Study of DNA/RNA Aggregation Linked to Cadmium Oxide (CdO) Nanoparticles by Aryl Mercaptanes with Various Chain Length

  • Alireza Heidari Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
Keywords: aryl mercaptans, peak Plasmon absorption, aggregation, CdO nanoparticles, DNA/RNA


CdO nanoparticles show a strong peak of Plasmon absorption in ultraviolet-visible zone. A strong interaction exists between the surface of CdO nanoparticles and aryl mercaptan compounds. Aryl mercaptan compounds cause to aggregation of CdO nanoparticles linked to DNA/RNA and hence, lead to widening of peak Plasmon of CdO nanoparticles surface at 550 (nm) and emerging a new peak at higher wavelength. In the current project, this optical characteristic of CdO nanoparticles is used to time investigate of interaction between different aryl mercaptanes and CdO nanoparticles. The results were shown that aryl mercaptan compounds with shorter chain length interact faster with CdO nanoparticles. Therefore, a simple and fast method for identification of aryl mercaptanes with various chain length using red shift in surficial Plasmon absorption is presented.


Schematic of Cadmium Oxide (CdO) Nanoparticles Aggregation Linked to DNA/RNA by Aryl Mercaptanes with Various Chain Length.

Author Biography

Alireza Heidari, Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA

BioSpectroscopy Core Research Laboratory, California South University, 14731 Comet St. Irvine, CA 92604, USA

Cancer Research Institute (CRI), California South University, 14731 Comet St. Irvine, CA 92604, USA

American International Standards Institute, Irvine, CA 3800, USA


Galindo-Rosales, F.J. (2016). Complex fluids in energy dissipating systems. Appl. Sci., 6(8), 206.

Tian, T., & Nakano, M. (2017). Design and testing of a rotational brake with shear thickening fluids. Smart Mater. Struct., 26(3), 035038.

Cohen, D. (2008). Shear-Thickening Fluid Reinforced Fabrics for Use with an Expandable Spacecraft, Patent No. US20080296435A1.

Decker, M.J., Halbach, C.J., Nam, C.H., Wagner, N.J., & Wetzel, E.D. (2007). Stab resistance of shear thickening fluid (Stf)-treated fabrics. Compos. Sci. Technol., 67(3-4), 565-578.

Lee, Y.S., Wetzel, E.D., & Wagner, N.J. (2003). The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid. J. Mater. Sci., 38(13), 2825-2833.

Mewis, J., & Wagner, N.J. (2012). Colloidal Suspension Rheology, Cambridge University Press.

Wagner, N.J., & Brady, J.F. (2009). Shear thickening in colloidal dispersions. Phys. Today, 62(10), 27-32.

Brown, E., & Jaeger, H. M. (2014). Shear thickening in concentrated suspensions: phenomenology, mechanisms and relations to jamming. Rep. Prog. Phys., 77(4), 046602.

Maranzano, B.J., & Wagner, N.J. (2001). The effects of particle-size on reversible shear thickening of concentrated colloidal dispersions. J. Chem. Phys., 114(23), 10514-10527.

Bender, J.W., & Wagner, N.J. (1995). Optical measurement of the contributions of colloidal forces to the rheology of concentrated suspensions. J. Colloid Interface Sci., 172 (1), 171-184.

Bender, J., & Wagner, N.J. (1996). Reversible shear thickening in monodisperse and bidisperse colloidal dispersions. J. Rheol., 40(5), 899-916.

Foss, D.R., & Brady, J.F. (2000). Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation. J. Fluid Mech., 407, 167-200.

Seto, R., Mari, R., Morris, J.F., & Denn, M.M. (2013). Discontinuous shear thickening of frictional hard-sphere suspensions. Phys. Rev. Lett., 111(21), 218301.

Guy, B., Hermes, M., & Poon, W. (2015). Towards a unified description of the rheology of hard-particle suspensions. Phys. Rev. Lett., 115(8), 088304.

Mari, R., Seto, R., Morris, J.F., & Denn, M.M. (2014). Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions. J. Rheol., 58(6), 1693-1724.

