Study of DNA/RNA Aggregation Linked to Cadmium Oxide (CdO) Nanoparticles by Aryl Mercaptanes with Various Chain Length
Abstract
CdO nanoparticles show a strong peak of Plasmon absorption in ultraviolet-visible zone. A strong interaction exists between the surface of CdO nanoparticles and aryl mercaptan compounds. Aryl mercaptan compounds cause to aggregation of CdO nanoparticles linked to DNA/RNA and hence, lead to widening of peak Plasmon of CdO nanoparticles surface at 550 (nm) and emerging a new peak at higher wavelength. In the current project, this optical characteristic of CdO nanoparticles is used to time investigate of interaction between different aryl mercaptanes and CdO nanoparticles. The results were shown that aryl mercaptan compounds with shorter chain length interact faster with CdO nanoparticles. Therefore, a simple and fast method for identification of aryl mercaptanes with various chain length using red shift in surficial Plasmon absorption is presented.
Schematic of Cadmium Oxide (CdO) Nanoparticles Aggregation Linked to DNA/RNA by Aryl Mercaptanes with Various Chain Length.
References
Galindo-Rosales, F.J. (2016). Complex fluids in energy dissipating systems. Appl. Sci., 6(8), 206. https://doi.org/10.3390/app6080206
Tian, T., & Nakano, M. (2017). Design and testing of a rotational brake with shear thickening fluids. Smart Mater. Struct., 26(3), 035038. https://doi.org/10.1088/1361-665X/aa5a2c
Cohen, D. (2008). Shear-Thickening Fluid Reinforced Fabrics for Use with an Expandable Spacecraft, Patent No. US20080296435A1.
Decker, M.J., Halbach, C.J., Nam, C.H., Wagner, N.J., & Wetzel, E.D. (2007). Stab resistance of shear thickening fluid (Stf)-treated fabrics. Compos. Sci. Technol., 67(3-4), 565-578. https://doi.org/10.1016/j.compscitech.2006.08.007
Lee, Y.S., Wetzel, E.D., & Wagner, N.J. (2003). The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid. J. Mater. Sci., 38(13), 2825-2833. https://doi.org/10.1023/A:1024424200221
Mewis, J., & Wagner, N.J. (2012). Colloidal Suspension Rheology, Cambridge University Press.
Wagner, N.J., & Brady, J.F. (2009). Shear thickening in colloidal dispersions. Phys. Today, 62(10), 27-32. https://doi.org/10.1063/1.3248476
Brown, E., & Jaeger, H. M. (2014). Shear thickening in concentrated suspensions: phenomenology, mechanisms and relations to jamming. Rep. Prog. Phys., 77(4), 046602. https://doi.org/10.1088/0034-4885/77/4/046602
Maranzano, B.J., & Wagner, N.J. (2001). The effects of particle-size on reversible shear thickening of concentrated colloidal dispersions. J. Chem. Phys., 114(23), 10514-10527. https://doi.org/10.1063/1.1373687
Bender, J.W., & Wagner, N.J. (1995). Optical measurement of the contributions of colloidal forces to the rheology of concentrated suspensions. J. Colloid Interface Sci., 172 (1), 171-184. https://doi.org/10.1006/jcis.1995.1240
Bender, J., & Wagner, N.J. (1996). Reversible shear thickening in monodisperse and bidisperse colloidal dispersions. J. Rheol., 40(5), 899-916. https://doi.org/10.1122/1.550767
Foss, D.R., & Brady, J.F. (2000). Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation. J. Fluid Mech., 407, 167-200. https://doi.org/10.1017/S0022112099007557
Seto, R., Mari, R., Morris, J.F., & Denn, M.M. (2013). Discontinuous shear thickening of frictional hard-sphere suspensions. Phys. Rev. Lett., 111(21), 218301. https://doi.org/10.1103/PhysRevLett.111.218301
Guy, B., Hermes, M., & Poon, W. (2015). Towards a unified description of the rheology of hard-particle suspensions. Phys. Rev. Lett., 115(8), 088304. https://doi.org/10.1103/PhysRevLett.115.088304
Mari, R., Seto, R., Morris, J.F., & Denn, M.M. (2014). Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions. J. Rheol., 58(6), 1693-1724. https://doi.org/10.1122/1.4890747
Clavaud, C., Bérut, A., Metzger, B., & Forterre, Y. (2017). Revealing the frictional transition in shear-thickening suspensions. Proc. Natl. Acad. Sci. U.S.A., 114, 5147. https://doi.org/10.1073/pnas.1703926114
Royer, J.R., Blair, D.L., & Hudson, S.D. (2016). Rheological signature of frictional interactions in shear thickening suspensions. Phys. Rev. Lett., 116(18), 188301. https://doi.org/10.1103/PhysRevLett.116.188301
Comtet, J., Chatté, G., Niguès, A., Bocquet, L., Siria, A., & Colin, A. (2017). Pairwise frictional profile between particles determines discontinuous shear thickening transition in non-colloidal suspensions. Nat. Commun., 8, 15633. https://doi.org/10.1038/ncomms15633
Lin, N. Y., Guy, B. M., Hermes, M., Ness, C., Sun, J., Poon, W. C., & Cohen, I. (2015). Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions. Phys. Rev. Lett., 115(22), 228304. https://doi.org/10.1103/PhysRevLett.115.228304
Wyart, M., & Cates, M.E. (2014). Discontinuous shear thickening without inertia in dense non-Brownian suspensions. Phys. Rev. Lett., 112(9), 1. https://doi.org/10.1103/PhysRevLett.112.098302
Cates, M.E., Wittmer, J.P., Bouchaud, J.P., & Claudin, P. (1998). Jamming, force chains, and fragile matter. Phys. Rev. Lett., 81(9), 1841-1844. https://doi.org/10.1103/PhysRevLett.81.1841
