Experimental and Theoretical Assessments on Anticorrosion Performance of 2-(1H-benzimidazol-2-yl)-3-(4-hydroxyphenyl) Acrylonitrile for Copper in 1M HNO3

  • Mougo André Tigori Laboratoire des Sciences et Technologies de l’Environnement, UFR Environnement, Université Jean Lorougnon Guédé, BP 150 Daloa, Côte d’Ivoire
  • Aboudramane Koné Laboratoire des Sciences et Technologies de l’Environnement, UFR Environnement, Université Jean Lorougnon Guédé, BP 150 Daloa, Côte d’Ivoire
  • Koffi Amenan Mireille Laboratoire des Sciences et Technologies de l’Environnement, UFR Environnement, Université Jean Lorougnon Guédé, BP 150 Daloa, Côte d’Ivoire
  • Drissa Sissouma Laboratoire de Constitution et de Réaction de la Matière, UFR SSMT, Université Félix Houphouët-Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire
  • Paulin Marius Niamien Laboratoire de Constitution et de Réaction de la Matière, UFR SSMT, Université Félix Houphouët-Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire
Keywords: 2-(1H-benzimidazol-2-yl)-3-(4-hydroxyphenyl) acrylonitrile, mass loss, copper corrosion, DFT, QSPR

Abstract

The present study was designed to determine the inhibition effect of 2-(1H-benzimidazol-2-yl)-3-(4-hydroxyphenyl) acrylonitrile in 1M HNO3 using a combined experimental and theoretical approach. Mass loss techniques revealed that 2-(1H-benzimidazol-2-yl)-3-(4-hydroxyphenyl) acrylonitrile inhibition efficiency is dependent on its concentration and temperature. It has been shown that the studied molecule inhibits copper corrosion by an adsorption behavior by donating and accepting electrons. Kinetic parameters have been determined and discussed. Quantum chemical parameters calculated by means of density functional theory (DFT) have shown that studied molecule reactivity is strongly related to the electronic properties, which could help to understand the molecule-metal interactions. The reactive sites have been determined by means of Fukui Functions and dual descriptor. Quantitative structure-property relationship (QSPR) model introduced in this study was used to find a set of quantum chemical parameters capable of correlating the experimental and theoretical data in order to design more suitable organic corrosion inhibitors. The theoretically obtained results were found to be consistent with the experimental data reported.

References

Wang, W., Xu, R., Hao, Y., Wang, Q., Yu, L., Che, Q., et al. (2018). Corrosion fatigue behavior of friction stir processed interstitial free steel. Journal Materials Science Technology, 34(1), 148-156. https://doi.org/10.1016/j.jmst.2017.11.013

Tsai, H.Y., Sun, S.C., & Wang, S.J. (2000). Characterization of sputtered tantalum carbide barrier layer for copper metallization. Journal of the Electrochemical Society, 147(7), 2766. https://doi.org/10.1149/1.1393604

Ho, C.E., Chen, W.T., & Kao, C.R. (2001). Interactions between solder and metallization during long-term aging of advanced microelectronic packages. Journal of Electronic Materials, 30, 379-385. https://doi.org/10.1007/s11664-001-0047-6

Simon, N.J., Drexler, E.S., & Reed, R.P. (1992). Properties of copper and copper alloys at cryogenic temperatures. Final report. United States. https://doi.org/10.2172/5340308

Petrovic Mihajlovic, M.B., & Antonijevic, M.M. (2015). Copper corrosion inhibitors. Period 2008-2014. A review. International Journal of Electrochemical Science, 10, 1027-1053.