Clavaud, C., Bérut, A., Metzger, B., & Forterre, Y. (2017). Revealing the frictional transition in shear-thickening suspensions. Proc. Natl. Acad. Sci. U.S.A., 114, 5147.

Royer, J.R., Blair, D.L., & Hudson, S.D. (2016). Rheological signature of frictional interactions in shear thickening suspensions. Phys. Rev. Lett., 116(18), 188301.

Comtet, J., Chatté, G., Niguès, A., Bocquet, L., Siria, A., & Colin, A. (2017). Pairwise frictional profile between particles determines discontinuous shear thickening transition in non-colloidal suspensions. Nat. Commun., 8, 15633.

Lin, N. Y., Guy, B. M., Hermes, M., Ness, C., Sun, J., Poon, W. C., & Cohen, I. (2015). Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions. Phys. Rev. Lett., 115(22), 228304.

Wyart, M., & Cates, M.E. (2014). Discontinuous shear thickening without inertia in dense non-Brownian suspensions. Phys. Rev. Lett., 112(9), 1.

Cates, M.E., Wittmer, J.P., Bouchaud, J.P., & Claudin, P. (1998). Jamming, force chains, and fragile matter. Phys. Rev. Lett., 81(9), 1841-1844.

Peters, I.R., Majumdar, S., & Jaeger, H.M. (2016). Direct observation of dynamic shear jamming in dense suspensions. Nature, 532(7598), 214-217.

Waitukaitis, S.R., & Jaeger, H.M. (2012). Impact-activated solidification of dense suspensions via dynamic jamming fronts. Nature, 487(7406), 205-209.

Han, E., Peters, I.R., & Jaeger, H.M. (2016). High-speed ultrasound imaging in dense suspensions reveals impact-activated solidification due to dynamic shear jamming. Nat. Commun., 7, 12243.

Maranzano, B.J., & Wagner, N.J. (2001). The effects of interparticle interactions and particle size on reversible shear thickening: hard-sphere colloidal dispersions. J. Rheol., 45(5), 1205-1222.

Egres, R.G., Nettesheim, F., Wagner, N.J. (2006). Rheo-Sans investigation of acicular-precipitated calcium carbonate colloidal suspensions through the shear thickening transition. J. Rheol., 50(5), 685-709.

Egres, R.G., Wagner, N.J. (2005). The rheology and microstructure of acicular precipitated calcium carbonate colloidal suspensions through the shear thickening transition. J. Rheol., 49(3), 719-746.

Brown, E., Zhang, H., Forman, N.A., Maynor, B.W., Betts, D.E., DeSimone, J.M., & Jaeger, H.M. (2011). Shear thickening and jamming in densely packed suspensions of different particle shapes. Phys. Rev. E, 84(3), 031408.

Raghavan, S.R., Walls, H., & Khan, S. A. (2000). Rheology of silica dispersions in organic liquids: new evidence for solvation forces dictated by hydrogen bonding. Langmuir, 16(21), 7920-7930.

Gálvez, L.O., de Beer, S., van der Meer, D., & Pons, A. (2017). Dramatic effect of fluid chemistry on cornstarch suspensions: linking particle interactions to macroscopic rheology. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 95(3), 030602.

Chu, B., Brady, A.T., Mannhalter, B.D., & Salem, D.R. (2014). Effect of silica particle surface chemistry on the shear thickening behaviour of concentrated colloidal suspensions. J. Phys. D: Appl. Phys., 47(33), 335302.

Shan, L., Tian, Y., Jiang, J., Zhang, X., & Meng, Y. (2015). Effects of Ph on shear thinning and thickening behaviors of fumed silica suspensions. Colloids Surf., A, 464, 1-7.

Krishnamurthy, L.-N., Wagner, N.J., & Mewis, J. (2005). Shear thickening in polymer stabilized colloidal dispersions. J. Rheol., 49(6), 1347-1360.

Shenoy, S.S., & Wagner, N.J. (2005). Influence of medium viscosity and adsorbed polymer on the reversible shear thickening transition in concentrated colloidal dispersions. Rheol. Acta, 44(4), 360-371.

