Synthesis and Characterization of the 2-(-(2-(-2-hydroxy-3-methoxybenzylideneamino)propylimino)methyl)-6-methoxyphenol dimanganese(III) Complex containing μ(O,O’)-nitrito-aqua Ligands
Abstract
Single crystal of new nitrito bridged Mn(III) dinuclear compound {[Mn(L)(H2O)](μ-NO2)[Mn(L)(H2O)]}.(ClO4) has been synthesized in the absence of nitrite source. The compound was characterized by elemental analysis, IR spectroscopy and single crystal X‑ray diffraction. The compound crystallizes in the triclinic system in the space group P‑1 with a = 12.4175(3)Å, b = 13.6360(4) Å, c = 12.8207(5) Å, α = 74.876(3)°, β = 89.064(2)°, γ = 85.361(2)°, V = 2159.39(11) Å3, Z = 9, Dc = 1.489 Mg m-3. Each of the two ligand molecules encapsulates one Mn(III) ion in tetradentate fashion through two phenolate oxygen atoms and two azomethine nitrogen atoms. The two methoxy oxygen atoms of each ligand molecule remain uncoordinated. In the structure, each manganese(III) ion is situated in a N2O4 inner. The environment around each Mn(III) cation is best described as a distorted square pyramidal geometry, in which the equatorial plane is occupied by the atoms from the ligand molecule and the axial positions are occupied by one oxygen atom of a coordinated water molecule and one nitrito oxygen atom. The two Mn(III) ions are bridged though one μ1,3-nitrito group. Numerous intermolecular hydrogen bonds, established between water molecules as donors and phenoxo or methoxy oxygen atoms as acceptors, connect the dinuclear units into three-dimensional network.
References
Buta, I., Shova, S., Ilies, S., Manea, F., Andruh, M., & Costisor, O. (2022). Mono- and oligonuclear complexes based on a o-vanillin derived Schiff-base ligand: Synthesis, crystal structures, luminescent and electrochemical properties. Journal of Molecular Structure, 1248, 131439. https://doi.org/10.1016/j.molstruc.2021.131439
Li, Y., Qian, C., Li, Y., Yang, Y., Lin, D., Liu, X., & Chen, C. (2021). Syntheses, crystal structures of two Fe(III) Schiff base complexes with chelating o-vanillin aroylhydrazone and exploration of their bio-relevant activities. Journal of Inorganic Biochemistry, 218, 111405. https://doi.org/10.1016/j.jinorgbio.2021.111405
Plyuta, N., Vassilyeva, O.Y., Kokozay, V.N., Omelchenko, I., & Petrusenko, S. (2020). A binuclear CuII/CaII thiocyanate complex with a Schiff base ligand derived from o-vanillin and ammonia. Acta Crystallographica Section E Crystallographic Communications, 76, 423-426. https://doi.org/10.1107/S205698902000211X
Zarei, L., Asadi, Z., Dusek, M., & Eigner, V. (2019). Homodinuclear Ni (II) and Cu (II) Schiff base complexes derived from O-vanillin with a pyrazole bridge: Preparation, crystal structures, DNA and protein (BSA) binding, DNA cleavage, molecular docking and cytotoxicity study. Journal of Photochemistry and Photobiology A: Chemistry, 374, 145-160. https://doi.org/10.1016/j.jphotochem.2019.02.001
Keshavarzian, E., Asadi, Z., Kucerakova, M., Dusek, M., & Rastegari, B. (2022). DNA interaction and BSA binding of O-vanillin-based new Schiff base Co(III) and Ni(II) complexes: Theoretical, experimental, antibacterial and anticancer studies. Polyhedron, 223, 115987. https://doi.org/10.1016/j.poly.2022.115987
Kowsalya, P., Neelakantan, M.A., & Bhuvanesh, N.S.P. (2022). Tetranuclear Cu(II) complex with [2+4] Cu4O4 cubane based core framework derived from 2-[2-(1-hydroxy-ethyl)-phenylimino-methyl]-6-methoxy-phenol: Quantifying conventional and unconventional interactions and QTAIM analysis. Journal of Molecular Structure, 1254, 132396. https://doi.org/10.1016/j.molstruc.2022.132396
Lu, Z., Fan, T., Guo, W., Lu, J., & Fan, C. (2013). Synthesis, structure and magnetism of three cubane Cu(II) and Ni(II) complexes based on flexible Schiff-base ligands. Inorganica Chimica Acta, 400, 191-196. https://doi.org/10.1016/j.ica.2013.02.030