Sherif, E.M., & Park, S.-M. (2005). Inhibition of copper corrosion in 3.0% NaCl solution by N-phenyl-1,4-phenylenediamine. Journal of the Electrochemical Society, 152(10), 428-433. https://doi.org/10.1149/1.2018254

Finšgar, M. (2013). EQCM and XPS analysis of 1,2,4-triazole and 3-amino-1,2,4-triazole as copper corrosion inhibitors in chloride solution. Corrosion Science, 77, 350-359. https://doi.org/10.1016/j.corsci.2013.08.026

Otmacic, H., & Stupnisek-Lisac, E. (2003). Copper corrosion inhibitors in near neutral media. Electrochimica Acta, 48(8), 985-991. https://doi.org/10.1016/S0013-4686(02)00811-3

Gasparac, R., Martin, C.R., & Stupnisek-Lisac, E. (2000). In situ studies of imidazole and its derivatives as copper corrosion inhibitors. I. Activation energies and thermodynamics of adsorption. Journal of the Electrochemical Society, 147(2), 548-551. https://doi.org/10.1149/1.1393230

Parook Feroz, K., Vaithianathan, S., Rupesh, K.B., Srinivasan, M., & Rakesh, C.B. (2015). Effect of benzotriazole on corrosion inhibition of copper under flow conditions. Journal of Environmental Chemical Engineering, 3(1), 10-19. https://doi.org/10.1016/j.jece.2014.11.005

Hollander, O., & May, R.C. (1985). The chemistry of azole copper corrosion inhibitors in cooling waters. Corrosion, 41, 39-45. https://doi.org/10.5006/1.3581967

Singh, K., Kumar, Y., Puri, P., Kumar, M., & Sharma, C. (2012). Cobalt, nickel, copper and zinc complexes with 1,3-diphenyl-1H-pyrazole-4-carboxaldehyde Schiff bases: Antimicrobial, spectroscopic, thermal and fluorescence studies. European Journal of Medicinal Chemistry, 52, 313-321. https://doi.org/10.1016/j.ejmech.2012.02.053

Uhlig, H.H., & King, P.F. (1959). The Flade potential of iron passivated by various inorganic corrosion inhibitors. Journal of the Electrochemical Society, 106, 1-7. https://doi.org/10.1149/1.2427255

Aben, T., & Tromans, D. (1995). Anodic polarization behavior of copper in aqueous bromide and bromide/benzotriazole solutions. Journal of the Electrochemical Society, 142, 398-404. https://doi.org/10.1149/1.2044031

Falluvena, T., Antonow, M., & Goncalves, R.S. (2006). Caffeine as non-toxic corrosion inhibitor for copper in aqueous solutions of potassium nitrate. Applied Surface Science, 253(2), 566-571. https://doi.org/10.1016/j.apsusc.2005.12.114

Simonovic, A.T., Petrovic, M.B., Radonavovic, M.B., Milik, S.M., & Antonijevic, M.M. (2014). Inhibition of copper corrosion in acid sulphate media by eco-friendly amino acid compound. Slovak Academy of Sciences, 68(3), 1-10. https://doi.org/10.2478/s11696-013-0458-x

Scendo, M. (2008). Inhibition of copper corrosion in sodium nitrate solutions with nontoxic inhibitors. Corrosion Science, 50, 1584-1592. https://doi.org/10.1016/j.corsci.2008.02.015

Scendo, M. (2007c). Corrosion inhibition of copper by purine or adenine in sulphate solutions. Corrosion Science, 49, 3953-3968. https://doi.org/10.1016/j.corsci.2007.03.037

El-Naggar, M.M. (2000). Bis-triazole as a new corrosion inhibitor for copper in sulfate solution. A model for synergistic inhibition action. Journal of Materials Science, 35, 6189-6195. https://doi.org/10.1023/A:1026725110344

Gomma, G.K., & Wahdan, M.H. (1994). Effect of temperature on the acidic dissolution of copper in the presence of amino acids. Materials Chemistry and Physics, 39, 142-148. https://doi.org/10.1016/0254-0584(94)90191-0

El Issami, S., Bazzi, L., Mihit, M., Hammouti, B., Kerit, S., Addi, E.A., & Salghi, R. (2007). Triazolic compounds as corrosion inhibitors for copper in hydrochloric acid. Pigment & Resin Technology, 36, 161-168. https://doi.org/10.1108/03699420710749027

Khaled, K.F. (2008). Adsorption and inhibitive properties of a new synthesized guanidine derivative on corrosion of copper in 0.5 M H2SO4. Applied Surface Science, 255, 1811-1818. https://doi.org/10.1016/j.apsusc.2008.06.030