Peters, I.R., Majumdar, S., & Jaeger, H.M. (2016). Direct observation of dynamic shear jamming in dense suspensions. Nature, 532(7598), 214-217. https://doi.org/10.1038/nature17167
Waitukaitis, S.R., & Jaeger, H.M. (2012). Impact-activated solidification of dense suspensions via dynamic jamming fronts. Nature, 487(7406), 205-209. https://doi.org/10.1038/nature11187
Han, E., Peters, I.R., & Jaeger, H.M. (2016). High-speed ultrasound imaging in dense suspensions reveals impact-activated solidification due to dynamic shear jamming. Nat. Commun., 7, 12243. https://doi.org/10.1038/ncomms12243
Maranzano, B.J., & Wagner, N.J. (2001). The effects of interparticle interactions and particle size on reversible shear thickening: hard-sphere colloidal dispersions. J. Rheol., 45(5), 1205-1222. https://doi.org/10.1122/1.1392295
Egres, R.G., Nettesheim, F., Wagner, N.J. (2006). Rheo-Sans investigation of acicular-precipitated calcium carbonate colloidal suspensions through the shear thickening transition. J. Rheol., 50(5), 685-709. https://doi.org/10.1122/1.2213245
Egres, R.G., Wagner, N.J. (2005). The rheology and microstructure of acicular precipitated calcium carbonate colloidal suspensions through the shear thickening transition. J. Rheol., 49(3), 719-746. https://doi.org/10.1122/1.1895800
Brown, E., Zhang, H., Forman, N.A., Maynor, B.W., Betts, D.E., DeSimone, J.M., & Jaeger, H.M. (2011). Shear thickening and jamming in densely packed suspensions of different particle shapes. Phys. Rev. E, 84(3), 031408. https://doi.org/10.1103/PhysRevE.84.031408
Raghavan, S.R., Walls, H., & Khan, S. A. (2000). Rheology of silica dispersions in organic liquids: new evidence for solvation forces dictated by hydrogen bonding. Langmuir, 16(21), 7920-7930. https://doi.org/10.1021/la991548q
Gálvez, L.O., de Beer, S., van der Meer, D., & Pons, A. (2017). Dramatic effect of fluid chemistry on cornstarch suspensions: linking particle interactions to macroscopic rheology. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 95(3), 030602. https://doi.org/10.1103/PhysRevE.95.030602
Chu, B., Brady, A.T., Mannhalter, B.D., & Salem, D.R. (2014). Effect of silica particle surface chemistry on the shear thickening behaviour of concentrated colloidal suspensions. J. Phys. D: Appl. Phys., 47(33), 335302. https://doi.org/10.1088/0022-3727/47/33/335302
Shan, L., Tian, Y., Jiang, J., Zhang, X., & Meng, Y. (2015). Effects of Ph on shear thinning and thickening behaviors of fumed silica suspensions. Colloids Surf., A, 464, 1-7. https://doi.org/10.1016/j.colsurfa.2014.09.040
Krishnamurthy, L.-N., Wagner, N.J., & Mewis, J. (2005). Shear thickening in polymer stabilized colloidal dispersions. J. Rheol., 49(6), 1347-1360. https://doi.org/10.1122/1.2039867
Shenoy, S.S., & Wagner, N.J. (2005). Influence of medium viscosity and adsorbed polymer on the reversible shear thickening transition in concentrated colloidal dispersions. Rheol. Acta, 44(4), 360-371. https://doi.org/10.1007/s00397-004-0418-z
Brown, E., Forman, N.A., Orellana, C.S., Zhang, H., Maynor, B.W., Betts, D.E., DeSimone, J.M., & Jaeger, H.M. (2010). Generality of shear thickening in dense suspensions. Nat. Mater., 9(3), 220-224. https://doi.org/10.1038/nmat2627
Gopalakrishnan, V., & Zukoski, C. (2004). Effect of attractions on shear thickening in dense suspensions. J. Rheol., 48(6), 1321-1344. https://doi.org/10.1122/1.1784785
Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev., 104(10), 4303-4418. https://doi.org/10.1021/cr030203g
Ding, J., Tian, T., Meng, Q., Guo, Z., Li, W., Zhang, P., Ciacchi, F.T., Huang, J., & Yang, W. (2013). Smart multifunctional fluids for lithium ion batteries: enhanced rate performance and intrinsic mechanical protection. Sci. Rep., 3, 2485. https://doi.org/10.1038/srep02485
Veith, G.M., Armstrong, B.L., Wang, H., Kalnaus, S., Tenhaeff, W.E., & Patterson, M.L. (2017). Shear thickening electrolytes for high impact resistant batteries. ACS Energy Lett., 2(9), 2084-2088. https://doi.org/10.1021/acsenergylett.7b00511
Shen, B.H., Veith, G.M., Armstrong, B.L., Tenhaeff, W.E., & Sacci, R.L. (2017). Predictive design of shear-thickening electrolytes for safety considerations. J. Electrochem. Soc., 164(12), A2547-A2551. https://doi.org/10.1149/2.1171712jes
Shen, B., Armstrong, B.L., Doucet, M., Heroux, L., Browning, J.F., Agamalian, M., Tenhaeff, W.E., & Veith, G.M. (2018). Shear thickening electrolyte built from sterically stabilized colloidal particles. ACS Appl. Mater. Interfaces, 10(11), 9424-9434. https://doi.org/10.1021/acsami.7b19441
Murphy, R.P., Hong, K.L., & Wagner, N.J. (2016). Thermoreversible gels composed of colloidal silica rods with short range attractions. Langmuir, 32(33), 8424-8435. https://doi.org/10.1021/acs.langmuir.6b02107
Belyakova, L.A., Varvarin, A.M., Lyashenko, D.Y., & Roik, N.V. (2003). Study of interaction of Poly(1-Vinyl-2-Pyrrolidone) with a surface of highly dispersed amorphous silica. J. Colloid Interface Sci., 264(1), 2-6. https://doi.org/10.1016/S0021-9797(03)00395-3
Ewoldt, R.H., Johnston, M.T., & Caretta, L.M. (2015). Experimental challenges of shear rheology: how to avoid bad data. In Complex Fluids in Biological Systems, Springer, pp. 207-241.