Paul, L., Banerjee, B., Bhaumik, A., & Ali, M. (2017). Catecholase activity of a manganese Schiff base complex functionalized over SBA-15 in aqueous heterogeneous medium. Microporous and Mesoporous Materials, 249, 78-87. https://doi.org/10.1016/j.micromeso.2017.04.048
Neacşu, V.A., Maxim, C., Mădălan, A.M., Hillebrand, M., González-Arellano, C., Soriano, S., Rentschler, E., & Andruh, M. (2018). New complexes of Ni(II) and Co(III) with a Schiff-base ligand derived from o-vanillin. Crystal structure, magnetic and catalytic properties of a dissymmetric binuclear nickel(II) complex. Polyhedron, 150, 77-82. https://doi.org/10.1016/j.poly.2018.05.007
Yousef, T.A., El-Reash, G.M.A., Attia, M.I., & El-Tabai, M.N. (2015). Comparative ligational, optical band gap and biological studies on Cr(III) and Fe(III) complexes of hydrazones derived from 2-hydrazinyl-2-oxo-N-phenylacetamide with both vanillin and O-vanillin. Chemical Physics Letters, 636, 180-192. https://doi.org/10.1016/j.cplett.2015.07.001
Buta, I., Shova, S., Ilies, S., Manea, F., Andruh, M., & Costisor, O. (2022). Mono- and oligonuclear complexes based on a o-vanillin derived Schiff-base ligand: Synthesis, crystal structures, luminescent and electrochemical properties. Journal of Molecular Structure, 1248, 131439. https://doi.org/10.1016/j.molstruc.2021.131439
Plyuta, N., Kokozay, V.N., Rusanova, J.A., Buvailo, H., Goreshnik, E., & Petrusenko, S. (2021). A bis-chelate o-vanillin-2-ethanolamine copper(II) complex bearing both imine and amine forms of the ligand. Acta Crystallographica Section E Crystallographic Communications, 77, 1272-1275. https://doi.org/10.1107/S205698902101166X
Li, Q., Zhu, X., Zhao, Y., & Xie, Y. (2022). The antifungal activity of o-vanillin against Aspergillus flavus via disrupting ergosterol biosynthesis and promoting oxidative stress, and an RNA-seq analysis thereof. LWT, 164, 113635. https://doi.org/10.1016/j.lwt.2022.113635
Naiya, S., Wang, H.-S., Drew, M.G.B., Song, Y., & Ghosh, A. (2011). Structural and magnetic studies of Schiff base complexes of nickel(II) nitrite: change in crystalline state, ligand rearrangement and a very rare μ-nitrito-1κO:2κN:3κO′ bridging mode. Dalton Trans., 40(12), 2744-2756. https://doi.org/10.1039/C0DT00978D
Camus, A., Marsich, N., Lanfredi, A.M.M., Ugozzoli, F., & Massera, C. (2000). Copper(II)nitrito complexes with 2,2′-dipyridylamine. Crystal structures of the [(acetato)(2,2′-dipyridylamine)(nitrito-O,O′)copper(II)] and [(2,2′-dipyridylamine) (nitrito-O,O′)(μ-nitrito-O)copper(II)]2•2(acetonitrile). Inorganica Chimica Acta, 309(1), 1-9. https://doi.org/10.1016/S0020-1693(00)00213-9
Escuer, A., Font-Bardía, M., Peñalba, E., Sanz, N., Solans, X., & Vicente, R. (1999). Dinuclear nickel(II) complexes with a tridentate nitrito bridge and terminal thiocyanato ligands. Crystal structure and magnetic properties. J. Chem. Soc., Dalton Trans., (17), 3115-3119. https://doi.org/10.1039/A903756J
Pastoriza-Santos, I., & Liz-Marzán, L.M. (1999). Formation and stabilization of silver nanoparticles through reduction by N,N-dimethylformamide. Langmuir, 15(4), 948-951. https://doi.org/10.1021/la980984u
Roco, C.A., Bergaust, L.L., Shapleigh, J.P., & Yavitt, J.B. (2016). Reduction of nitrate to nitrite by microbes under oxic conditions. Soil Biology and Biochemistry, 100, 1-8. https://doi.org/10.1016/j.soilbio.2016.05.008
Tiso, M., & Schechter, A.N. (2015). Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions. PLOS ONE, 10(3), e0119712. https://doi.org/10.1371/journal.pone.0119712
Sheldrick, G.M. (2015). SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica Section A, 71(1), 3-8. https://doi.org/10.1107/S2053273314026370
Sheldrick, G.M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica Section C, 71(1), 3-8. https://doi.org/10.1107/S2053229614024218
Farrugia, L.J. (2012). WinGX and ORTEP for Windows: an update. Journal of Applied Crystallography, 45(4), 849-854. https://doi.org/10.1107/S0021889812029111