Brown, E., Forman, N.A., Orellana, C.S., Zhang, H., Maynor, B.W., Betts, D.E., DeSimone, J.M., & Jaeger, H.M. (2010). Generality of shear thickening in dense suspensions. Nat. Mater., 9(3), 220-224.

Gopalakrishnan, V., & Zukoski, C. (2004). Effect of attractions on shear thickening in dense suspensions. J. Rheol., 48(6), 1321-1344.

Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev., 104(10), 4303-4418.

Ding, J., Tian, T., Meng, Q., Guo, Z., Li, W., Zhang, P., Ciacchi, F.T., Huang, J., & Yang, W. (2013). Smart multifunctional fluids for lithium ion batteries: enhanced rate performance and intrinsic mechanical protection. Sci. Rep., 3, 2485.

Veith, G.M., Armstrong, B.L., Wang, H., Kalnaus, S., Tenhaeff, W.E., & Patterson, M.L. (2017). Shear thickening electrolytes for high impact resistant batteries. ACS Energy Lett., 2(9), 2084-2088.

Shen, B.H., Veith, G.M., Armstrong, B.L., Tenhaeff, W.E., & Sacci, R.L. (2017). Predictive design of shear-thickening electrolytes for safety considerations. J. Electrochem. Soc., 164(12), A2547-A2551.

Shen, B., Armstrong, B.L., Doucet, M., Heroux, L., Browning, J.F., Agamalian, M., Tenhaeff, W.E., & Veith, G.M. (2018). Shear thickening electrolyte built from sterically stabilized colloidal particles. ACS Appl. Mater. Interfaces, 10(11), 9424-9434.

Murphy, R.P., Hong, K.L., & Wagner, N.J. (2016). Thermoreversible gels composed of colloidal silica rods with short range attractions. Langmuir, 32(33), 8424-8435.

Belyakova, L.A., Varvarin, A.M., Lyashenko, D.Y., & Roik, N.V. (2003). Study of interaction of Poly(1-Vinyl-2-Pyrrolidone) with a surface of highly dispersed amorphous silica. J. Colloid Interface Sci., 264(1), 2-6.

Ewoldt, R.H., Johnston, M.T., & Caretta, L.M. (2015). Experimental challenges of shear rheology: how to avoid bad data. In Complex Fluids in Biological Systems, Springer, pp. 207-241.

Mewis, J., & Wagner, N.J. (2009). Thixotropy. Adv. Colloid Interface Sci., 147, 214-227.

Pednekar, S., Chun, J., & Morris, J.F. (2017). Simulation of shear thickening in attractive colloidal suspensions. Soft Matter, 13(9), 1773-1779.

Zaccarelli, E., & Poon, W.C. (2009). Colloidal glasses and gels: the interplay of bonding and caging. Proc. Natl. Acad. Sci. U.S.A., 106(36), 15203-15208.

Faroughi, S.A., & Huber, C. (2015). A generalized equation for rheology of emulsions and suspensions of deformable particles subjected to simple shear at low Reynolds number. Rheol. Acta, 54(2), 85-108.

Cwalina, C.D., Harrison, K.J., & Wagner, N.J. (2016). Rheology of cubic particles suspended in a Newtonian fluid. Soft Matter, 12(20), 4654-4665.

Trappe, V., Prasad, V., Cipelletti, L., Segre, P., & Weitz, D. (2001). Jamming phase diagram for attractive particles. Nature, 411(6839), 772.

Philipse, A. P. (1996). The random contact equation and its implications for (colloidal) rods in packings, suspensions, and anisotropic powders. Langmuir, 12(5), 1127-1133.

Krishnamurthy, L.N., & Wagner, N.J. (2005). Letter to the Editor: Comment on “Effect of attractions on shear thickening in dense suspensions”. J. Rheol., 49(3), 799-803.

Krishnamurthy, L.-N., & Wagner, N.J. (2005). The influence of weak attractive forces on the microstructure and rheology of colloidal dispersions. J. Rheol., 49(2), 475-499.

Eberle, A.P.R., Castaneda-Priego, R., Kim, J.M., & Wagner, N.J. (2012). Dynamical arrest, percolation, gelation, and glass formation in model nanoparticle dispersions with thermoreversible adhesive interactions. Langmuir, 28(3), 1866-1878.