Mewis, J., & Wagner, N.J. (2009). Thixotropy. Adv. Colloid Interface Sci., 147, 214-227. https://doi.org/10.1016/j.cis.2008.09.005
Pednekar, S., Chun, J., & Morris, J.F. (2017). Simulation of shear thickening in attractive colloidal suspensions. Soft Matter, 13(9), 1773-1779. https://doi.org/10.1039/C6SM02553F
Zaccarelli, E., & Poon, W.C. (2009). Colloidal glasses and gels: the interplay of bonding and caging. Proc. Natl. Acad. Sci. U.S.A., 106(36), 15203-15208. https://doi.org/10.1073/pnas.0902294106
Faroughi, S.A., & Huber, C. (2015). A generalized equation for rheology of emulsions and suspensions of deformable particles subjected to simple shear at low Reynolds number. Rheol. Acta, 54(2), 85-108. https://doi.org/10.1007/s00397-014-0825-8
Cwalina, C.D., Harrison, K.J., & Wagner, N.J. (2016). Rheology of cubic particles suspended in a Newtonian fluid. Soft Matter, 12(20), 4654-4665. https://doi.org/10.1039/C6SM00205F
Trappe, V., Prasad, V., Cipelletti, L., Segre, P., & Weitz, D. (2001). Jamming phase diagram for attractive particles. Nature, 411(6839), 772. https://doi.org/10.1038/35081021
Philipse, A. P. (1996). The random contact equation and its implications for (colloidal) rods in packings, suspensions, and anisotropic powders. Langmuir, 12(5), 1127-1133. https://doi.org/10.1021/la950671o
Krishnamurthy, L.N., & Wagner, N.J. (2005). Letter to the Editor: Comment on “Effect of attractions on shear thickening in dense suspensions”. J. Rheol., 49(3), 799-803. https://doi.org/10.1122/1.1895797
Krishnamurthy, L.-N., & Wagner, N.J. (2005). The influence of weak attractive forces on the microstructure and rheology of colloidal dispersions. J. Rheol., 49(2), 475-499. https://doi.org/10.1122/1.1859792
Eberle, A.P.R., Castaneda-Priego, R., Kim, J.M., & Wagner, N.J. (2012). Dynamical arrest, percolation, gelation, and glass formation in model nanoparticle dispersions with thermoreversible adhesive interactions. Langmuir, 28(3), 1866-1878. https://doi.org/10.1021/la2035054
Gao, J., Ndong, R.S., Shiflett, M.B., Wagner, N.J. (2015). Creating nanoparticle stability in ionic liquid [C4mim][Bf4] by inducing solvation layering. ACS Nano, 9(3), 3243-3253. https://doi.org/10.1021/acsnano.5b00354
Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev., 104(10), 4303-4417. https://doi.org/10.1021/cr030203g
Yoon, I.-N., Song, H.-K., Won, J., Kang, & Y.S. (2014). Shape dependence of SiO2 nanomaterials in a quasi-solid electrolyte for application in dye-sensitized solar cells. J. Phys. Chem. C, 118(8), 3918-3924. https://doi.org/10.1021/jp4104454
Kuijk, A., van Blaaderen, A., & Imhof, A. (2011). Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio. J. Am. Chem. Soc., 133(8), 2346-2349. https://doi.org/10.1021/ja109524h
Lai, C.Y., Trewyn, B.G., Jeftinija, D.M., Jeftinija, K., Xu, S., Jeftinija, S., & Lin, V.S.Y. (2003). A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J. Am. Chem. Soc., 125, 4451-4459. https://doi.org/10.1021/ja028650l
Sinha, A., Chakraborty, A., & Jana, N.R. (2014). Dextran-gated, multifunctional mesoporous nanoparticle for glucose-responsive and targeted drug delivery. ACS Appl. Mater. Interfaces, 6, 22183-22191. https://doi.org/10.1021/am505848p
Kurtoglu, Y.E., Navath, R.S., Wang, B., Kannan, S., Romero, R., & Kannan, R.M. (2009). Poly(amidoamine) dendrimer-drug Conjugates with disulfide linkages for intracellular drug delivery. Biomaterials, 30, 2112-2121. https://doi.org/10.1016/j.biomaterials.2008.12.054
Kesharwani, P., Jain, K., & Jain, N. K. (2014). Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci., 39, 268-307. https://doi.org/10.1016/j.progpolymsci.2013.07.005
Müller, R. H., Mäder, K., & Gohla, S. (2000). Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. Eur. J. Pharm. Biopharm., 50, 161-177. https://doi.org/10.1016/S0939-6411(00)00087-4
Muchow, M., Maincent, P., & Müller, R.H. (2008). Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery. Drug Dev. Ind. Pharm., 34, 1394-1405. https://doi.org/10.1080/03639040802130061
Bae, Y., Fukushima, S., Harada, A., & Kataoka, K. (2003). Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew. Chem., Int. Ed., 42, 4640-4643. https://doi.org/10.1002/anie.200250653
