Review: Using Metal Oxide Nanoparticles as Catalyst in Benzimidazoles Synthesis
Abstract
Heterocyclic compounds, such as benzimidazole derivatives, are a type of heterocyclic chemicals. Benzimidazole consists of a 6-atom benzene ring fused to the five-atom imidazole ring, which is an important structural property of this compound. A powerful inhibitor of various enzymes was used to investigate several pharmacological residences. Heterocyclic compounds, including benzimidazoles, are interested in being very effective compounds and are used in the preparation of many medicines, including as antiviral, anticancer, antiparasitic, antimicrobial, antihistamine, analgesic and as effective treatments for diabetes. Because of their stability, bioavailability, and have large organic activity, benzimidazole derivatives have multiple activities. Using various azole moieties, modifications to a few organic polymers was achieved. This article will discuss some of the current methodologies of synthesizing benzimidazoles and their pharmacological properties, as well as a variety of derivatives.
References
El‐Sayed, A.A., Pedersen, E.B., & Khaireldin, N.Y. (2016). Thermal stability of modified i‐motif oligonucleotides with naphthalimide intercalating nucleic acids. Helv. Chim. Acta, 99(1), 14-19. https://doi.org/10.1002/hlca.201500140
El-Sayed, A.A., Pedersen, E.B., & Khaireldin, N.A. (2012). Studying the influence of the pyrene intercalator TINA on the stability of DNA i-motifs. Nucleosides, Nucleotides and Nucleic Acids, 31(12), 872-879. https://doi.org/10.1080/15257770.2012.742199
El-Sayed, A.A., Tamara Molina, A., Alvarez-Ros, M.C., & Alcolea Palafox, M. (2015). Conformational analysis of the anti-HIV Nikavir prodrug: comparisons with AZT and Thymidine, and establishment of structure-activity relationships/tendencies in other 6′-derivatives. J. Biomol. Struct. Dyn., 33(4), 723-748. https://doi.org/10.1080/07391102.2014.909743
Preston, P.N. (1974). Synthesis, reactions, and spectroscopic properties of benzimidazoles. Chem. Rev., 74(3), 279-314. https://doi.org/10.1021/cr60289a001
Alinezhad, H., Salehian, F., & Biparva, P. (2012). Synthesis of benzimidazole derivatives using heterogeneous ZnO nanoparticles. Synth. Commun., 42(1), 102-108. https://doi.org/10.1080/00397911.2010.522294
Hazelton, J.C., Iddon, B., Suschitzky, H., & Woolley, L.H. (1995). 2H-benzimidazoles (isobenzimidazoles). Part 10. Synthesis of polysubstituted o-phenylenediamines and their conversion into heterocycles, particularly 2-substituted benzimidazoles with known or potential anthelminthic activity. Tetrahedron, 51(39), 10771-10794. https://doi.org/10.1016/0040-4020(95)00642-L
Labanauskas, L.K., Brukštus, A.B., Gaidelis, P.G., Buchinskaite, V.A., Udrenaite, E.B., & Daukšas, V.K. (2004). Synthesis and antiinflammatory activity of some new 1-acyl derivatives of 2-methylthio-5,6-diethoxybenzimidazole. Pharm. Chem. J., 34(7), 353-355. https://doi.org/10.1023/A:1005213306544
Tsukamoto, G., Yoshino, K., Kohno, T., Ohtaka, H., Kagaya, H., & Ito, K. (1980). 2-Substituted azole derivatives. 1. Synthesis and antiinflammatory activity of some 2-(substituted-pyridinyl) benzimidazoles. J. Med. Chem., 23(7), 734-738. https://doi.org/10.1021/jm00181a007
Ito, K., Kagaya, H., Fukuda, T., Yoshino, K., & Nose, T. (1982). Pharmacological studies of a new non-steroidal antiinflammatory drug: 2-(5-ethylpyridin-2-yl) benzimidazole (KB-1043). Arzneimittelforschung., 32(1), 49-55.