Gao, J., Ndong, R.S., Shiflett, M.B., Wagner, N.J. (2015). Creating nanoparticle stability in ionic liquid [C4mim][Bf4] by inducing solvation layering. ACS Nano, 9(3), 3243-3253.

Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev., 104(10), 4303-4417.

Yoon, I.-N., Song, H.-K., Won, J., Kang, & Y.S. (2014). Shape dependence of SiO2 nanomaterials in a quasi-solid electrolyte for application in dye-sensitized solar cells. J. Phys. Chem. C, 118(8), 3918-3924.

Kuijk, A., van Blaaderen, A., & Imhof, A. (2011). Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio. J. Am. Chem. Soc., 133(8), 2346-2349.

Lai, C.Y., Trewyn, B.G., Jeftinija, D.M., Jeftinija, K., Xu, S., Jeftinija, S., & Lin, V.S.Y. (2003). A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J. Am. Chem. Soc., 125, 4451-4459.

Sinha, A., Chakraborty, A., & Jana, N.R. (2014). Dextran-gated, multifunctional mesoporous nanoparticle for glucose-responsive and targeted drug delivery. ACS Appl. Mater. Interfaces, 6, 22183-22191.

Kurtoglu, Y.E., Navath, R.S., Wang, B., Kannan, S., Romero, R., & Kannan, R.M. (2009). Poly(amidoamine) dendrimer-drug Conjugates with disulfide linkages for intracellular drug delivery. Biomaterials, 30, 2112-2121.

Kesharwani, P., Jain, K., & Jain, N. K. (2014). Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci., 39, 268-307.

Müller, R. H., Mäder, K., & Gohla, S. (2000). Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. Eur. J. Pharm. Biopharm., 50, 161-177.

Muchow, M., Maincent, P., & Müller, R.H. (2008). Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery. Drug Dev. Ind. Pharm., 34, 1394-1405.

Bae, Y., Fukushima, S., Harada, A., & Kataoka, K. (2003). Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew. Chem., Int. Ed., 42, 4640-4643.

Nasongkla, N., Bey, E., Ren, J., Ai, H., Khemtong, C., Guthi, J.S., Chin, S.F., Sherry, A.D., Boothman, D.A., & Gao, J. (2006). Multifunctional polymeric micelles as cancer-Targeted, MRI-ultrasensitive drug delivery systems. Nano Lett., 6, 2427-2430.

Lian, T., & Ho, R.J.Y. (2001). Trends and developments in liposome drug delivery systems. J. Pharm. Sci., 90, 667-680.

Allen, T.M., & Cullis, P.R. (2013). Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Delivery Rev., 65, 36-48.

Hamidi, M., Azadi, A., & Rafiei, P. (2008). Hydrogel nanoparticles in drug delivery. Adv. Drug Delivery Rev., 60, 1638-1649.

Merino, S., Martin, C., Kostarelos, K., Prato, M., & Vazquez, E. (2015). Nanocomposite hydrogels: 3D polymer-nanoparticle synergies for on-demand drug delivery. ACS Nano, 9, 4686-4697.

Chilkoti, A., Dreher, M.R., Meyer, D.E., & Raucher, D. (2002). Targeted drug delivery by thermally responsive polymers. Adv. Drug Delivery Rev., 54, 613-630.

Sawant, R.M., Hurley, J.P., Salmaso, S., Kale, A., Tolcheva, E., Levchenko, T.S., & Torchilin, V.P. (2006). “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjugate Chem., 17, 943-949.

Luo, Z., Cai, K., Hu, Y., Zhao, L., Liu, P., Duan, L., & Yang, W. (2011). Mesoporous silica nanoparticles end-capped with collagen: redox-responsive nanoreservoirs for targeted drug delivery. Angew. Chem., Int. Ed., 50, 640-643.

Cheng, R., Feng, F., Meng, F., Deng, C., Feijen, J., & Zhong, Z. (2011). Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J. Controlled Release, 152, 2-12.

Wang, Y., Wei, G., Zhang, X., Xu, F., Xiong, X., & Zhou, S. (2017). A step-by-step multiple stimuli-responsive nanoplatform for enhancing combined chemo-photodynamic therapy. Adv. Mater., 29, 1605357.