Nasongkla, N., Bey, E., Ren, J., Ai, H., Khemtong, C., Guthi, J.S., Chin, S.F., Sherry, A.D., Boothman, D.A., & Gao, J. (2006). Multifunctional polymeric micelles as cancer-Targeted, MRI-ultrasensitive drug delivery systems. Nano Lett., 6, 2427-2430. https://doi.org/10.1021/nl061412u
Lian, T., & Ho, R.J.Y. (2001). Trends and developments in liposome drug delivery systems. J. Pharm. Sci., 90, 667-680. https://doi.org/10.1002/jps.1023
Allen, T.M., & Cullis, P.R. (2013). Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Delivery Rev., 65, 36-48. https://doi.org/10.1016/j.addr.2012.09.037
Hamidi, M., Azadi, A., & Rafiei, P. (2008). Hydrogel nanoparticles in drug delivery. Adv. Drug Delivery Rev., 60, 1638-1649. https://doi.org/10.1016/j.addr.2008.08.002
Merino, S., Martin, C., Kostarelos, K., Prato, M., & Vazquez, E. (2015). Nanocomposite hydrogels: 3D polymer-nanoparticle synergies for on-demand drug delivery. ACS Nano, 9, 4686-4697. https://doi.org/10.1021/acsnano.5b01433
Chilkoti, A., Dreher, M.R., Meyer, D.E., & Raucher, D. (2002). Targeted drug delivery by thermally responsive polymers. Adv. Drug Delivery Rev., 54, 613-630. https://doi.org/10.1016/S0169-409X(02)00041-8
Sawant, R.M., Hurley, J.P., Salmaso, S., Kale, A., Tolcheva, E., Levchenko, T.S., & Torchilin, V.P. (2006). “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjugate Chem., 17, 943-949. https://doi.org/10.1021/bc060080h
Luo, Z., Cai, K., Hu, Y., Zhao, L., Liu, P., Duan, L., & Yang, W. (2011). Mesoporous silica nanoparticles end-capped with collagen: redox-responsive nanoreservoirs for targeted drug delivery. Angew. Chem., Int. Ed., 50, 640-643. https://doi.org/10.1002/anie.201005061
Cheng, R., Feng, F., Meng, F., Deng, C., Feijen, J., & Zhong, Z. (2011). Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J. Controlled Release, 152, 2-12. https://doi.org/10.1016/j.jconrel.2011.01.030
Wang, Y., Wei, G., Zhang, X., Xu, F., Xiong, X., & Zhou, S. (2017). A step-by-step multiple stimuli-responsive nanoplatform for enhancing combined chemo-photodynamic therapy. Adv. Mater., 29, 1605357. https://doi.org/10.1002/adma.201605357
Ulbrich, K., Hola, K., Subr, V., Bakandritsos, A., Tucek, J., & Zboril, R. (2016). Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev., 116, 5338-5431. https://doi.org/10.1021/acs.chemrev.5b00589
Moradi, E., Vllasaliu, D., Garnett, M., Falcone, F., & Stolnik, S. (2012). Ligand density and clustering effects on endocytosis of folate modified nanoparticles. RSC Adv., 2, 3025-3033. https://doi.org/10.1039/c2ra01168a
Saha, A., Basiruddin, S.K., Maity, A.R., & Jana, N.R. (2013). Synthesis of nanobioconjugates with a controlled average number of biomolecules between 1 and 100 per nanoparticle and observation of multivalency dependent interaction with proteins and cells. Langmuir, 29, 13917-13924. https://doi.org/10.1021/la402699a
Tang, Z., Li, D., Sun, H., Guo, X., Chen, Y., & Zhou, S. (2014). Quantitative control of active targeting of nanocarriers to tumor cells through optimization of folate ligand density. Biomaterials, 35, 8015-8027. https://doi.org/10.1016/j.biomaterials.2014.05.091
Dalal, C., Saha, A., & Jana, N. R. (2016). Nanoparticle multivalency directed shifting of cellular uptake mechanism. J. Phys. Chem. C, 120, 6778-6786. https://doi.org/10.1021/acs.jpcc.5b11059
Dalal, C., & Jana, N. R. (2017). Multivalency effect of TAT-peptide-functionalized nanoparticle in cellular endocytosis and subcellular trafficking. J. Phys. Chem. B, 121, 2942-2951. https://doi.org/10.1021/acs.jpcb.6b12182
Schmaljohann, D. (2006). Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Delivery Rev., 58, 1655-1670. https://doi.org/10.1016/j.addr.2006.09.020
Gao, W., Chan, J.M., & Farokhzad, O.C. (2010). pH-responsive nanoparticles for drug delivery. Mol. Pharmaceutics, 7, 1913-1920. https://doi.org/10.1021/mp100253e
Saha, A., Mohanta, S.C., Deka, K., Deb, P., & Devi, P.S. (2017). Surface-engineered multifunctional Eu:Gd2O3 nanoplates for targeted and pH-responsive drug delivery and imaging applications. ACS Appl. Mater. Interfaces, 9, 4126-4141. https://doi.org/10.1021/acsami.6b12804
