techniques. Reviews in Environmental Science and Bio/Technology, 19(3), 543-560. https://doi.org/10.1007/s11157-020-09543-z

Mahjoub, B., Ncibi, M. C., & Seffen, M. (2008). Adsorption d’un colorant textile réactif sur un biosorbant non-conventionnel : Les fibres de Posidonia oceanica (L.) delile. The Canadian Journal of Chemical Engineering, 86(1), 23-29. https://doi.org/10.1002/cjce.20005

Aleem, M., Cao, J., Li, C., Rashid, H., Wu, Y., Nawaz, M. I., Abbas, M., & Akram, M. W. (2020). Coagulation- and Adsorption-Based Environmental Impact Assessment and Textile Effluent Treatment. Water, Air, & Soil Pollution, 231(2), 45. https://doi.org/10.1007/s11270-020-4400-x

Kallawar, G. A., & Bhanvase, B. A. (2024). A review on existing and emerging approaches for textile wastewater treatments: challenges and future perspectives. Environmental Science and Pollution Research, 31(2), 1748-1789. https://doi.org/10.1007/s11356-023-31175-3

Kumar, P. S., & Saravanan, A. (2017). 11 - Sustainable wastewater treatments in textile sector. In S. S. Muthu (Ed.), Sustainable Fibres and Textiles (pp. 323-346). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102041-8.00011-1

Gaye, A. A., Diouf, R., & Fall, A. (2023). Bio-sorption of methylene blue by defatted seed of adansonia digitata. Earthline Journal of Chemical Sciences, 9(1), 139-156. https://doi.org/10.34198/ejcs.9123.139156

Dior Samb, D., Gaye, A. A., & Fall, A. (2022). Bio-sorption of Methylene Blue by Euphorbia hirta leaves. IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT), 16(6), 9-18. https://doi.org/10.9790/2402-1606010918

Gaye, A. A., & Nicolas Cyrille Ayessou, N. C. (2020). Bio-sorption of Methylene Blue and basic fuchsin from aqueous solution onto defatted Carica papaya seeds: mechanism and effect of operating parameters on the adsorption yield. IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT), 14(2), 24-33. https://doi.org/10.9790/2402-1402042433

Akinyeye, O. J., Ibigbami, T. B., & Odeja, O. (2016). Effect of Chitosan powder prepared from Snail Shells to remove Lead (II) Ion and Nickel (II) Ion from aqueous solution and its adsorption isotherm model. American Journal of Applied Chemistry, 4(4), 146-156. https://doi.org/10.11648/j.ajac.20160404.15

Shahwan, T. (2015). Lagergren equation: Can maximum loading of sorption replace equilibrium loading? Chemical Engineering Research and Design, 96, 172-176. https://doi.org/10.1016/j.cherd.2015.03.001

Aichour, A., & Zaghouane-Boudiaf, H. (2019). Highly brilliant green removal from wastewater by mesoporous adsorbents: Kinetics, thermodynamics and equilibrium isotherm studies. Microchemical Journal, 146, 1255-1262. https://doi.org/10.1016/j.microc.2019.02.040

Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89(2), 31-59. https://doi.org/10.1061/JSEDAI.0000430

Cope, F. W. (1972). Generalizations of the Roginsky-Zeldovich (or Elovich) equation for charge transport across biological surfaces. The Bulletin of Mathematical Biophysics, 34(3), 419-427. https://doi.org/10.1007/BF02476452

Marczewski, A. W. (2010). Analysis of kinetic Langmuir model. Part I: Integrated kinetic Langmuir equation (IKL): A new complete analytical solution of the Langmuir rate equation. Langmuir, 26(19), 15229-15238. https://doi.org/10.1021/la1010049

Debnath, S., & Das, R. (2023). Strong adsorption of CV dye by Ni ferrite nanoparticles for wastewater purification: Fits well the pseudo second order kinetic and Freundlich isotherm model. Ceramics International, 49(10), 16199-16215. https://doi.org/10.1016/j.ceramint.2023.01.218

Araújo, C. S. T., Almeida, I. L. S., Rezende, H. C., Marcionilio, S. M. L. O., Léon, J. J. L., & Matos, T. N. de. (2018). Elucidation of mechanism involved in adsorption of Pb(II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchemical Journal, 137, 348-354. https://doi.org/10.1016/j.microc.2017.11.009

Ghezini, R., Sassi, M., & Bengueddach, A. (2008). Adsorption of carbon dioxide at high pressure over H-ZSM-5 type zeolite. Micropore volume determinations by using the Dubinin-Raduskevich equation and the “t-plot” method. Microporous and Mesoporous Materials, 113(1), 370-377. https://doi.org/10.1016/j.micromeso.2007.11.034

Erdogan, F. O. (2019). Freundlich, Langmuir, Temkin, DR and Harkins-Jura Isotherm studies on the adsorption of CO2 on various porous adsorbents. International Journal of Chemical Reactor Engineering, 17(5), 20180134. https://doi.org/10.1515/ijcre-2018-0134

Halsey, G. D. (1952). The role of surface heterogeneity in adsorption. Advances in Catalysis, 4, 259-269. https://doi.org/10.1016/S0360-0564(08)60616-1

Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal of Chemistry, 2017(1), 3039817. https://doi.org/10.1155/2017/3039817

Vučurović, V. M., Razmovski, R. N., Miljić, U. D., & Puškaš, V. S. (2014). Removal of cationic and anionic azo dyes from aqueous solutions by adsorption on maize stem tissue. Journal of the Taiwan Institute of Chemical Engineers, 45(4), 1700-1708. https://doi.org/10.1016/j.jtice.2013.12.020.

Published
2024-11-05
How to Cite
Diouf, M. M., Diouf, R., Gaye, A. A., & Fall, A. (2024). Bio-sorption of methylene blue using Datura stramonium leaves as adsorbent . Earthline Journal of Chemical Sciences, 12(1), 15-32. https://doi.org/10.34198/ejcs.12125.015032
Section
Articles

Most read articles by the same author(s)