Ulbrich, K., Hola, K., Subr, V., Bakandritsos, A., Tucek, J., & Zboril, R. (2016). Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev., 116, 5338-5431.

Moradi, E., Vllasaliu, D., Garnett, M., Falcone, F., & Stolnik, S. (2012). Ligand density and clustering effects on endocytosis of folate modified nanoparticles. RSC Adv., 2, 3025-3033.

Saha, A., Basiruddin, S.K., Maity, A.R., & Jana, N.R. (2013). Synthesis of nanobioconjugates with a controlled average number of biomolecules between 1 and 100 per nanoparticle and observation of multivalency dependent interaction with proteins and cells. Langmuir, 29, 13917-13924.

Tang, Z., Li, D., Sun, H., Guo, X., Chen, Y., & Zhou, S. (2014). Quantitative control of active targeting of nanocarriers to tumor cells through optimization of folate ligand density. Biomaterials, 35, 8015-8027.

Dalal, C., Saha, A., & Jana, N. R. (2016). Nanoparticle multivalency directed shifting of cellular uptake mechanism. J. Phys. Chem. C, 120, 6778-6786.

Dalal, C., & Jana, N. R. (2017). Multivalency effect of TAT-peptide-functionalized nanoparticle in cellular endocytosis and subcellular trafficking. J. Phys. Chem. B, 121, 2942-2951.

Schmaljohann, D. (2006). Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Delivery Rev., 58, 1655-1670.

Gao, W., Chan, J.M., & Farokhzad, O.C. (2010). pH-responsive nanoparticles for drug delivery. Mol. Pharmaceutics, 7, 1913-1920.

Saha, A., Mohanta, S.C., Deka, K., Deb, P., & Devi, P.S. (2017). Surface-engineered multifunctional Eu:Gd2O3 nanoplates for targeted and pH-responsive drug delivery and imaging applications. ACS Appl. Mater. Interfaces, 9, 4126-4141.

Zhang, L., Guo, R., Yang, M., Jiang, X., & Liu, B. (2007). Thermo and pH dual-responsive nanoparticles for anti-cancer drug delivery. Adv. Mater., 19, 2988-2992.

Bikram, M., & West, J.L. (2008). Thermo-responsive systems for controlled drug delivery. Expert Opin. Drug Delivery, 5, 1077-1091.

Liu, J., Detrembleur, C., Debuigne, A., De Pauw-Gillet, M.C., Mornet, S., Vander Elst, L., Laurent, S., Duguet, E., & Jerome, C. (2014). Glucose-, pH- and thermo-responsive nanogels crosslinked by functional superparamagnetic maghemite nanoparticles as innovative drug delivery systems. J. Mater. Chem. B, 2, 1009-1023.

Luo, Z., Cai, K., Hu, Y., Li, J., Ding, X., Zhang, B., Xu, D., Yang, W., & Liu, P. (2012). Redox-responsive molecular nanoreservoirs for controlled intracellular anticancer drug delivery based on magnetic nanoparticles. Adv. Mater., 24, 431-435.

Wen, H., Dong, C., Dong, H., Shen, A., Xia, W., Cai, X., Song, Y., Li, X., Li, Y., & Shi, D. (2012). Engineered redox-responsive PEG detachment mechanism in PEGylated nano-graphene oxide for intracellular drug delivery. Small, 8, 760-769.

Shao, Y., Shi, C., Xu, G., Guo, D., & Luo, J. (2014). Photo and redox dual responsive reversibly cross-linked nanocarrier for efficient tumor-targeted drug delivery. ACS Appl. Mater. Interfaces, 6, 10381-10392.

Shi, C., Guo, X., Qu, Q., Tang, Z., Wang, Y., & Zhou, S. (2014). Actively targeted delivery of anticancer drug to tumor cells by redox-responsive star-shaped micelles. Biomaterials, 35, 8711-8722.

Yui, N., Okano, T., & Sakurai, Y. (1993). Photo-responsive degradation of heterogeneous hydrogels comprising crosslinked hyaluronic acid and lipid microspheres for temporal drug delivery. J. Controlled Release, 26, 141-145.