Tzani, M.A., Gabriel, C., & Lykakis, I.N. (2020). Selective synthesis of benzimidazoles from o-phenylenediamine and aldehydes promoted by supported gold nanoparticles. Nanomaterials, 10(12), 2405. https://doi.org/10.3390/nano10122405
Vinodkumar, R., Vaidya, S.D., Kumar, B.V.S., Bhise, U.N., Bhirud, S.B., & Mashelkar, U.C. (2008). Synthesis, anti-bacterial, anti-asthmatic and anti-diabetic activities of novel N-substituted-2-(4-phenylethynyl-phenyl)-1H-benzimidazoles and N-substituted 2[4-(4,4-dimethyl-thiochroman-6-yl-ethynyl)-phenyl)-1H-benzimidazoles. Eur. J. Med. Chem., 43(5), 986-995. https://doi.org/10.1016/j.ejmech.2007.06.013
Küçükgüzel, I., Küçükgüzel, S.G., Rollas, S., & Kiraz, M. (2001). Some 3-Thioxo/alkylthio-1,2,4-triazoles with a substituted thiourea moiety as possible antimycobacterials. Bioorg. Med. Chem. Lett., 11(13), 1703-1707. https://doi.org/10.1016/S0960-894X(01)00283-9
Islam, I., Skibo, E.B., Dorr, R.T., & Alberts, D.S. (1991). Structure-activity studies of antitumor agents based on pyrrolo [1,2-a] benzimidazoles: new reductive alkylating DNA cleaving agents. J. Med. Chem., 34(10), 2954-2961. https://doi.org/10.1021/jm00114a003
Wright, J.B. (1951). The chemistry of the benzimidazoles. Chem. Rev., 48(3), 397-541. https://doi.org/10.1021/cr60151a002
Alaqeel, S.I. (2017). Synthetic approaches to benzimidazoles from o-phenylenediamine: A literature review. J. Saudi Chem. Soc., 21(2), 229-237. https://doi.org/10.1016/j.jscs.2016.08.001
Boiani, M., & González, M. (2005). Imidazole and benzimidazole derivatives as chemotherapeutic agents. Mini Rev. Med. Chem., 5(4), 409-424. https://doi.org/10.2174/1389557053544047
Narasimhan, B., Sharma, D., & Kumar, P. (2012). Benzimidazole: a medicinally important heterocyclic moiety. Med. Chem. Res., 21(3), 269-283. https://doi.org/10.1007/s00044-010-9533-9
Bansal, Y., et al. (2012). The therapeutic journey of benzimidazoles: A review pp 6208-6236. Bioorg. Med. Chem., 20(21), 6199-6207. https://doi.org/10.1016/j.bmc.2012.09.013
Shah, K., Chhabra, S., Shrivastava, S.K., & Mishra, P. (2013). Benzimidazole: A promising pharmacophore. Med. Chem. Res., 22(11), 5077-5104. https://doi.org/10.1007/s00044-013-0476-9
Yadav, G., & Ganguly, S. (2015). Structure activity relationship (SAR) study of benzimidazole scaffold for different biological activities: A mini-review. Eur. J. Med. Chem., 97, 419-443. https://doi.org/10.1016/j.ejmech.2014.11.053
Gaba, M., & Mohan, C. (2016). Development of drugs based on imidazole and benzimidazole bioactive heterocycles: recent advances and future directions. Med. Chem. Res., 25(2), 173-210. https://doi.org/10.1007/s00044-015-1495-5
Hein, D.W., Alheim, R.J., & Leavitt, J.J. (1957). The use of polyphosphoric acid in the synthesis of 2-aryl- and 2-alkyl-substituted benzimidazoles, benzoxazoles and benzothiazoles. J. Am. Chem. Soc., 79(2), 427-429. https://doi.org/10.1021/ja01559a053
Vanden Eynde, J.J., Delfosse, F., Mayence, A., & Van Haverbeke, Y. (1995). Old reagents, new results: Aromatization of Hantzsch 1, 4-dihydropyridines with manganese dioxide and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. Tetrahedron, 51(23), 6511-6516. https://doi.org/10.1016/0040-4020(95)00318-3
