Biogas Production from Plantain and Yam Peels: Modelling using Response Surface Methodology
Abstract
The world’s growing demand for energy and our concern to preserve the environment have prompted research into alternative sources of energy. Renewable energy from biomass is one such opportunity. The aim of this study is to model the production of biogas from the anaerobic digestion of plantain and yam peelings and cattle dung. A characterisation of these residues showed their good suitability for methanisation with good moisture contents (˃70%), high volatile solids contents (˃75%) and C/N ratios of between 20 and 30. In addition, methanisation trials under mesophilic conditions following a mixing plan generated quantities of biogas ranging from 128 to 565 mL with CH4 contents of between 54.03 and 72.98%. The digester made up of 1/6 plantain peels + 2/3 yam peels + 1/6 cattle dung gave the best biogas yield with 565 mL for 67.52% CH4. The model established from these results is highly significant with an F value (1268.01) having a probability significantly lower than 0.05. In addition to the coefficients R2 (0.9994) and R2 (0.9986) which adjust are very close to unity, there is a good correlation between the experimental results and those predicted. This prediction model is therefore reliable for explaining biogas production. However, further study of the kinetics of anaerobic digestion and biogas treatment remains important.
References
Adjiri, A., Koudou, A., Soro, G., & Biemi, J. (2018). Étude du potentiel de valorisation énergétique du biogaz de la décharge d’Akouédo (Abidjan, Côte d’Ivoire). Environnement, Ingénierie & Développement, N°77 - September 2018. https://doi.org/10.4267/dechets-sciences-techniques.3784
Afilal, M. E., Elasri, O., & Merzak, Z. (2014). Caractérisations des déchets organiques et évaluation du potentiel biogaz. Journal of Materials and Environmental Science, 5(4), 1160-1169.
Alahiane, S., Qourzal, S., Sennaoui, A., El Ouardi, M., & Assabbane, A. (2016). Modélisation et optimisation de la photoélimination du rouge réactif 120 en milieu aqueux en présence de TiO2 supporté. Journal of Materials and Environmental Science, 7(2), 638-647.
Armah, E. K., Chetty, M., & Deenadayalu, N. (2020). Biogas production from sugarcane bagasse with South African industrial wastewater and novel kinetic study using response surface methodology. Scientific African, 10, 1-17. https://doi.org/10.1016/j.sciaf.2020.e00556
Aydram, R., Alizade, H. H. A., Rasouli, M., & Shadidi, B. (2021). Simplex centroid mixture design for optimizing and promoting the anaerobic co-digestion performance of sheep blood and cheese whey. Journal of Renewable Energy and Environment, 8(3), 8-15. https://doi.org/10.30501/jree.2021.251583.1151
Boissin, O. (2021). Développement durable : Des chiffres et des étoiles Vol. 2 : Noire Magie. HAL Id : hal-03459396.
Bomisso, E. L., Seydou, T., & Ake, S. (2018). Effet du mélange de pelure de banane plantain et de compost de fiente de poules sur la croissance en pépinière de rejets écailles de bananier plantain, variété Big Ebanga (Musa AAB sg Plantain). Journal of Applied Biosciences, 130, 13126-13137. https://doi.org/10.4314/jab.v130i1.1
Bremner, J. M. (1996). Nitrogen-Total. Chapter 37, pp 1085-1117
Briton, B. G. H., Yao, B. K., Richardson, Y., Duclaux, L., Reinert, L., & Soneda, Y. (2020). Optimization by using response surface methodology of the preparation from plantain spike of a micro-/mesoporous activated carbon designed for removal of dyes in aqueous solution. Arabian Journal for Science and Engineering, 45(9), 7231-7245. https://doi.org/10.1007/s13369-020-04390-0
Deepanraj, B., Senthilkumar, N., Ranjitha, J., Jayaraj, S., & Ong, H. C. (2021). Biogas from food waste through anaerobic digestion: optimization with response surface methodology. Biomass Conversion and Biorefinery, 11(2), 227-239. https://doi.org/10.1007/s13399-020-00646-9
Deshaies, M., & Kouadio, A. (2019). Les enjeux du développement des énergies renouvelables pour la production d’électricité en Côte d’Ivoire. Revue Espace Géographique et Société Marocaine, 26, 249-272.