Fucks-Godec, R., & Zergav, G. (2015) Corrosion resistance of high-level hydrophobic layers combination with vitamin E-(α-tocopherol) as green inhibitor. Corrosion Science, 97, 7-16. https://doi.org/10.1016/j.corsci.2015.03.016

Gokhan, G. (2011). Drugs: A review of promising novel corrosion inhibitors. Corrosion Science, 53, 3873-3898. https://doi.org/10.1016/j.corsci.2011.08.006

Kouakou, V., Niamien, P.M., Yapo, A.J., Diaby, S., & Trokourey, A. (2016). Experimental and DFT studies on the behavior of caffeine as effective corrosion inhibitor of copper in 1M HNO3. Orbital. The Electronic Journal of Chemistry, 8(2), 66-79. https://doi.org/10.17807/orbital.v8i2.804

El Faydy, M., Benhiba, F., About, H., Kerroum, Y., Guenbour, A., Lakhrissi, B., Warad, I., Verma, C., Sherif, El-Sayed M., Ebenso, E. E., & Zarrouk, A. (2020). Experimental and computational investigations on the anti-corrosive and adsorption behavior of 7-N,N’-dialkyaminomethyl-8-Hydroxyquinolines on C40E steel surface in acidic medium. Journal of Colloid and Interface Science, 576, 330-344. https://doi.org/10.1016/j.jcis.2020.05.010

Khalifa, M.E., El Azab, I.H., Gobouri, A.A., Mersal, G.A.M., Alharthi, S., Saracoglu, M., Kandemirli, F., Ryl, J., & Amin, M.A. (2020). Adsorption behavior and corrosion inhibitive characteristics of newly synthesized cyano-benzylidene xanthenes on copper/sodium hydroxide interface: Electrochemical, X-ray photoelectron spectroscopy and theoretical studies. Journal of Colloid and Interface Science, 580, 108-125. https://doi.org/10.1016/j.jcis.2020.06.110

Niamien, P.M., Essy, F.K., Trokourey, A., Yapi, A., Aka, H.K., & Diabate, D. (2012). Correlation between the molecular structure and the inhibiting effect of some benzimidazole derivatives. Materials Chemistry and Physics, 136, 59-65. https://doi.org/10.1016/j.matchemphys.2012.06.025

Tigori, M.A., Kouyaté, A., Kouakou, V., Niamien, P.M., & Trokourey, A. (2020). Computational approach for predicting the adsorption properties and inhibition of some antiretroviral drugs on copper corrosion in HNO3. European Journal of Chemistry, 11(3), 235-244. https://doi.org/10.5155/eurjchem.11.3.235-244.2011

Tigori, M.A., Kouyaté, A., Kouakou, V., Niamien, P.M., & Trokourey A. (2020). Inhibition performance of some sulfonylurea on copper corrosion in nitric acid solution evaluated theoretically by DFT calculations. Open Journal of Physical Chemistry, 10(3), 139-157. https://doi.org/10.4236/ojpc.2020.103008

Van Allan, J.A., & Deagon, B. D. (1963). Organic syntheses collect (vol. 4). John Wiley & Sons, New York, NY, USA.

Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, P., Salvador, G.A., Dannenberg, S., Dapprich, J.J., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., & Fox, A.D. (2009). J. Gaussian 09. Gaussian, Inc., Wallingford, CT.

Becke, A.D. (1992). Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. The Journal of Chemical Physics, 96, 2155-2160. https://doi.org/10.1063/1.462066

Lukovits, I., Shaban, A., & Kalman, E. (2003). Corrosion inhibitors: Quantitative structure–activity relationships. Russian Journal of Electrochemistry, 39, 177-181. https://doi.org/10.1023/A:1022313126231

Khaled, K.F. (2006). Experimental and theoretical study for corrosion inhibition of mild steel in hydrochloric acid solution by some new hydrazine carbodithioic acid derivatives. Applied Surface Science, 252(12), 4120-4128. https://doi.org/10.1016/j.apsusc.2005.06.016

Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38(11), 2221-2295. https://doi.org/10.1021/ja02268a002

Villamil, R.F.V., Corio P., Rubin, J.C., & Agostinho, S.M.L. (1999). Effect of sodium dodecyl sulfate on copper corrosion in sulfuric acid media in the absence and presence of benzotriazole. Journal of Electro Analytical Chemistry, 472, 112-116. https://doi.org/10.1016/S0022-0728(99)00267-3