Bhatnagar, I., & George, M.V. (1968). Oxidation with metal oxides-II: oxidation of chalcone phenylhydrazones, pyrazolines, o-aminobenzylidine anils and o-hydroxy benzylidine anils with manganese dioxide. Tetrahedron, 24(3), 1293-1298. https://doi.org/10.1016/0040-4020(68)88080-9
Feng, F., et al. (2016). Cu-Pd/γ-Al2O3 catalyzed the coupling of multi-step reactions: direct synthesis of benzimidazole derivatives. RSC Adv., 6(76), 72750-72755. https://doi.org/10.1039/C6RA13004F
A. J. Deotale, Synthesis and characterization of some metal oxide Nanoparticles. http://hdl.handle.net/10603/236978
Ahmed, D.J.A., Al-abdaly, B.I., & Hussein, S.J. (2021). Synthesis and characterization of high surface area nano titanium dioxide. J. Pet. Res. Stud., 11(4), 51-75. https://doi.org/10.52716/jprs.v11i4.563
Ranganath, K.V.S., & Glorius, F. (2011). Superparamagnetic nanoparticles for asymmetric catalysis-a perfect match. Catal. Sci. Technol., 1(1), 13-22. https://doi.org/10.1039/c0cy00069h
Ghorbani-Choghamarani, A., Shiri, L., & Azadi, G. (2016). The first report on the eco-friendly synthesis of 5-substituted 1H-tetrazoles in PEG catalyzed by Cu(ii) immobilized on Fe3O4@ SiO2@l-arginine as a novel, recyclable and non-corrosive catalyst. RSC Adv., 6(39), 32653-32660. https://doi.org/10.1039/C6RA03023H
Moghaddam, F.M., & Saeidian, H. (2007). Controlled microwave-assisted synthesis of ZnO nanopowder and its catalytic activity for O-acylation of alcohol and phenol. Mater. Sci. Eng. B, 139(2-3), 265-269. https://doi.org/10.1016/j.mseb.2007.03.002
Mirjafary, Z., Saeidian, H., Sadeghi, A., & Moghaddam, F.M. (2008). ZnO nanoparticles: An efficient nanocatalyst for the synthesis of β-acetamido ketones/esters via a multi-component reaction. Catal. Commun., 9(2), 299-306. https://doi.org/10.1016/j.catcom.2007.06.018
Bahrami, K., Khodaei, M.M., & Kavianinia, I. (2007). A simple and efficient one-pot synthesis of 2-substituted benzimidazoles. Synthesis (Stuttg), 2007(04), 547-550. https://doi.org/10.1055/s-2007-965878
Banjare, S.K., Payra, S., Saha, A., & Banerjee, S. (2017). Efficient room temperature synthesis of 2-Aryl benzimidazoles using ZnO nanoparticles as reusable catalyst. Org. Med. Chem. Int. J., 1(3), 119-123. https://doi.org/10.19080/omcij.2016.01.555568
Banerjee, B. (2017). Recent developments on nano-ZnO catalyzed synthesis of bioactive heterocycles. J. Nanostructure Chem., 7(4), 389-413. https://doi.org/10.1007/s40097-017-0247-0
Shiraishi, Y., Sugano, Y., Tanaka, S., & Hirai, T. (2010). One‐pot synthesis of benzimidazoles by simultaneous photocatalytic and catalytic reactions on Pt@TiO2 nanoparticles, Angew. Chemie, 122(9), 1700-1704. https://doi.org/10.1002/ange.200906573
Ganesh Babu, S., & Karvembu, R. (2011). CuO nanoparticles: a simple, effective, ligand free, and reusable heterogeneous catalyst for N-arylation of benzimidazole. Ind. Eng. Chem. Res., 50(16), 9594-9600. https://doi.org/10.1021/ie200797e
Mobinikhaledi, A., Moghanian, H., Ghazvini, S.M.B.H., & Dalvand, A. (2018). Copper containing poly (melamine-terephthaldehyde)-magnetite mesoporous nanoparticles: a highly active and recyclable catalyst for the synthesis of benzimidazole derivatives. J. Porous Mater., 25(4), 1123-1134. https://doi.org/10.1007/s10934-017-0524-9
Amouhadi, E. (2021). Spotlight: Use of heterogeneous catalysts in benzimidazole synthesis. Iran. J. Catal., 11(1), 95-100.
