Syntheses, Characterization, and X-Ray Crystal Structure of a 1:1 Co-Crystal of bis{bis[((2-(1H-imidazol-2-yl)methylidene)amino)phenolato-κ3N,N’,O]nickel(II)} and bis{bis[((2-(1H-imidazol-2-yl)methylidene) amino)phenol-κ3N,N’,O]nickel(II)} tetra(chloride)

  • Babacar Diop Department of Chemistry, University Cheikh Anta Diop, Dakar 10700, Senegal
  • Gorgui Awa Seck Department of Chemistry, University Cheikh Anta Diop, Dakar 10700, Senegal
  • Ibrahima Elhadj Thiam Department of Chemistry, University Cheikh Anta Diop, Dakar 10700, Senegal
  • Ousmane DIOUF Department of Chemistry, University Cheikh Anta Diop, Dakar 10700, Senegal
  • Farba Bouyagui Tamboura Department of Chemistry, University Alioune DIOP, Bambey, 21400, Senegal
  • Pascal Retailleau Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université, Paris-Saclay, 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
  • Mohamed Gaye Department of Chemistry, University Cheikh Anta Diop, Dakar 10700, Senegal
Keywords: Schiff base, co-crystal, complex, nickel, mononuclear, dinuclear

Abstract

The present investigation describes the synthesis and structural study of the ligand 2-((1H-imidazol-2-yl)methyleneamino)phenol, which was used to generate three dimensio-nal supramolecular complex formulated as {[Ni(HL)2]2.[Ni(H2L)2]2.(Cl)4.(H2O)5}. The title compound crystallizes in the orthorhombic space group Fddd with the following unit cell parameters: a = 13.9269(4) Å, b = 29.5295(16) Å, c = 43.1739(15) Å, V = 17755.5(12) Å3, Z = 8, R1 = 0.043 and wR2 = 0.129. For this compound, the structure reveals that one neutral mononuclear unit [Ni(HL)2] and one cationic mononuclear unit [Ni(H2L)2]2+. In the neutral unit, the organic molecule acts as a tridentate through one imino nitrogen atom, one nitrogen atom from the imidazole ring and one phenolate oxygen atom. In the cationic unit, it acts as tridentate through one imino nitrogen atom, one nitrogen atom from the imidazole ring and one oxygen atom of non-deprotonated phenol group. In both units the nickel(II) ion is hexacoordinated and the coordination environment can be described as distorted octahedral geometry. Numerous hydrogen bonds link the molecules into three dimensional network.

References

Aggoun, D., Fernández-García, M., López, D., Bouzerafa, B., Ouennoughi, Y., Setifi, F., & Ourari, A. (2020). New nickel (II) and copper (II) bidentate Schiff base complexes, derived from dihalogenated salicylaldehyde and alkylamine: Synthesis, spectroscopic, thermogravimetry, crystallographic determination and electrochemical studies. Polyhedron, 187, 114640. https://doi.org/10.1016/j.poly.2020.114640

Das, A., Rajeev, A., Bhunia, S., Arunkumar, M., Chari, N., & Sankaralingam, M. (2021). Synthesis, characterization and antimicrobial activity of nickel(II) complexes of tridentate N3 ligands. Inorganica Chimica Acta, 526, 120515. https://doi.org/10.1016/j.ica.2021.120515

Silva, A.L.R., Oliveira, P.C.F.C., Gonçalves, J.M., Morais, V.M.F., & da Silva, M.D.M.C.R. (2022). Metal–ligand binding energies in copper (II) and nickel (II) complexes with tetradentate N2O2 Schiff base ligands. Inorganica Chimica Acta, 535, 120845. https://doi.org/10.1016/j.ica.2022.120845

Belbacha, W., Naamoune, F., Bezzi, H., Hellal, N., Zerroual, L., Abdelkarim, K., Brahim, B., Garcia, M.F., & López, D. (2020). Elaboration of carbon paste electrode containing pentadentate Nickel-(II) Schiff base complex: Application to electrochemical oxidation of thiosulfate in alkaline medium. Arabian Journal of Chemistry, 13(7), 6072-6083. https://doi.org/10.1016/j.arabjc.2020.05.007

Shukla, D., Gupta, L.K., & Chandra, S. (2008). Spectroscopic studies on chromium(III), manganese(II), cobalt(II), nickel(II) and copper(II) complexes with hexadentate nitrogen–sulfur donor [N2S4] macrocyclic ligand. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(3), 746-750. https://doi.org/10.1016/j.saa.2007.12.052