Mathiyazhakan, M., Wiraja, C., & Xu, C. (2018). A concise review of gold nanoparticles-based photo-responsive liposomes for controlled drug delivery. Nano-Micro Lett., 10, 10.

Yang, Y., Aw, J., Chen, K., Liu, F., Padmanabhan, P., Hou, Y., Cheng, Z., & Xing, B. (2011). Enzyme-responsive multifunctional magnetic nanoparticles for tumor intracellular drug delivery and imaging. Chem. - Asian J., 6, 1381-1389.

Hu, Q., Katti, P.S., & Gu, Z. (2014). Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale, 6, 12273-12286.

Huang, J., Shu, Q., Wang, L., Wu, H., Wang, A.Y., & Mao, H. (2015). Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine. Biomaterials, 39, 105-113.

Kim, J., Kim, H.S., Lee, N., Kim, T., Kim, H., Yu, T., Song, I.C., Moon, W.K., & Hyeon, T. (2008). Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem., Int. Ed., 47, 8438-8441.

Liong, M., Lu, J., Kovochich, M., Xia, T., Ruehm, S.G., Nel, A.E., Tamanoi, F., & Zink, J.I. (2008). Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano, 2, 889-896.

Taylor-Pashow, K.M.L., Della Rocca, J., Xie, Z., Tran, S., & Lin, W. (2009). Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J. Am. Chem. Soc., 131, 14261-14263.

Maity, A.R., Saha, A., Roy, A., & Jana, N. R. (2013). Folic acid functionalized nanoprobes for fluorescence-, dark-field-, and dual-imaging-based selective detection of cancer cells and tissue. ChemPlusChem, 78, 259-267.

Sun, C., Lee, J.S.H., & Zhang, M. (2008). Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Delivery Rev., 60, 1252-1265.

Yang, X., Hong, H., Grailer, J.J., Rowland, I.J., Javadi, A., Hurley, S.A., Xiao, Y., Yang, Y., Zhang, Y., Nickles, R.J., Cai, W., Steeber, D.A., & Gong, S. (2011). cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials, 32, 4151-4160.

Mukai, H., Ozaki, D., Cui, Y., Kuboyama, T., Yamato-Nagata, H., Onoe, K., Takahashi, M., Wada, Y., Imanishi, T., Kodama, T., Obika, S., Suzuki, M., Doi, H., & Watanabe, Y. (2014). Quantitative evaluation of the improvement in the pharmacokinetics of a nucleic acid drug delivery system by dynamic PET imaging with 18F-incorporated oligodeoxynucleotides. J. Controlled Release, 180, 92-99.

Hendriks, B., Shields, A., Siegel, B.A., Miller, K., Munster, P., Ma, C., Campbell, K., Moyo, V., Wickham, T., & Lo Russo, P. (2014). PET/CT imaging of 64Cu-labelled HER2 liposomal doxorubicin (64Cu-MM-302) quantifies variability of liposomal drug delivery to diverse tumor lesions in HER2-positive breast cancer patients. Ann. Oncol., 25, i19.

Lin, W., Yao, N., Zhang, X., & Zhang, L. (2017). pH-sensitive polymer-gold nanohybrid system for antitumor drug delivery and CT imaging. J. Controlled Release, 259, e14110.

Bridot, J.L., Faure, A.C., Laurent, S., Riviere, C., Billotey, C., Hiba, B., Janier, M., Josserand, V., Coll, J.L., Vander Elst, L., Muller, R., Roux, S., Perriat, P., & Tillement, O. (2007). Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J. Am. Chem. Soc., 129, 5076-5084.

Kim, J., Piao, Y., & Hyeon, T. (2009). Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem. Soc. Rev., 38, 372-390.

Saha, A., Basiruddin, S.K., Sarkar, R., Pradhan, N., & Jana, N.R. (2009). Functionalized plasmonic-fluorescent nanoparticles for imaging and detection. J. Phys. Chem. C, 113, 18492-18498.

Qi, J., Han, M.S., Chang, Y.C., & Tung, C.H. (2011). Developing visible fluorogenic ‘click-on’ dyes for cellular imaging. Bioconjugate Chem., 22, 1758-1762.