Diarrassouba, F., Koné, M., Bamba, K., Traoré, Y., Koné, M. G.-R., & Assanvo, E. F. (2019). Development of predictive QSPR model of the first reduction potential from a series of tetracyanoquinodimethane (TCNQ) molecules by the DFT (density functional theory) method. Computational Chemistry, 07(04), 121-142. https://doi.org/10.4236/cc.2019.74009
Ettien, J. B., & Tschannen, A. (2003). Evaluation de nouvelles variétés d’igname en Côte d’Ivoire: bilan de trois ans d’expérience avec des génotypes améliorés par l’IITA. In avanes africaines: des espaces en mutation, des acteurs face à de nouveaux défis. Actes du colloque, Garoua, Cameroun, (7p.).
Gunaseelan, V. N. (2007). Regression models of ultimate methane yields of fruits and vegetable solid wastes, sorghum and napiergrass on chemical composition. Bioresource Technology, 98, 1270-1277. https://doi.org/10.1016/j.biortech.2006.05.014
Kalloum, S., Khelafi, M., Djaafri, M., Tahri, A., & Touzi, A. (2007). Etude de l’influence du pH sur la production du biogaz à partir des déchets ménagers. Revue Des Energies Renouvelables, 10, 539-543.
Kouadio, M. C. (2020). Caractérisation physico-chimique et énergétique de la décharge d’Akouédo. Thesis. Université Félix Houphouët-Boigny (Côte d’Ivoire).
Kouakou, A. R., Abollé, A., Kouadio, M. C., Akossi, M. J. C., Donatien, E. A., & Kouassi, E. K. (2022). Estimation of the energy potential by anaerobic digestion of food waste at Nangui Abrogoua University: Codigestion of food waste with cow dung. Journal of Ultra Chemistry, 18(3), 37-43. https://doi.org/10.22147/juc/180301
Kpata, N. E. (2014). Valorisation des effluents issus de la production d’attiéké par digestion anaérobie avec l’urine humaine comme co-substrat.
Kra, E. K. F., Lebi, & Adama, O. (2018). Characterization of waste from “attiéké” (Cassava semolina) process for the dimensioning of bio-methane’s digester. International Journal of Applied Science and Research, 1(3).
Kwietniewska, E., & Tys, J. (2014). Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renewable and Sustainable Energy Reviews, 34, 491-500. https://doi.org/10.1016/j.rser.2014.03.041
Lacour, J. (2012). Valorisation de résidus agricoles et autres déchets organiques par digestion anaérobie en Haïti. https://tel.archives-ouvertes.fr/tel-00825479/document https://doi.org/10.54226/uniq.edse.28312
Laskri, N., Hamdaoui, O., & Nedjah, N. (2007). Traitement et valorisation des déchets par procédé de digestion anaérobie : production du biogaz. Revue des Energies Renouvelables CER’07 Oujda, 23-26.
Mangoumbou, G., Bekabeka, A., & Ngouma, D. (2023). Gestion des déchets et impacts sanitaires dans les campus de Brazzaville en République du Congo. Revue Espace Géographique et Société Marocaine, 67, 105-122.
Mckendry, P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresource Technology, 83, 37-46. https://doi.org/10.1016/s0960-8524(01)00118-3
M’Sadak, Y., & M’Barek, A. Ben. (2013). Caractérisation qualitative du digestat solide de la bio méthanisation industrielle des fientes avicoles et alternative de son exploitation agronomique hors sol. Revue des Energies Renouvelables, 16(1), 33-42.
Prüss-Üstün, A., & Corvalán, C. (2007). Prévenir la maladie grâce à un environnement sain: une estimation de la charge de morbidité imputable à l’environnement. http://apps.who.int/iris/bitstream/10665/43615/1/9242594201_fre.pdf
Sajeena Beevi, B., Jose, P. P., & Madhu, G. (2014). Optimization of process parameters affecting biogas production from organic fraction of municipal solid waste via anaerobic digestion. International Journal of Bioengineering and Life Sciences, 8(1), 43-48.
Thomsen, S. T., Kádár, Z., & Schmidt, J. E. (2014). Compositional analysis and projected biofuel potentials from common West African agricultural residues. Biomass and Bioenergy, 63, 210-217. https://doi.org/10.1016/j.biombioe.2014.01.045
Traore, D., Nikiema, M., Somda, M. K., Sawadogo, J. B., & Dayeri, D. (2016). Contribution à la biométhanisation de la biomasse végétale : cas des résidus de légumes au Burkina Faso. Int. J. Biol. Chem. Sci., 10(1), 35-47. https://doi.org/10.4314/ijbcs.v10i1.4
Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38. https://doi.org/10.1097/00010694-193401000-00003
Weiland, P. (2010). Biogas production: current state and perspectives. Appl. Microbiol. Biotechnol., 85, 849-860. https://doi.org/10.1007/s00253-009-2246-7
This work is licensed under a Creative Commons Attribution 4.0 International License.