Pastoriza-Santos, I., & Liz-Marzán, L. M. (1999). Formation and stabilization of silver nanoparticles through reduction by N,N-dimethylformamide. Langmuir, 15(4), 948-951. https://doi.org/10.1021/la980984u
Vo, V., Kim, Y., Minh, N.V., Hong, C.S., & Kim, S.-J. (2009). Syntheses, crystal structures and magnetic properties of coordination polymers Ni(NO2)2 and Ni(4,4′-bipy)(NO2)2. Polyhedron, 28(6), 1150-1154. https://doi.org/10.1016/j.poly.2009.01.019
Sow, M.M., Diouf, O., Gaye, M., Salam-Sall, A., Castro, G., Pérez-Lourido, P., Valencia, L., Caneschi, A., & Sorace, L. (2013). Sheets of tetranuclear Ni(II) [2 × 2] square grids structure with infinite orthogonal two-dimensional water–chlorine chains. Crystal Growth & Design, 13(10), 4172-4176. https://doi.org/10.1021/cg400885f
Faye, M., Sow, M. M., Gaye, P. A., Dieng, M., & Gaye, M. (2021). Crystal structures of bis-{N-[1-(pyridin-2-yl-κN)ethylidene]nicotine hydrazide-κ2N’,O}cobalt(II)bis(perchlorate) dihydrate and bis-{N’-[1-(pyridin-2-yl-κN)ethylidene]nicotinohydrazide-κ2N’,O}copper(II) perchlorate. European Journal of Chemistry, 12(2), 159-164. https://doi.org/10.5155/eurjchem.12.2.159-164.2074
Geary, W.J. (1971). The use of conductivity measurements in organic solvents for the characterization of coordination compounds. Coordination Chemistry Reviews, 7(1), 81-122. https://doi.org/10.1016/S0010-8545(00)80009-0
Kumar, S.C., Ghosh, A.K., Chen, J.-D., & Ghosh, R. (2017). Structurally characterized mononuclear Mn(II) complex: Functional model for catecholase and phenoxazinone synthase activities. Inorganica Chimica Acta, 464, 49-54. https://doi.org/10.1016/j.ica.2017.04.043
Seck, T.M., Gaye, P.A., Diouf, O., Thiam, I.E., & Gaye, M. (2020). Synthesis, spectroscopic studies and crystal structure determination of a novel Mn(II) complex with N,N-1,5-bis(2-acetylpyridinyl)carbonohydrazone ligand. Chemistry Africa, 3(4), 949-954. https://doi.org/10.1007/s42250-020-00140-9
Parimala, S., Kandaswamy, M., Nissa, M.N., & Velmurugan, D. (2003). Structural, magnetic and electrochemical studies of a new series of macrocyclic mononuclear and binuclear Manganese(III) and unusually stable Manganese(II) complexes. Journal of Coordination Chemistry, 56(4), 261-274. https://doi.org/10.1080/0095897031000068996
Biswas, S., Mitra, K., Chattopadhyay, S.K., Adhikary, B., & Lucas, C. Robert. (2005). Mononuclear manganese(II) and manganese(III) complexes of N2O donors involving amine and phenolate ligands: absorption spectra, electrochemistry and crystal structure of [Mn(L3)2](ClO4). Transition Metal Chemistry, 30(4), 393-398. https://doi.org/10.1007/s11243-004-7542-6
Mandal, B., Haldar, A., Saha, R., & Mandal, D. (2020). Mononuclear Mn(III) complex with sterically constrained phenol-based ligand: Synthesis, structure and catecholase activity. Journal of Molecular Structure, 1220, 128723. https://doi.org/10.1016/j.molstruc.2020.128723
Sarkar, N., Bhaumik, P.K., & Chattopadhyay, S. (2016). Manganese(III) complexes with tetradentate salicylaldimine Schiff bases: Synthesis, structure, self-assembly and catalase activity. Polyhedron, 115, 37-46. https://doi.org/10.1016/j.poly.2016.04.013
Mondal, I., Ghosh, K., & Chattopadhyay, S. (2019). Synthesis and structural characterization of three manganese(III) complexes with N2O2 donor tetradentate Schiff base ligands: Exploration of their catalase mimicking activity. Inorganica Chimica Acta, 494, 123-131. https://doi.org/10.1016/j.ica.2019.05.003
Sarkar, N., Drew, M.G.B., Harms, K., Bauzá, A., Frontera, A., & Chattopadhyay, S. (2018). Methylene spacer regulated variation in conformation of tetradentate N2O2 donor Schiff bases trapped in manganese(III) complexes. CrystEngComm, 20(8), 1077-1086. https://doi.org/10.1039/C7CE02019H
This work is licensed under a Creative Commons Attribution 4.0 International License.