Synthesis, Characterization and Antimicrobial Activity of N-Pyridin-3-yl-benzenesulfonamide

  • A.O. Ijuomah Department of Chemistry, College of Physical Sciences, Joseph Sarwuan Tarka University Makurdi, Benue State, Nigeria
  • D.C. Ike Department of Chemistry, College of Physical Sciences, Joseph Sarwuan Tarka University Makurdi, Benue State, Nigeria
  • M.C. Obi Department of Chemistry, College of Physical Sciences, Joseph Sarwuan Tarka University Makurdi, Benue State, Nigeria
Keywords: N-pyridin-3yl-benzenesulfonamide, antimicrobial activity, synthesis, sulfonamide and 3-aminopyridine


This study describes a simple one-pot synthesis of N-pyridin-3-yl-benzenesulfonamide and its antimicrobial activity. The reaction of benzene sulfonyl chloride with 3-aminopyridine in the presence of aqueous Na2CO3 and HCl as a scavenger furnished the sulfonamide in 93.3% yield.  The structure of the synthesized compound was established using the spectral data obtained from FTIR, 1HNMR and 13CNMR). All spectrometric spectrum bands and peaks obtained were sulfonamide-related. The antibacterial test carried out against Gram-positive bacterium (Staphylococcus aureus) and Gram-negative bacteria (Salmonella typhi and Eschericha coli) tested upon at concentrations 150, 100, 50 and 25 mg/ml revealed that the synthesized N-pyridin-3yl-benzenesulfonamide possesses great antimicrobial activity.


Ijeomah, A.O., Ike, D.C., & Odoh, J.O. (2021). One pot facile synthesis and characterization of 2-(phenyl-2-sulfonylamino)-6-methylpyridine. FUAM Journal of Pure and Applied Science, 1(2), 84-88.

Kołaczek, A., Fusiarz, I., Ławecka, J., & Branowska, D. (2014). Biological activity and synthesis of sulfonamide derivatives: a brief review. Chemik, 68(7), 620-628.

Kanda, Y., Kawanishi, Y., Oda, K., Sakata, T., Mihara, S. I., Asakura, K., & Konoike, T. (2001). Synthesis and structure-activity relationships of potent and orally active sulfonamide ETB selective antagonists. Bioorganic & Medicinal Chemistry, 9(4), 897-907.

Mermer, A., Demirbas, N., Uslu, H., Demirbas, A., Ceylan, S., & Sirin, Y. (2019). Synthesis of novel Schiff bases using green chemistry techniques; antimicrobial, antioxidant, antiurease activity screening and molecular docking studies. Journal of Molecular Structure, 1181, 412-422.

Chibale, K., Haupt, H., Kendrick, H., Yardley, V., Saravanamuthu, A., Fairlamb, A.H., & Croft, S.L. (2001). Antiprotozoal and cytotoxicity evaluation of sulfonamide and urea analogues of quinacrine. Bioorganic & Medicinal Chemistry Letters, 11(19), 2655-2657.

Kavitha, C., Narendra, K., Ratnakar, A., Poojith, N., Sampath, C., Banik, S., & Naidu, N.V. (2020). An analysis of structural, spectroscopic signatures, reactivity and anti-bacterial study of synthetized 4-chloro-3-sulfamoylbenzoic acid. Journal of Molecular Structure, 1202, 127176.

Alaa, A.M., Angeli, A., El-Azab, A.S., Hammouda, M.E., El-Sherbeny, M.A., & Supuran, C.T. (2019). Synthesis and anti-inflammatory activity of sulfonamides and carboxylates incorporating trimellitimides: dual cyclooxygenase/carbonic anhydrase inhibitory actions. Bioorganic Chemistry, 84, 260-268.

Kondo, K., & Yamamura, Y. (2012). The Discovery of Samsca® (Tolvaptan): The First Oral Nonpeptide Vasopressin Receptor Antagonist. In Case Studies in Modern Drug Discovery and Development.

Vullo, D., De Luca, V., Scozzafava, A., Carginale, V., Rossi, M., Supuran, C., & Capasso, C. (2013). The extremo-α-carbonic anhydrase from the thermophilic bacterium Sulfurihydrogenibium azorense is highly inhibited by sulfonamides. Bioorganic & Medicinal Chemistry, 21(15), 4521-4525.

Levin, J.I., Chen, J.M., Du, M.T., Nelson, F.C., Killar, L.M., Skala, S., & Skotnicki, J.S. (2002). Anthranilate sulfonamide hydroxamate TACE inhibitors. Part 2: SAR of the acetylenic P1′ group. Bioorganic & Medicinal Chemistry Letters, 12(8), 1199-1202.

Kim, D.K., Lee, J.Y., Lee, N., Kim, J.S., Lee, S., Choi, J.Y., & Kim, T.K. (2001). Synthesis and phosphodiesterase inhibitory activity of new sildenafil analogues containing a carboxylic acid group in the 5′-sulfonamide moiety of a phenyl ring. Bioorganic & Medicinal Chemistry, 9(11), 3013-3021.

Hu, B., Ellingboe, J., Han, S., Largis, E., Lim, K., Malamas, M., & Wong, V. (2001). Novel (4-piperidin-1-yl)-phenyl sulfonamides as potent and selective human β3 agonists. Bioorganic & Medicinal Chemistry, 9(8), 2045-2059.

Ma, T., Fuld, A.D., Rigas, J.R., Hagey, A.E., Gordon, G.B., Dmitrovsky, E., & Dragnev, K.H. (2012). A phase I trial and in vitro studies combining ABT-751 with carboplatin in previously treated non-small cell lung cancer patients. Chemotherapy, 58(4), 321-329.

Mondal, S., & Malakar, S. (2020). Synthesis of sulfonamide and their synthetic and therapeutic applications: Recent advances. Tetrahedron, 76, 131662.

Almarhoon, Z., Soliman, S.M., Ghabbour, H.A., & El-Faham, A. (2019). A facile and eco-friendly Method for the synthesis of sulfonamide and sulfonate carboxylic acid derivatives—X-ray structure, Hirshfeld analysis and spectroscopic characterizations. Crystals, 9(1), 35-40.

Ike, D.C., Abayeh, O.J., Ogali, R.E., Eruteya, O.C., & Umofia, E. (2018). Antibacterial activity of some selected substituted benzaldoximes. Journal of Chemical Society Nigeria, 43(3), 361-370.

Akujobi, C., Ogbulie, J.N., & Uchegbe, U.N. (2006). Antibacterial activities and preliminary phytochemical screening of four medicinal plants. Journal of Applied Science, 7(3), 4328-4338.

How to Cite
Ijuomah, A., Ike, D., & Obi, M. (2022). Synthesis, Characterization and Antimicrobial Activity of N-Pyridin-3-yl-benzenesulfonamide . Earthline Journal of Chemical Sciences, 8(2), 163-173.