Zhang, L., Guo, R., Yang, M., Jiang, X., & Liu, B. (2007). Thermo and pH dual-responsive nanoparticles for anti-cancer drug delivery. Adv. Mater., 19, 2988-2992. https://doi.org/10.1002/adma.200601817
Bikram, M., & West, J.L. (2008). Thermo-responsive systems for controlled drug delivery. Expert Opin. Drug Delivery, 5, 1077-1091. https://doi.org/10.1517/17425247.5.10.1077
Liu, J., Detrembleur, C., Debuigne, A., De Pauw-Gillet, M.C., Mornet, S., Vander Elst, L., Laurent, S., Duguet, E., & Jerome, C. (2014). Glucose-, pH- and thermo-responsive nanogels crosslinked by functional superparamagnetic maghemite nanoparticles as innovative drug delivery systems. J. Mater. Chem. B, 2, 1009-1023. https://doi.org/10.1039/c3tb21272f
Luo, Z., Cai, K., Hu, Y., Li, J., Ding, X., Zhang, B., Xu, D., Yang, W., & Liu, P. (2012). Redox-responsive molecular nanoreservoirs for controlled intracellular anticancer drug delivery based on magnetic nanoparticles. Adv. Mater., 24, 431-435. https://doi.org/10.1002/adma.201103458
Wen, H., Dong, C., Dong, H., Shen, A., Xia, W., Cai, X., Song, Y., Li, X., Li, Y., & Shi, D. (2012). Engineered redox-responsive PEG detachment mechanism in PEGylated nano-graphene oxide for intracellular drug delivery. Small, 8, 760-769. https://doi.org/10.1002/smll.201101613
Shao, Y., Shi, C., Xu, G., Guo, D., & Luo, J. (2014). Photo and redox dual responsive reversibly cross-linked nanocarrier for efficient tumor-targeted drug delivery. ACS Appl. Mater. Interfaces, 6, 10381-10392. https://doi.org/10.1021/am501913m
Shi, C., Guo, X., Qu, Q., Tang, Z., Wang, Y., & Zhou, S. (2014). Actively targeted delivery of anticancer drug to tumor cells by redox-responsive star-shaped micelles. Biomaterials, 35, 8711-8722. https://doi.org/10.1016/j.biomaterials.2014.06.036
Yui, N., Okano, T., & Sakurai, Y. (1993). Photo-responsive degradation of heterogeneous hydrogels comprising crosslinked hyaluronic acid and lipid microspheres for temporal drug delivery. J. Controlled Release, 26, 141-145. https://doi.org/10.1016/0168-3659(93)90113-J
Mathiyazhakan, M., Wiraja, C., & Xu, C. (2018). A concise review of gold nanoparticles-based photo-responsive liposomes for controlled drug delivery. Nano-Micro Lett., 10, 10. https://doi.org/10.1007/s40820-017-0166-0
Yang, Y., Aw, J., Chen, K., Liu, F., Padmanabhan, P., Hou, Y., Cheng, Z., & Xing, B. (2011). Enzyme-responsive multifunctional magnetic nanoparticles for tumor intracellular drug delivery and imaging. Chem. - Asian J., 6, 1381-1389. https://doi.org/10.1002/asia.201000905
Hu, Q., Katti, P.S., & Gu, Z. (2014). Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale, 6, 12273-12286. https://doi.org/10.1039/C4NR04249B
Huang, J., Shu, Q., Wang, L., Wu, H., Wang, A.Y., & Mao, H. (2015). Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine. Biomaterials, 39, 105-113. https://doi.org/10.1016/j.biomaterials.2014.10.059
Kim, J., Kim, H.S., Lee, N., Kim, T., Kim, H., Yu, T., Song, I.C., Moon, W.K., & Hyeon, T. (2008). Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem., Int. Ed., 47, 8438-8441. https://doi.org/10.1002/anie.200802469
Liong, M., Lu, J., Kovochich, M., Xia, T., Ruehm, S.G., Nel, A.E., Tamanoi, F., & Zink, J.I. (2008). Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano, 2, 889-896. https://doi.org/10.1021/nn800072t
Taylor-Pashow, K.M.L., Della Rocca, J., Xie, Z., Tran, S., & Lin, W. (2009). Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J. Am. Chem. Soc., 131, 14261-14263. https://doi.org/10.1021/ja906198y
Maity, A.R., Saha, A., Roy, A., & Jana, N. R. (2013). Folic acid functionalized nanoprobes for fluorescence-, dark-field-, and dual-imaging-based selective detection of cancer cells and tissue. ChemPlusChem, 78, 259-267. https://doi.org/10.1002/cplu.201200296
Sun, C., Lee, J.S.H., & Zhang, M. (2008). Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Delivery Rev., 60, 1252-1265. https://doi.org/10.1016/j.addr.2008.03.018
Yang, X., Hong, H., Grailer, J.J., Rowland, I.J., Javadi, A., Hurley, S.A., Xiao, Y., Yang, Y., Zhang, Y., Nickles, R.J., Cai, W., Steeber, D.A., & Gong, S. (2011). cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials, 32, 4151-4160. https://doi.org/10.1016/j.biomaterials.2011.02.006
