Adsorption of Methyl Orange on Corncob Activated Carbon: Kinetic, Equilibrium, and Thermodynamic Studies

  • Abollé Abollé Laboratoire de Thermodynamique et Physico-Chimie du Milieu, UFR Sciences Fondamentales et Appliquées, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire
  • Kouakou Yao Urbain UFR Sciences et Technologies, Université de Man, BP 20 Man, Côte d’Ivoire
  • Kambiré Ollo UFR Sciences et Technologies, Université de Man, BP 20 Man, Côte d’Ivoire
  • Koné Yetchié Tchonrontcha Laboratoire de Thermodynamique et Physico-Chimie du Milieu, UFR Sciences Fondamentales et Appliquées, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire
  • Kouakou Adjoumani Rodrigue Laboratoire de Thermodynamique et Physico-Chimie du Milieu, UFR Sciences Fondamentales et Appliquées, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire
Keywords: activated carbon, dyes, adsorption, isotherms

Abstract

H3PO4 activated corncob carbon was used for removal of methyl orange. Characterization of the prepared carbon showed that it has many pores with a specific surface area equal to 714 m2 g-1. During this study, the concentration of methyl orange was monitored using a UV-visible spectrophotometer. The kinetic study of the adsorption of methyl orange on activated carbon was performed and the adsorption rate was found to be consistent with pseudo-second order kinetics with 240 min as the equilibrium time. The equilibrium adsorption revealed that the experimental data better fit the Langmuir isotherm model for methyl orange removal. It is noted that for optimal removal of 10 mg L-1 methyl orange in a 25 mL volume, 0.3 g of activated carbon and a pH equal to 2.04 are required. The maximum monolayer adsorption capacity for methyl orange removal was found to be 107.527 mg g-1. Analysis of thermodynamic parameters showed that the adsorption process of methyl orange on activated carbon is physisorption, spontaneous and endothermic.

References

Wang, Q., & Yang, Z. (2016). Industrial water pollution, water environment treatment, and health risks in China. Environmental Pollution, 218, 358-365. https://doi.org/10.1016/j.envpol.2016.07.011

Adeleke, A., Olumuyiwa, O., Mutiu, S., Kafeelah, Y., Ojo, O., Bernadine, E., Iyabode, A., Bamitale, F., & Olubunmi, A. (2020). Quantification of metal contaminants and risk assessment in some urban watersheds. J. Water Res. Protec., 12, 951-963. https://doi.org/10.4236/jwarp.2020.1211056

Sagnik, C., Anupam, S., Subhabrata, M., Naga, D., Saima, R.M., Saima, I., & Papita, D. (2021). Study on isotherm, kinetics, and thermodynamics of adsorption of crystal violet dye by calcium oxide modified fly ash Environ. Eng. Res., 26(1), 190372. https://doi.org/10.4491/eer.2019.372

Rania, A.-T., Sameh, S.A., Fanghua, L., Kamal, M.O., Yehia, A.-G.M., Tamer, E., Haixin, J., Yinyi, F., & Jianzhong, S. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicology and Environmental Safety, 231, 113160. https://doi.org/10.1016/j.ecoenv.2021.113160

Chang, J.-S. (2001). Recent development of plasma pollution control technology: a critical review. Science and Technology of Advanced Materials, 2(3-4), 571-576. https://doi.org/10.1016/S1468-6996(01)00139-5

Coulibaly, B., Pohan, L.A.G., Kambiré, O., Kouakou, L.P.S., Goure-Doubi, H., Diabaté, D., & Ouattara, L. (2020). Valorization of green clay from Bouaflé (Ivory Coast) in the simultaneous elimination of organic pollutants and metallic trace elements by adsorption: Case of methylene blue and cadmium ions. Chemical Science International Journal, 29(8), 37-51. https://doi.org/10.9734/CSJI/2020/v29i830200

Kambiré, O., Pohan, L.A.G., Sadia, S.P., Kouadio, K.E., & Ouattara, L. (2020). Voltammetric study of formic acid oxidation via active chlorine on IrO2/Ti and RuO2/Ti electrodes. Mediterranean Journal of Chemistry, 10(8), 799-808. http://doi.org/10.13171/mjc10802010271525ko