Mokhtari, J., & Bozcheloei, A.H. (2018). One-pot synthesis of benzoazoles via dehydrogenative coupling of aromatic 1,2-diamines/2-aminothiophenol and alcohols using Pd/Cu-MOF as a recyclable heterogeneous catalyst. Inorganica Chim. Acta, 482, 726-731. https://doi.org/10.1016/j.ica.2018.07.017
Bahrami, K., Khodaei, M.M., & Naali, F. (2016). TiO2 nanoparticles catalysed synthesis of 2-arylbenzimidazoles and 2-arylbenzothiazoles using hydrogen peroxide under ambient light. J. Exp. Nanosci., 11(2), 148-160. https://doi.org/10.1080/17458080.2015.1038659
Feizpour, F., Jafarpour, M., & Rezaeifard, A. (2018). A tandem aerobic photocatalytic synthesis of benzimidazoles by cobalt ascorbic acid complex coated on TiO2 nanoparticles under visible light. Catal. Letters, 148(1), 30-40. https://doi.org/10.1007/s10562-017-2232-0
Rahimi, S., & Soleimani, E. (2020). Synthesis of 2-substituted benzimidazole, coumarin, benzo [b][1,4] oxazin and dihydropyrimidinone derivatives using core-shell structured Fe3O4@SiO2-ZnCl2 nanoparticles as an effective catalyst. Results Chem., 2, 100060. https://doi.org/10.1016/j.rechem.2020.100060
Zolfigol, M.A., et al. (2012). Nano-Fe3O4/O2: Green, magnetic and reusable catalytic system for the synthesis of benzimidazoles. South African J. Chem., 65, 280-285.
Kalhor, M., Rezaee‐Baroonaghi, F., Dadras, A., & Zarnegar, Z. (2019). Synthesis of new TCH/Ni‐based nanocomposite supported on SBA‐15 and its catalytic application for preparation of benzimidazole and perimidine derivatives. Appl. Organomet. Chem., 33(5), e4784. https://doi.org/10.1002/aoc.4784
Borade, R.M., Kale, S.B., Tekale, S.U., Jadhav, K.M., & Pawar, R.P. (2021). Cobalt ferrite magnetic nanoparticles as highly efficient catalyst for the mechanochemical synthesis of 2-aryl benzimidazoles. Catal. Commun., 159, 106349. https://doi.org/10.1016/j.catcom.2021.106349
Ruiz, V.R., Corma, A., & Sabater, M.J. (2010). New route for the synthesis of benzimidazoles by a one-pot multistep process with mono and bifunctional solid catalysts. Tetrahedron, 66(3), 730-735. https://doi.org/10.1016/j.tet.2009.11.048
Climent, M.J., Corma, A., Iborra, S., & Martínez‐Silvestre, S. (2013). Gold catalysis opens up a new route for the synthesis of benzimidazoylquinoxaline derivatives from biomass‐derived products (glycerol). ChemCatChem, 5(12), 3866-3874. https://doi.org/10.1002/cctc.201300416
Tang, L., Guo, X., Yang, Y., Zha, Z., & Wang, Z. (2014). Gold nanoparticles supported on titanium dioxide: An efficient catalyst for highly selective synthesis of benzoxazoles and benzimidazoles. Chem. Commun., 50(46), 6145-6148. https://doi.org/10.1039/c4cc01822b