Mukai, H., Ozaki, D., Cui, Y., Kuboyama, T., Yamato-Nagata, H., Onoe, K., Takahashi, M., Wada, Y., Imanishi, T., Kodama, T., Obika, S., Suzuki, M., Doi, H., & Watanabe, Y. (2014). Quantitative evaluation of the improvement in the pharmacokinetics of a nucleic acid drug delivery system by dynamic PET imaging with 18F-incorporated oligodeoxynucleotides. J. Controlled Release, 180, 92-99. https://doi.org/10.1016/j.jconrel.2014.02.014
Hendriks, B., Shields, A., Siegel, B.A., Miller, K., Munster, P., Ma, C., Campbell, K., Moyo, V., Wickham, T., & Lo Russo, P. (2014). PET/CT imaging of 64Cu-labelled HER2 liposomal doxorubicin (64Cu-MM-302) quantifies variability of liposomal drug delivery to diverse tumor lesions in HER2-positive breast cancer patients. Ann. Oncol., 25, i19. https://doi.org/10.1093/annonc/mdu068.1
Lin, W., Yao, N., Zhang, X., & Zhang, L. (2017). pH-sensitive polymer-gold nanohybrid system for antitumor drug delivery and CT imaging. J. Controlled Release, 259, e14110. https://doi.org/1016/j.jconrel.2017.03.286
Bridot, J.L., Faure, A.C., Laurent, S., Riviere, C., Billotey, C., Hiba, B., Janier, M., Josserand, V., Coll, J.L., Vander Elst, L., Muller, R., Roux, S., Perriat, P., & Tillement, O. (2007). Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J. Am. Chem. Soc., 129, 5076-5084. https://doi.org/10.1021/ja068356j
Kim, J., Piao, Y., & Hyeon, T. (2009). Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem. Soc. Rev., 38, 372-390. https://doi.org/10.1039/B709883A
Saha, A., Basiruddin, S.K., Sarkar, R., Pradhan, N., & Jana, N.R. (2009). Functionalized plasmonic-fluorescent nanoparticles for imaging and detection. J. Phys. Chem. C, 113, 18492-18498. https://doi.org/10.1021/jp904791h
Qi, J., Han, M.S., Chang, Y.C., & Tung, C.H. (2011). Developing visible fluorogenic ‘click-on’ dyes for cellular imaging. Bioconjugate Chem., 22, 1758-1762. https://doi.org/10.1021/bc200282t
Zhu, S., Yang, Q., Antaris, A.L., Yue, J., Ma, Z., Wang, H., Huang, W., Wan, H., Wang, J., Diao, S., Zhang, B., Li, X., Zhong, Y., Yu, K., Hong, G., Luo, J., Liang, Y., & Dai, H. (2017). Molecular imaging of biological systems with a clickable dye in the broad 800- to 1,700-nm near-infrared window. Proc. Natl. Acad. Sci. U.S.A., 114, 962-967. https://doi.org/10.1073/pnas.1617990114
Bruchez, M., Jr., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A.P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science, 281, 2013-2016. https://doi.org/10.1126/science.281.5385.2013
Kim, S., Lim, Y.T., Soltesz, E.G., De Grand, A.M., Lee, J., Nakayama, A., Parker, J.A., Mihaljevic, T., Laurence, R.G., Dor, D.M., Cohn, L.H., Bawendi, M.G., & Frangioni, J.V. (2004). Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol., 22, 93-97. https://doi.org/10.1038/nbt920
Derfus, A.M., Chan, W.C.W., & Bhatia, S.N. (2004). Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv. Mater., 16, 961-966. https://doi.org/10.1002/adma.200306111
Gnach, A., & Bednarkiewicz, A. (2012). Lanthanide-doped up-converting nanoparticles: merits and challenges. Nano Today, 7, 532-563. https://doi.org/10.1016/j.nantod.2012.10.006
Park, Y., Kim, H.M., Kim, J.H., Moon, K.C., Yoo, B., Lee, K.T., Lee, N., Choi, Y., Park, W., Ling, D., Na, K., Moon, W.K., Choi, S.H., Park, H.S., Yoon, S.Y., Suh, Y.D., Lee, S.H., & Hyeon, T. (2012). Theranostic probe based on lanthanide-doped nanoparticles for simultaneous in vivo dual-modal imaging and photodynamic therapy. Adv. Mater., 24, 5755-5761. https://doi.org/10.1002/adma.201202433
Ray, S.C., Saha, A., Jana, N.R., & Sarkar, R. (2009). Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J. Phys. Chem. C, 113, 18546-18551. https://doi.org/10.1021/jp905912n
Bhunia, S.K., Saha, A., Maity, A.R., Ray, S.C., & Jana, N.R. (2013). Carbon nanoparticle-based fluorescent bioimaging probes. Sci. Rep., 3, 1473. https://doi.org/10.1038/srep01473
Das, P., Saha, A., Maity, A.R., Ray, S.C., Jana, N.R. (2013). Silicon nanoparticle based fluorescent biological label via low temperature thermal degradation of chloroalkylsilane. Nanoscale, 5, 5732-5737. https://doi.org/10.1039/c3nr00932g