Zhu, S., Yang, Q., Antaris, A.L., Yue, J., Ma, Z., Wang, H., Huang, W., Wan, H., Wang, J., Diao, S., Zhang, B., Li, X., Zhong, Y., Yu, K., Hong, G., Luo, J., Liang, Y., & Dai, H. (2017). Molecular imaging of biological systems with a clickable dye in the broad 800- to 1,700-nm near-infrared window. Proc. Natl. Acad. Sci. U.S.A., 114, 962-967.

Bruchez, M., Jr., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A.P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science, 281, 2013-2016.

Kim, S., Lim, Y.T., Soltesz, E.G., De Grand, A.M., Lee, J., Nakayama, A., Parker, J.A., Mihaljevic, T., Laurence, R.G., Dor, D.M., Cohn, L.H., Bawendi, M.G., & Frangioni, J.V. (2004). Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol., 22, 93-97.

Derfus, A.M., Chan, W.C.W., & Bhatia, S.N. (2004). Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv. Mater., 16, 961-966.

Gnach, A., & Bednarkiewicz, A. (2012). Lanthanide-doped up-converting nanoparticles: merits and challenges. Nano Today, 7, 532-563.

Park, Y., Kim, H.M., Kim, J.H., Moon, K.C., Yoo, B., Lee, K.T., Lee, N., Choi, Y., Park, W., Ling, D., Na, K., Moon, W.K., Choi, S.H., Park, H.S., Yoon, S.Y., Suh, Y.D., Lee, S.H., & Hyeon, T. (2012). Theranostic probe based on lanthanide-doped nanoparticles for simultaneous in vivo dual-modal imaging and photodynamic therapy. Adv. Mater., 24, 5755-5761.

Ray, S.C., Saha, A., Jana, N.R., & Sarkar, R. (2009). Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J. Phys. Chem. C, 113, 18546-18551.

Bhunia, S.K., Saha, A., Maity, A.R., Ray, S.C., & Jana, N.R. (2013). Carbon nanoparticle-based fluorescent bioimaging probes. Sci. Rep., 3, 1473.

Das, P., Saha, A., Maity, A.R., Ray, S.C., Jana, N.R. (2013). Silicon nanoparticle based fluorescent biological label via low temperature thermal degradation of chloroalkylsilane. Nanoscale, 5, 5732-5737.

Pan, D., Zhang, J., Li, Z., & Wu, M. (2010). Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater., 22, 734-738.

Shen, J., Zhu, Y., Yang, X., & Li, C. (2012). Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun., 48, 3686-3699.

Renikuntla, B.R., Rose, H.C., Eldo, J., Waggoner, A. S., & Armitage, B.A. (2004). Improved photostability and fluorescence properties through polyfluorination of a cyanine dye. Org. Lett., 6, 909-912.

Guo, L., & Gai, F. (2013). Simple method to enhance the photostability of the fluorescence reporter R6G for prolonged single molecule studies. J. Phys. Chem. A, 117, 6164-6170.

Grimm, J.B., English, B.P., Chen, J., Slaughter, J.P., Zhang, Z., Revyakin, A., Patel, R., Macklin, J.J., Normanno, D., Singer, R.H., Lionnet, T., & Lavis, L.D. (2015). A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods, 12, 244-250.

Jiao, L., Song, F., Zhang, B., Ning, H., Cui, J., & Peng, X. (2017). Improving the brightness and photostability of NIR fluorescent silica nanoparticles through rational fine-tuning of the covalent encapsulation methods. J. Mater. Chem. B, 5, 5278-5283,

Kim, J., Lee, J. E., Lee, J., Yu, J. H., Kim, B. C., An, K., Hwang, Y., Shin, C. H., Park, J. G., Kim, J., & Hyeon, T. (2006). Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J. Am. Chem. Soc., 128, 688-689.

Corr, S.A., Rakovich, Y.P., & Gun’ko, Y.K. (2008). Multifunctional magnetic-fluorescent nanocomposites for biomedical applications. Nanoscale Res. Lett., 3, 87-104.