Didó, C.A., et al. (2020). Heterogeneous gold nanocatalyst applied in the synthesis of 2-aryl-2,3-dihydroquinazolin-4(1H)-ones. Colloids Surfaces A Physicochem. Eng. Asp., 589, 124455. https://doi.org/10.1016/j.colsurfa.2020.124455
Tzani, M.A., Kallitsakis, M.G., Symeonidis, T.S., & Lykakis, I.N. (2018). Alumina-supported gold nanoparticles as a bifunctional catalyst for the synthesis of 2-amino-3-arylimidazo [1,2-a] pyridines. ACS Omega, 3(12), 17947-17956. https://doi.org/10.1021/acsomega.8b03047
Andreou, D., Kallitsakis, M.G., Loukopoulos, E., Gabriel, C., Kostakis, G.E., & Lykakis, I.N. (2018). Copper-promoted regioselective synthesis of polysubstituted pyrroles from aldehydes, amines, and nitroalkenes via 1,2-phenyl/alkyl migration. J. Org. Chem., 83(4), 2104-2113. https://doi.org/10.1021/acs.joc.7b03051
Kallitsakis, M., et al. (2017). A copper‐benzotriazole‐based coordination polymer catalyzes the efficient one‐pot synthesis of (N′‐substituted)‐hydrazo‐4‐aryl‐1,4‐dihydropyridines from azines. Adv. Synth. Catal., 359(1), 138-145. https://doi.org/10.1002/adsc.201601072
Charistoudi, E., Kallitsakis, M.G., Charisteidis, I., Triantafyllidis, K.S., & Lykakis, I.N. (2017). Selective reduction of azines to benzyl hydrazones with sodium borohydride catalyzed by mesoporous silica‐supported silver nanoparticles: a catalytic route towards pyrazole synthesis. Adv. Synth. Catal., 359(17), 2949-2960. https://doi.org/10.1002/adsc.201700442
Papadas, I.T., Fountoulaki, S., Lykakis, I.N., & Armatas, G.S. (2016). Controllable synthesis of mesoporous iron oxide nanoparticle assemblies for chemoselective catalytic reduction of nitroarenes. Chem. Eur. J., 22(13), 4600-4607. https://doi.org/10.1002/chem.201504685
Fountoulaki, S., Daikopoulou, V., Gkizis, P.L., Tamiolakis, I., Armatas, G.S., & Lykakis, I.N. (2014). Mechanistic studies of the reduction of nitroarenes by NaBH4 or hydrosilanes catalyzed by supported gold nanoparticles. ACS Catal., 4(10), 3504-3511. https://doi.org/10.1021/cs500379u
Tamiolakis, I., Fountoulaki, S., Vordos, N., Lykakis, I.N., & Armatas, G.S. (2013). Mesoporous Au-TiO2 nanoparticle assemblies as efficient catalysts for the chemoselective reduction of nitro compounds. J. Mater. Chem. A, 1(45), 14311-14319. https://doi.org/10.1039/c3ta13365f
Gkizis, P.L., Stratakis, M., & Lykakis, I.N. (2013). Catalytic activation of hydrazine hydrate by gold nanoparticles: Chemoselective reduction of nitro compounds into amines. Catal. Commun., 36, 48-51. https://doi.org/10.1016/j.catcom.2013.02.024
Samiei, E., Vahdat, S.M., & Hatami, M. (2021). Facile and benign synthesis of mono- and di-substituted benzimidazoles by using SnO2 nanoparticles catalyst. J. Nanostructures, 11(2), 286-296.
This work is licensed under a Creative Commons Attribution 4.0 International License.