Kambiré, O., Alloko, K.S.P., Pohan, L.A.G., Koffi, K.S., & Ouattara, L. (2021). Electrooxidation of the paracetamol on boron doped diamond anode modified by gold particles. International Research Journal of Pure & Applied Chemistry, 22(4), 23-35. https://doi.org/10.9734/irjpac/2021/v22i430401

Berté, M., Quand-même, G.C., Ollo, K., Placide, S.S., Sylvestre, K.K., & Lassiné, O. (2022). Electrochemical behavior of paracetamol on thermally prepared Ti/Ta2O5/50Pt-50RuO2 electrode. Mediterranean Journal of Chemistry, 12(1), 38-50. http://dx.doi.org/10.13171/mjc02205131627berté-lassiné

Kouadio, K.E., Kambiré, O., Koffi, K.S., & Ouattara, L. (2021). Electrochemicaloxidation of paracetamol on boron-doped diamond electrode: analytical performance and paracetamol degradation. J. Electrochem. Sci. Eng., 11(2), 71-86. https://doi.org/10.5599/jese.932

Sukmana, H., Bellahsen, N., Pantoja, F., & Hodur, C. (2021). Adsorption and coagulation in wastewater treatment – Review. Progress in Agricultural Engineering Sciences, 17(1), 49-68. https://doi.org/10.1556/446.2021.00029

Wei, M., Marrakchi, F., Yuan, C., Cheng, X., Jiang, D., Zafar, F.F., Fu, Y., & Wang, S. (2022). Adsorption modeling, thermodynamics, and DFT simulation of tetracycline onto mesoporous and high-surface-area naoh-activated macroalgae carbon. Journal of Hazardous Materials, 425, 127887. https://doi.org/10.1016/j.jhazmat.2021.127887

Syieluing, W., Nawal, A.G., Norzita, N., Fatin, A.R., Ibrahim, M.I., Ramli, M., & Nor, A.S.A. (2020). Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste. Waste. Sci Rep., 10, 2928. https://doi.org/10.1038/s41598-020-60021-6

Kambiré, O., Kouakou, Y.U., Kouyaté, A., Sadia, S.P., Kouadio, K.E., Kimou, K.J., & Koné, S. (2021). Removal of rhodamine B from aqueous solution by adsorption on corn cobs activated carbon. Medite. J. Chem., 11, 271-281. http://doi.org/10.13171/mjc02112131596ollo

Ramutshatsha-Makhwedzha, D., Mbaya, R., & Mavhungu, M.L. (2022). Application of activated carbon banana peel coated with Al2O3-Chitosanfor the adsorptive removal of lead and cadmium from wastewater. Materials, 15, 860. https://doi.org/10.3390/ma15030860

Boehm, H.P. (1994). Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon., 32, 759-769. https://doi.org/10.1016/0008-6223(94)90031-0

CEFIC (Conseil européen de l’industrie chimique) (1989). Méthodes de contrôle et d’évaluation des charbons actifs.

Hamouz, A.E., Hilal, H.S., Nashaat, N., & Zahi, M. (2007). Solid olive waste in environmental clean-up: oil recovery and carbon production for water purification. Journal of Environmental Management, 84, 83-92. https://doi.org/10.1016/j.jenvman.2006.05.003

ASTM D2866-94 (1999). Standard Test Method for Total Ash Content of Activated Carbon.

Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetensk Handl, 24, 1-39.

Ho, Y.S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochem, 34, 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5

N’goran, K.P.D.A., Diabaté, D., Yao, K.M., Kouassi N.L.B., Gnonsoro, U.P., Kinimo, K.C., & Trokourey, A. (2018). Lead and cadmium removal from natural freshwater using mixed activated carbons from cashew and shea nut shells. Arabian Journal of Geosciences, 11, 498. https://doi.org/10.1007/s12517-018-3862-2

Kouakou, Y.U., Essy, K.F., Dembele, A., Brou, Y.S., Ello, S.A., Gouli Bi, I.M., & Trokourey, A. (2017). Removal of imidacloprid using activated carbon produced from ricinodendronheudelotii shells. Bull. Chem. Soc. Ethiop., 31(3), 397-409. http://dx.doi.org/10.4314/bcse.v31i3.4

Langmuir, I (1906). The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 40, 1361-1403.