Zhou, L., Zhang, S., Tan, B., Feng, L., Xiang, B., Chen, F., Li, W., Xiong, B., & Song, T. (2020). Phenothiazine drugs as novel and eco-friendly corrosion inhibitors for copper in sulfuric acid solution. Journal of the Taiwan Institute of Chemical Engineers, 113, 253-263. https://doi.org/10.1016/j.jtice.2020.08.018

Ye, Y., Yang, D., Chen, H., Guo, S., Yang, Q., Chen, L., Zhao, H., & Wang, L. (2020). A high-efficiency corrosion inhibitor of N-doped citric acid-based carbon dots for mild steel in hydrochloric acid environment. Journal of Hazardous Materials, 381, 121019. https://doi.org/10.1016/j.jhazmat.2019.121019

Oubaaqa, M., Rbaa, M., Ouakki, M. et al. (2022). Novel triphenyl imidazole based on 8¬hydroxyquinoline as corrosion inhibitor for mild steel in molar hydrochloric acid: experimental and theoretical investigations. Journal of Applied Electrochemistry, 52, 413-433. https://doi.org/10.1007/s10800-021-01632-3

Yadav, M., Behera, D., & Sharma, U. (2016). Nontoxic corrosion inhibitors for N80 steel in hydrochloric acid. Arabian Journal of Chemistry, 9, S1487-S1495. https://doi.org/10.1016/j.arabjc.2012.03.011

Ramesh Saliyan, V., & Adhikari, A.V. (2008). Inhibition of corrosion of mild steel in acid media by N′-benzylidene-3-(quinolin-4-ylthio)propanohydrazide. Bull. Mater. Sci., 31, 699-711. https://doi.org/10.1007/s12034-008-0111-4

Adejo, S.O., Ahile, J.U., Gbertyo, J.A., Kaior, A., & Ekwenchi, M.M. (2014). Resolution of adsorption characterisation ambiguity through the Adejo-Ekwenchi adsorption isotherm: a case study of leaf extract of Hyptis suaveolen poit as green corrosion inhibitor of corrosion of mild steel in 2 M HCl. Journal of Emerging Trends in Engineering and Applied Sciences, 5 , 201-205. https://doi.org/10.10520/EJC157010

Parul, D., Ansaria, K.R., Quraishia, M.A., & Obot, I.B. (2017). Pyranpyrazole derivatives as novel corrosion inhibitors for mild steel useful for industrial pickling process: experimental and quantum chemical study. Journal of Industrial and Engineering Chemistry, 52, 197-210. https://doi.org/10.1016/j.jiec.2017.03.044

Motawea, M.M., El-Hossiany, A., & Fouda, A.S. (2019). Corrosion control of copper in nitric acid solution using Chenopodium extract. International Journal of Electrochemical Science, 14, 1372-1387. https://doi.org/10.20964/2019.02.29

Khattabi, M., Benhiba, F., Tabti, S., Djedouani, A., El Assyry, A., Touzani, R., Warad, I., Oudda, H., & Zarrouk, A. (2019). Performance and computational studies of two soluble pyran derivatives as corrosion inhibitors for mild steel in HCl. Journal of Molecular Structure, 1196, 231-244. https://doi.org/10.1016/j.molstruc.2019.06.070

Qiang, Y., Zhang, S., Guo, L., Zheng, X., Xiang, B., & Chen, S. (2017). Experimental and theoretical studies of four allyl imidazolium-based ionic liquids as green inhibitors for copper corrosion in sulfuric acid. Corrosion Science, 119, 68-78. https://doi.org/10.1016/j.corsci.2017.02.021

Kumar, D., Jain, N., Jain, V., & Rai, B. (2020). Amino acids as copper corrosion inhibitors: A density functional theory approach. Applied Surface Science, 514, 145905. https://doi.org/10.1016/j.apsusc.2020.145905