Chandra, S., Ruchi, Qanungo, K., & Sharma, S.K. (2012). New hexadentate macrocyclic ligand and their copper(II) and nickel(II) complexes: Spectral, magnetic, electrochemical, thermal, molecular modeling and antimicrobial studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 94, 312-317. https://doi.org/10.1016/j.saa.2011.12.028

Sain, S., Bid, S., Usman, A., Fun, H.-K., Aromí, G., Solans, X., & Chandra, S.K. (2005). Synthesis, crystal structure and magnetic properties of a mononuclear and a ferromagnetically coupled dinuclear nickel(II) complex derived from a hexadentate Schiff base ligand. Inorganica Chimica Acta, 358(12), 3362-3368. https://doi.org/10.1016/j.ica.2005.05.011

Sahoo, P. R., Kathuria, I., & Kumar, S. (2022). The structural arrangement of the ligand-metal complex with centered zinc and nickel atoms and their optical features. Journal of Molecular Structure, 1262, 133010. https://doi.org/10.1016/j.molstruc.2022.133010

Pan, J., Li, Z., Wu, X., Han, Y., Zhou, W., Shen, L., Yang, J., & Song, Y. (2021). Investigation of ultrafast optical nonlinearity in a nickel-dithiolene complex: Mechanism of pulse-selective response in different solvents. Journal of Photochemistry and Photobiology A: Chemistry, 405, 112974. https://doi.org/10.1016/j.jphotochem.2020.112974

Keshtkar, N., Zamanpour, A., & Esmaielzadeh, S. (2022). Bioactive Ni(II), Cu(II) and Zn(II) complexes with an N3 functionalized Schiff base ligand: Synthesis, structural elucidation, thermodynamic and DFT calculation studies. Inorganica Chimica Acta, 541, 121083. https://doi.org/10.1016/j.ica.2022.121083

Kar, K., Ghosh, D., Kabi, B., & Chandra, A. (2022). A concise review on cobalt Schiff base complexes as anticancer agents. Polyhedron, 222, 115890. https://doi.org/10.1016/j.poly.2022.115890

Lv, J., Wu, X., Wang, R., Wu, Y., Xu, S., Zhao, F., & Wang, Y. (2022). Schiff base-type Cu(I) complexes containing naphthylpyridyl-methanimine ligands featuring higher light-absorption capability: Synthesis, structures, and photophysical properties. Polyhedron, 224, 116002. https://doi.org/10.1016/j.poly.2022.116002

Jayendran, M., & Kurup, M.R.P. (2022). Structural, spectral, cytotoxic and biocatalytic studies of a dinuclear phenoxo bridged Zn(II) complex from NNO donor tridentate Schiff base. Chemical Data Collections, 39, 100853. https://doi.org/10.1016/j.cdc.2022.100853

Salman, Y., Barlas, F.B., Yavuz, M., Kaya, K., Timur, S., & Telli, F.Ç. (2018). Synthesis, characterization and biological application of dinuclear Cu(II) complexes of Schiff base ligands of galactochloralose and α-chloralose. Inorganica Chimica Acta, 483, 98-105. https://doi.org/10.1016/j.ica.2018.08.010

Morshedi, M., Amirnasr, M., Triki, S., & Khalaji, A.D. (2009). New (NS)2 Schiff base with a flexible spacer: Synthesis and structural characterization of its first coordination polymer [Cu2(μ-I)2(μ-(thio)2dapte)]n (1). Inorganica Chimica Acta, 362(5), 1637-1640. https://doi.org/10.1016/j.ica.2008.07.002

Garcı́a-Deibe, A.M., Matalobos, J.S., Fondo, M., Vázquez, M., & Bermejo, M.R. (2004). Conformational studies on complexes of a diimine containing a (CH2)2 spacer: crystal structures of a double-stranded Zn(II) meso-helicate and an enantiopure Δ-Cu(II) monohelicate. Inorganica Chimica Acta, 357(9), 2561-2569. https://doi.org/10.1016/j.ica.2004.02.010

Thanasekaran, P., Lee, C.-H., & Lu, K.-L. (2014). Neutral discrete metal–organic cyclic architectures: Opportunities for structural features and properties in confined spaces. Coordination Chemistry Reviews, 280, 96-175. https://doi.org/10.1016/j.ccr.2014.07.012

Wu, Q., Lin, S.-W., Li, Y.-G., & Wang, E.-B. (2012). New supramolecular hybrids based on A-type Anderson polyoxometalates and Mn–Schiff-base complexes. Inorganica Chimica Acta, 382, 139-145. https://doi.org/10.1016/j.ica.2011.10.028