El-Hamouz, A., Hilal, H.S., Nassar, N., & Mardawi, Z. (2007). Solid olive waste in environmental cleanup: Oil recovery and carbon production for water purification. Journal of Environmental Management, 84, 83-92. https://doi.org/10.1016/j.jenvman.2006.05.003

Altenor, S., Carene, B., Emmanuel, E., Lambert, J., Ehrhardt, J.J., & Gaspard, S. (2009). Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation. Journal of Hazardous Materials, 165, 1029-1039. https://doi.org/10.1016/j.jhazmat.2008.10.133

Wang, S., & Zhu, Z.H. (2007). Effects of acidic treatment of activated carbons on dye adsorption. Dyes and Pigments, 75(2), 306-314. https://doi.org/10.1016/j.dyepig.2006.06.005

Singh, N., Kloeppel, H., & Klein, W. (2001). Sorption behavior of metolachlor, isoproturon, and terbuthylazine in soils. Journal of Environmental Science and Health, Part B, 36, 397-407. https://doi.org/10.1081/PFC-100104184

Gao, J.P., Maghun, J., Spitzauer, P., & Kettrup, A. (1998). Sorption of pesticides in the sediment of the Teufelsweiher pond (Southern Germany). I: Equilibrium assessments, effect of organic carbon content and pH. Water Reseach., 32, 1662-1672. https://doi.org/10.1016/S0043-1354(97)00377-1

Ramakrishnan, R.K., Padil, V.V.T., Wacławek, S., Černík, M., & Varma, R.S. (2021). Eco-friendly and economic, adsorptive removal of cationic and anionic dyes by bio-based karaya gum—chitosan sponge. Polymers, 13, 251. https://doi.org/10.3390/polym13020251

Munagapati, V.S., & Dong-Su, K. (2016). Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: Kinetics, isotherms, and thermodynamic studies. Ecotoxicology and Environmental Safety, 128, 109-117. http://dx.doi.org/10.1016/j.ecoenv.2016.02.016

Mardini, F.A., & Legube, B. (2009). Effect of the adsorbate (Bromacil) equilibrium concentration in water on its adsorption on powdered activated carbon. Part 1. Equilibrium parameters. Journal of Hazardous Materials, 170, 744-753. https://doi.org/10.1016/j.jhazmat.2009.05.003

Carvalho, M.F., Duque, A.F., Goncalves, I.C., & Castro, P.M.L. (2006). Adsorption of fluorobenzene onto granular activated carbón: isotherm and bioavailability studies. Bioresource Technology, 98, 3423-3430. https://doi.org/10.1016/j.biortech.(2006).11.001

Khelifi, O., Mehrez, I., Younsi, M., Nacef, M., & Affoune, A. (2018). Methylorange adsorption on biosorbent derived from mango seed kernels. Larhyss Journal, 36, 145-156.

Jolly, P., Manas, K.D., Dhananjay, K.D., & Devsharan, V. (2013). Removal of methyl orange by activated carbon modified by silver nanoparticles. Appl Water Sci, 3, 367-374. https://doi.org/10.1007/s13201-013-0087-0

Liu, R., Fu, K., Zhang, B., Mei, D., Zhang, H., & Liu, J. (2012). Removal of methyl orange by modified halloysite nanotubes. J Dispersion Sci Technol., 33, 711-718. https://doi.org/10.1080/01932691.2011.579855

Ghosh, G.C., Chakraborty, T.K., Zaman, S., Nahar, M.N., & Kabir, A.H.M.E. (2020). Removal of methyl orange dye from aqueous solution by a low cost activated carbon prepared from Mahagoni (Swietenia mahagoni) bark. Pollution, 6(1), 171-184, https://doi.org/10.22059/poll.2019.289061.679

Sultana, M., Rownok, M.H., Sabrin, M., Rahaman, M.H., & Alam, S.M.N. (2022). A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption. Cleaner Engineering and Technology, 6, 100382. https://doi.org/10.1016/j.clet.2021.100382

Published
2022-08-04
How to Cite
Abollé, A., Urbain, K. Y., Ollo, K., Tchonrontcha, K. Y., & Rodrigue, K. A. (2022). Adsorption of Methyl Orange on Corncob Activated Carbon: Kinetic, Equilibrium, and Thermodynamic Studies . Earthline Journal of Chemical Sciences, 8(2), 205-224. https://doi.org/10.34198/ejcs.8222.205224
Section
Articles