Saira, F., Renu, S., Faiza, A., Ajar, K., Amin, B., & Heinz-Bernhard, K. (2019). Study of new amphiphiles based on ferrocene containing thioureas as efficient corrosion inhibitors: Gravimetric, electrochemical, SEM and DFT studies. Journal of Industrial and Engineering Chemistry, 76, 374-387. https://doi.org/10.1016/j.jiec.2019.04.003

Rodriguez-Valdez, L.M., Martinez-Villafane, A., & Glossman Mitnik, D. (2005). Computational simulation of the molecular structure and properties of heterocyclic organic compounds with possible corrosion inhibition properties. Journal of Molecular Structure: THEOCHEM, 713(1-3), 65-70. https://doi.org/10.1016/j.theochem.2004.10.036

El Hassani, A.A., El Adnani, Z., Benjelloun, A.T., et al. (2020). DFT theoretical study of 5-(4-R-phenyl)-1H-tetrazole (R = H; OCH3; CH3; Cl) as corrosion inhibitors for mild steel in hydrochloric acid. Metals and Materials International, 26, 1725-1733. https://doi.org/10.1007/s12540-019-00381-5

Yang, W., & Parr, R.G. (1985). Hardness, softness and the Fukui function in the electronic theory of metals and catalysis. Proceedings of the National Academy of Science, 82(20), 6723-6726. https://doi.org/10.1073/pnas.82.20.6723

Pearson, R.G. (1990). Hard and soft acids and bases-the evolution of a chemical concept. Coordination Chemistry Reviews, 100(C), 403-425. https://doi.org/10.1016/0010-8545(90)85016-L

Michaelson, H.B. (1977). The work function of the elements and its periodicity. Journal of Applied Physics, 48, 4729-4733. https://doi.org/10.1063/1.323539

Dewar, M.J.S., Zoebisch, E.G., Healy, E.F., & Stewart, J.P. (1985). Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. Journal of the American Chemical Society, 107(13), 3902-3909. https://doi.org/10.1021/ja00299a024

Lukovits, I., Kálmán, E., & Zucchi, F. (2001). Corrosion inhibitorscorrelation between electronic structure and efficiency. Corrosion, 57(1), 3-8. https://doi.org/10.5006/1.3290328

Parr, R.G., Sventpaly, L., & Liu, S. (1999). Electrophilicity index. Journal of the American Chemical Society, 121(9), 1922-1924. https://doi.org/10.1021/ja983494x

Zarrouk, A., Hammouti, B., Dafali, A., Bouachrine, M., Zarrok, H., Boukhris, S., & Al-Deyab, S.S. (2014). A theoretical study on the inhibition efficiencies of some quinoxalines as corrosion inhibitors of copper in nitric acid. Journal of Saudi Chemical Society, 18, 450-455. https://doi.org/10.1016/j.jscs.2011.09.011

Ansari, K.R., Quraishi, M.A., & Ambrish S. (2015). Pyridine derivatives as corrosion inhibitors for N80 steel in 15%HCl: Electrochemical, surface and quantum chemical studies. Measurement, 76, 136-147. https://doi.org/10.1016/j.measurement.2015.08.028

Parr, R.G., & Yang, W. (1984). Density functional approach to the frontier-electron theory of chemical reactivity. Journal of the American Chemical Society, 106(14), 4049-4050. https://doi.org/10.1021/ja00326a036

Morell, C., Grand, A., & Toro-Labbé, A. (2005). New dual descriptor for chemical reactivity. Journal of Physical Chemistry A, 109(1), 205-212. https://doi.org/10.1021/jp046577a

Martínez-Araya, J.I. (2015). Why is the dual descriptor a more accurate local reactivity descriptor than Fukui functions?. Journal of Mathematical Chemistry, 5, 451-465. https://doi.org/10.1007/s10910-014-0437-7

Published
2022-09-25
How to Cite
Tigori, M. A., Koné, A., Mireille, K. A., Sissouma, D., & Niamien, P. M. (2022). Experimental and Theoretical Assessments on Anticorrosion Performance of 2-(1H-benzimidazol-2-yl)-3-(4-hydroxyphenyl) Acrylonitrile for Copper in 1M HNO3. Earthline Journal of Chemical Sciences, 9(1), 17-45. https://doi.org/10.34198/ejcs.9123.1745
Section
Articles