Wu, Y., He, J., Wang, S., Zou, L., & Wu, X. (2017). Syntheses, crystal structure, and photocatalytic property of two new complexes of an unsymmetrical Schiff base ligand. Inorganica Chimica Acta, 458, 218-223. https://doi.org/10.1016/j.ica.2017.01.004

Vráblová, A., Tomás, M., Titiš, J., Černák, J., & Falvello, L.R. (2020). On new solvatomorphs of the metalloligand [Ni(o-van-en)]. Inorganica Chimica Acta, 512, 119874. https://doi.org/10.1016/j.ica.2020.119874

Balamurugan, M., Mayilmurugan, R., Suresh, E., & Palaniandavar, M. (2011). Nickel(II) complexes of tripodal 4N ligands as catalysts for alkaneoxidation using m-CPBA as oxidant: ligand stereoelectronic effects on catalysis. Dalton Transaction, 40, 9413-9424. https://doi.org/10.1039/C1DT10902B

Sankaralingam, M., Vadivelu, P., & Palaniandavar, M. (2017). Novel nickel(II) complexes of sterically modified linear N4 ligands: effect of ligand stereoelectronic factors and solvent of coordination on nickel(II) spin-state and catalytic alkane hydroxylation. Dalton Transaction, 46, 7181-7193. https://doi.org/10.1039/C7DT00576H

Sankaralingam, M., Balamurugan, M., & Palaniandavar, M. (2020). Alkane and alkene oxidation reactions catalyzed by nickel(II) complexes: Effect of ligand factors. Coordination Chemistry Reviews, 403, 213085.

https://doi.org/10.1016/j.ccr.2019.213085

Sankaralingam, M., Vadivelu, P., Suresh, E., & Palaniandavar, M. (2013). Mixed ligand nickel(II) complexes as catalysts for alkane hydroxylation using m-chloroperbenzoic acid as oxidant. Inorganica Chimica Acta, 407, 98-107. https://doi.org/10.1016/j.ica.2013.07.031

Nagataki, T., Ishii, K., Tachi, Y., & Itoh, S. (2007). Ligand effects on NiII-catalysed alkane-hydroxylation with m-CPBA. Dalton Transaction, 1120-1128. https://doi.org/10.1039/B615503K

Ourari, A., Aggoun, D., Karce, H.E., Berenguer, R., Morallon, E., Lanez, T., & Ouennoughi, Y. (2022). Electrochemistry and study of indirect electrocatalytic properties of a novel organometallic Schiff base nickel(II) complex. Journal of Organometallic Chemistry, 976, 122441. https://doi.org/10.1016/j.jorganchem.2022.122441

Nagataki, T., Tachi, Y., & Itoh, S. (2006). NiII(TPA) as an efficient catalyst for alkane hydroxylation with m-CPBA. Chemical Communications, 4016-4018. https://doi.org/10.1039/B608311K

Nagataki, T., & Itoh, S. (2007). Catalytic alkane hydroxylation reaction with nickel(II) complexes supported by di- and triphenol ligands. Chemistry Letters, 36, 748-749. https://doi.org/10.1246/cl.2007.748

Sankaralingam, M., Balamurugan, M., Palaniandavar, M., Vadivelu, P., & Suresh, C.H. (2014). Nickel(II) complexes of pentadentate N5 ligands as catalysts for alkane hydroxylation by using m-CPBA as oxidant: A combined experimental and computational study. Chemistry – A European Journal, 20, 11346-11361. https://doi.org/10.1002/chem.201402391

Xie, L.-X., Zhang, X., Yuan, C., & Li X. (2009). Synthesis, crystal structure and magnetic properties of a dinuclear nickel (II) complex. Synthesis and reactivity in inorganic, Metal-Organic, and Nano-Metal Chemistry, 39, 191-294. https://doi.org/10.1080/15533170903066038

El-Gammal, O.A., Saad, D.A., & Al-Hossainy, A.F. (2021). Synthesis, spectral characterization, optical properties and X-ray structural studies of S centrosymmetric N2S2 or N2S2O2 donor Schiff base ligand and its binuclear transition metal complexes. Journal of Molecular Structure, 1244, 130974. https://doi.org/10.1016/j.molstruc.2021.130974