Pan, D., Zhang, J., Li, Z., & Wu, M. (2010). Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater., 22, 734-738. https://doi.org/10.1002/adma.200902825
Shen, J., Zhu, Y., Yang, X., & Li, C. (2012). Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun., 48, 3686-3699. https://doi.org/10.1039/c2cc00110a
Renikuntla, B.R., Rose, H.C., Eldo, J., Waggoner, A. S., & Armitage, B.A. (2004). Improved photostability and fluorescence properties through polyfluorination of a cyanine dye. Org. Lett., 6, 909-912. https://doi.org/10.1021/ol036081w
Guo, L., & Gai, F. (2013). Simple method to enhance the photostability of the fluorescence reporter R6G for prolonged single molecule studies. J. Phys. Chem. A, 117, 6164-6170. https://doi.org/10.1021/jp4003643
Grimm, J.B., English, B.P., Chen, J., Slaughter, J.P., Zhang, Z., Revyakin, A., Patel, R., Macklin, J.J., Normanno, D., Singer, R.H., Lionnet, T., & Lavis, L.D. (2015). A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods, 12, 244-250. https://doi.org/10.1038/nmeth.3256
Jiao, L., Song, F., Zhang, B., Ning, H., Cui, J., & Peng, X. (2017). Improving the brightness and photostability of NIR fluorescent silica nanoparticles through rational fine-tuning of the covalent encapsulation methods. J. Mater. Chem. B, 5, 5278-5283, https://doi.org/10.1039/C7TB00856B
Kim, J., Lee, J. E., Lee, J., Yu, J. H., Kim, B. C., An, K., Hwang, Y., Shin, C. H., Park, J. G., Kim, J., & Hyeon, T. (2006). Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J. Am. Chem. Soc., 128, 688-689. https://doi.org/10.1021/ja0565875
Corr, S.A., Rakovich, Y.P., & Gun’ko, Y.K. (2008). Multifunctional magnetic-fluorescent nanocomposites for biomedical applications. Nanoscale Res. Lett., 3, 87-104. https://doi.org/10.1007/s11671-008-9122-8
Saha, A., Basiruddin, S. K., Pradhan, N., & Jana, N. R. (2010). Ligand exchange approach in deriving magnetic-fluorescent and magnetic-plasmonic hybrid nanoparticle. Langmuir, 26, 4351-4356. https://doi.org/10.1021/la903428r
Jin, Y., & Gao, X. (2009). Plasmonic fluorescent quantum dots. Nat. Nanotechnol., 4, 571-576. https://doi.org/10.1038/nnano.2009.193
Bigall, N.C., Parak, W.J., & Dorfs, D. (2012). Fluorescent, magnetic and plasmonic-hybrid multifunctional colloidal nano objects. Nano Today, 7, 282-296. https://doi.org/10.1016/j.nantod.2012.06.007
Xu, Z., Hou, Y., & Sun, S. (2007). Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J. Am. Chem. Soc., 129, 8698-8699. https://doi.org/10.1021/ja073057v
Fan, Z., Shelton, M., Singh, A. K., Senapati, D., Khan, S. A., & Ray, P. C. (2012). Multifunctional plasmonic shell-magnetic core nanoparticles for targeted diagnostics, isolation, and photothermal destruction of tumor cells. ACS Nano, 6, 1065-1073. https://doi.org/10.1021/nn2045246
Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., & Ruoff, R.S. (2006). Graphene-based composite materials. Nature, 442, 282-286. https://doi.org/10.1038/nature04969
Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites. Chem. Soc. Rev., 41, 666-686. https://doi.org/10.1039/C1CS15078B
Jiang, J., Gu, H., Shao, H., Devlin, E., Papaefthymiou, G.C., & Ying, J.Y. (2008). Bifunctional Fe3O4-Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation. Adv. Mater., 20, 4403-4407. https://doi.org/10.1002/adma.200800498
Deng, S., Ruan, G., Han, N., & Winter, J.O. (2010). Interactions in fluorescent-magnetic heterodimer nanocomposites. Nanotechnology, 21, 145605. https://doi.org/10.1088/0957-4484/21/14/145605
Basiruddin, S.K., Saha, A., Pradhan, N., & Jana, N.R. (2010). Advances in coating chemistry in deriving soluble functional nanoparticle. J. Phys. Chem. C, 114, 11009-11017. https://doi.org/10.1021/jp100844d
Jia, G., You, H., Liu, K., Zheng, Y., Guo, N., & Zhang, H. (2010). Highly uniform Gd2O3 hollow microspheres: template-directed synthesis and luminescence properties. Langmuir, 26, 5122-5128. https://doi.org/10.1021/la903584j
Ahren, M., Selegard, L., Klasson, A., Soderlind, F., Abrikossova, N., Skoglund, C., Bengtsson, T., Engstrom, M., Kall, P.O., & Uvdal, K. (2010). Synthesis and characterization of PEGylated Gd2O3 nanoparticles for MRI contrast enhancement. Langmuir, 26, 5753-5762. https://doi.org/10.1021/la903566y