Özdemir, Ö. (2020). Bis-azo-linkage Schiff bases—Part(II): Synthesis, characterization, photoluminescence and DPPH radical scavenging properties of their novel luminescent mononuclear Zn(II) complexes. Journal of Photochemistry and Photobiology A: Chemistry, 392, 112356. https://doi.org/10.1016/j.jphotochem.2020.112356

Venkateswarlu, K., Ganji, N., Daravath, S., Kanneboina, K., Rangan, K., & Shivaraj. (2019). Crystal structure, DNA interactions, antioxidant and antitumor activity of thermally stable Cu(II], Ni(II] and Co(III] complexes of an N,O donor Schiff base ligand. Polyhedron, 171, 86-97. https://doi.org/10.1016/j.poly.2019.06.048

Kargar, H., Ardakani, A.A., Tahir, M.N., Ashfaq, M., & Munawar, K.S. (2021). Synthesis, spectral characterization, crystal structure and antibacterial activity of nickel(II), copper(II) and zinc(II) complexes containing ONNO donor Schiff base ligands. Journal of Molecular Structure, 1233, 130112. https://doi.org/10.1016/j.molstruc.2021.130112

Sheikh, R.A., Wani, M.Y., Shreaz, S., & Hashmi, A.A. (2016). Synthesis, characterization and biological screening of some Schiff base macrocyclic ligand based transition metal complexes as antifungal agents. Arabian Journal of Chemistry, 9, S743-S751. https://doi.org/10.1016/j.arabjc.2011.08.003

Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2), 339-341. https://doi.org/10.1107/S0021889808042726

Sheldrick, G.M. (2015). SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica Section A, 71(1), 3-8. https://doi.org/10.1107/S2053273314026370

Sheldrick, G.M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica Section C, 71(1), 3-8. https://doi.org/10.1107/S2053229614024218

Farrugia, L.J. (2012). WinGX and ORTEP for Windows: an update, Journal of Applied Crystallography, 45, 849-854. https://doi.org/10.1107/S002188981202911

Geary, W.J. (1971). The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coordination Chemistry Reviews, 7(1), 81-122. https://doi.org/10.1016/S0010-8545(00)80009-0

Singh, V.P., Mishra, M., & Tiwari, K. (2013). Structural investigations on bis-(semicarbazido)dihydrazine nickel(II) complex synthesized by using uracil and hydrazine hydrate. Inorganica Chimica Acta, 398, 89-97. https://doi.org/10.1016/j.ica.2012.12.017

Perontsis, S., Tialiou, A., Hatzidimitriou, A.G., Papadopoulos, A.N., & Psomas, G. (2017). Nickel(II)-indomethacin mixed-ligand complexes: Synthesis, characterization, antioxidant activity and interaction with DNA and albumins. Polyhedron, 138, 258-269. https://doi.org/10.1016/j.poly.2017.09.008

Anacona, J. R., & Rincones, M. (2015). Tridentate hydrazone metal complexes derived from cephalexin and 2-hydrazinopyridine: Synthesis, characterization and antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 141, 169-175. https://doi.org/10.1016/j.saa.2015.01.009

Majumder, A., Rosair, G.M., Mallick, A., Chattopadhyay, N., & Mitra, S. (2006). Synthesis, structures and fluorescence of nickel, zinc and cadmium complexes with the N,N,O-tridentate Schiff base N-2-pyridylmethylidene-2-hydroxy-phenylamine. Polyhedron, 25(8), 1753-1762. https://doi.org/10.1016/j.poly.2005.11.029

Sahoo, S.C., Dubey, M., Alam, M.A., & Ray, M. (2010). Effect of metal coordination and intra-molecular H-bond on the acidity of phenolic proton in a set of structurally characterized octahedral Ni(II) complexes of l-histidine derivative. Inorganica Chimica Acta, 363(12), 3055-3060. https://doi.org/10.1016/j.ica.2010.03.051

Published
2022-08-23
How to Cite
Diop, B., Seck, G. A., Thiam, I. E., DIOUF, O., Tamboura, F. B., Retailleau, P., & Gaye, M. (2022). Syntheses, Characterization, and X-Ray Crystal Structure of a 1:1 Co-Crystal of bis{bis[((2-(1H-imidazol-2-yl)methylidene)amino)phenolato-κ3N,N’,O]nickel(II)} and bis{bis[((2-(1H-imidazol-2-yl)methylidene) amino)phenol-κ3N,N’,O]nickel(II)} tetra(chloride). Earthline Journal of Chemical Sciences, 8(2), 257-273. https://doi.org/10.34198/ejcs.8222.257273
Section
Articles