Dosev, D., Nichkova, M., Liu, M., Guo, B., Liu, G.Y., Hammock, B.D., & Kennedy, I.M. (2005). Application of luminescent Eu:Gd2O3 nanoparticles to the visualization of protein micropatterns. J. Biomed. Opt., 10, 064006. https://doi.org/10.1117/1.2136347
Paik, T., Gordon, T.R., Prantner, A.M., Yun, H., & Murray, C.B. (2013). Designing tripodal and triangular gadolinium oxide nanoplates and self-assembled nanofibrils as potential multimodal bioimaging probes. ACS Nano, 7, 2850-2859. https://doi.org/10.1021/nn4004583
Zhou, C., Wu, H., Huang, C., Wang, M., & Jia, N. (2014). Facile synthesis of single-phase mesoporous Gd2O3:Eu nanorods and their application for drug delivery and multimodal imaging. Part. Part. Syst. Charact., 31, 675-684. https://doi.org/10.1002/ppsc.201300342
Kim, W.J., Gwag, J.S., Kang, J.G., & Sohn, Y. (2014). Photoluminescence imaging of Eu(III), Eu(III)/Ag, Eu(III)/Tb(III), and Eu(III)/Tb(III)/Ag-doped Gd(OH)3 and Gd2O3 nanorods. Ceram. Int., 40, 12035-12044. https://doi.org/10.1016/j.ceramint.2014.04.043
Wawrzynczyk, D., Samoc, M., & Nyk, M. (2015). Controlled synthesis of luminescent Gd2O3:Eu3+ nanoparticles by alkali ion doping. CrystEngComm, 17, 1997-2003. https://doi.org/10.1039/C4CE02500H
Geng, Y., Dalhaimer, P., Cai, S., Tsai, R., Tewari, M., Minko, T., & Discher, D.E. (2007). Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol., 2, 249-255. https://doi.org/10.1038/nnano.2007.70
Toy, R., Peiris, P.M., Ghaghada, K.B., & Karathanasis, E. (2014). Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine, 9, 121-134. https://doi.org/10.2217/nnm.13.191
Godwin, A.K., Meister, A., O’dwyer, P.J., Huang, C.S., Hamilton, T.C., & Anderson, M.E. (1992). High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc. Natl. Acad. Sci. U.S.A., 89, 3070-3074. https://doi.org/10.1073/pnas.89.7.3070
Balendiran, G.K., Dabur, R., & Fraser, D. (2004). The role of glutathione in cancer. Cell Biochem. Funct., 22, 343-352. https://doi.org/10.1002/cbf.1149
Gronow, M. (2010). Studies on the non-protein thiols of a human prostatic cancer cell line: glutathione content. Cancers, 2, 1092-1106. https://doi.org/10.3390/cancers2021092
Guo, X., Wei, X., Jing, Y., & Zhou, S. (2015). Size changeable nanocarriers with nuclear targeting for effectively overcoming multidrug resistance in cancer therapy. Adv. Mater., 27, 6450-6456. https://doi.org/10.1002/adma.201502865
Heidari, A., & Brown, C. (2015). Study of composition and morphology of cadmium oxide (CdO) nanoparticles for eliminating cancer cells, J Nanomed Res., 2(5), 20 pp.
Heidari, A. (2016). Pharmacogenomics and pharmacoproteomics studies of phosphodiesterase-5 (PDE5) inhibitors and paclitaxel albumin-stabilized nanoparticles as sandwiched anti-cancer nano drugs between two DNA/RNA molecules of human cancer cells, J Pharmacogenomics Pharmacoproteomics 7, e153.
Heidari, A., & Brown, C. (2015). Study of surface morphological, phytochemical and structural characteristics of rhodium (III) oxide (Rh2O3) nanoparticles, International Journal of Pharmacology, Phytochemistry and Ethnomedicine, 1(1), 15-19.
Heidari, A. (2016). Extraction and preconcentration of N-tolyl-sulfonyl-phosphoramid-saeure-dichlorid as an anti-cancer drug from plants: a pharmacognosy study, J Pharmacogn Nat Prod 2, e103.
] Heidari, A. (2016). A chemotherapeutic and biospectroscopic investigation of the interaction of double-standard DNA/RNA-binding molecules with cadmium oxide (CdO) and rhodium (III) oxide (Rh2O3) nanoparticles as anti-cancer drugs for cancer cells’ treatment, Chemo Open Access 5, e129.
Heidari, A. (2016). Linear and non-linear quantitative structure-anti-cancer-activity relationship (QSACAR) study of hydrous ruthenium (IV) oxide (RuO2) nanoparticles as non-nucleoside reverse transcriptase inhibitors (NNRTIs) and anti-cancer nano drugs, J Integr Oncol 5, e110.
Heidari, A. (2016). Genomics and proteomics studies of zolpidem, necopidem, alpidem, saripidem, miroprofen, zolimidine, olprinone and abafungin as anti-tumor, peptide antibiotics, antiviral and central nervous system (CNS) drugs, J Data Mining Genomics & Proteomics 7, e125.
This work is licensed under a Creative Commons Attribution 4.0 International License.