Saha, A., Basiruddin, S. K., Pradhan, N., & Jana, N. R. (2010). Ligand exchange approach in deriving magnetic-fluorescent and magnetic-plasmonic hybrid nanoparticle. Langmuir, 26, 4351-4356.

Jin, Y., & Gao, X. (2009). Plasmonic fluorescent quantum dots. Nat. Nanotechnol., 4, 571-576.

Bigall, N.C., Parak, W.J., & Dorfs, D. (2012). Fluorescent, magnetic and plasmonic-hybrid multifunctional colloidal nano objects. Nano Today, 7, 282-296.

Xu, Z., Hou, Y., & Sun, S. (2007). Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J. Am. Chem. Soc., 129, 8698-8699.

Fan, Z., Shelton, M., Singh, A. K., Senapati, D., Khan, S. A., & Ray, P. C. (2012). Multifunctional plasmonic shell-magnetic core nanoparticles for targeted diagnostics, isolation, and photothermal destruction of tumor cells. ACS Nano, 6, 1065-1073.

Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., & Ruoff, R.S. (2006). Graphene-based composite materials. Nature, 442, 282-286.

Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites. Chem. Soc. Rev., 41, 666-686.

Jiang, J., Gu, H., Shao, H., Devlin, E., Papaefthymiou, G.C., & Ying, J.Y. (2008). Bifunctional Fe3O4-Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation. Adv. Mater., 20, 4403-4407.

Deng, S., Ruan, G., Han, N., & Winter, J.O. (2010). Interactions in fluorescent-magnetic heterodimer nanocomposites. Nanotechnology, 21, 145605.

Basiruddin, S.K., Saha, A., Pradhan, N., & Jana, N.R. (2010). Advances in coating chemistry in deriving soluble functional nanoparticle. J. Phys. Chem. C, 114, 11009-11017.

Jia, G., You, H., Liu, K., Zheng, Y., Guo, N., & Zhang, H. (2010). Highly uniform Gd2O3 hollow microspheres: template-directed synthesis and luminescence properties. Langmuir, 26, 5122-5128.

Ahren, M., Selegard, L., Klasson, A., Soderlind, F., Abrikossova, N., Skoglund, C., Bengtsson, T., Engstrom, M., Kall, P.O., & Uvdal, K. (2010). Synthesis and characterization of PEGylated Gd2O3 nanoparticles for MRI contrast enhancement. Langmuir, 26, 5753-5762.

Dosev, D., Nichkova, M., Liu, M., Guo, B., Liu, G.Y., Hammock, B.D., & Kennedy, I.M. (2005). Application of luminescent Eu:Gd2O3 nanoparticles to the visualization of protein micropatterns. J. Biomed. Opt., 10, 064006.

Paik, T., Gordon, T.R., Prantner, A.M., Yun, H., & Murray, C.B. (2013). Designing tripodal and triangular gadolinium oxide nanoplates and self-assembled nanofibrils as potential multimodal bioimaging probes. ACS Nano, 7, 2850-2859.

Zhou, C., Wu, H., Huang, C., Wang, M., & Jia, N. (2014). Facile synthesis of single-phase mesoporous Gd2O3:Eu nanorods and their application for drug delivery and multimodal imaging. Part. Part. Syst. Charact., 31, 675-684.

Kim, W.J., Gwag, J.S., Kang, J.G., & Sohn, Y. (2014). Photoluminescence imaging of Eu(III), Eu(III)/Ag, Eu(III)/Tb(III), and Eu(III)/Tb(III)/Ag-doped Gd(OH)3 and Gd2O3 nanorods. Ceram. Int., 40, 12035-12044.

Wawrzynczyk, D., Samoc, M., & Nyk, M. (2015). Controlled synthesis of luminescent Gd2O3:Eu3+ nanoparticles by alkali ion doping. CrystEngComm, 17, 1997-2003.

Geng, Y., Dalhaimer, P., Cai, S., Tsai, R., Tewari, M., Minko, T., & Discher, D.E. (2007). Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol., 2, 249-255.

Toy, R., Peiris, P.M., Ghaghada, K.B., & Karathanasis, E. (2014). Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine, 9, 121-134.

Godwin, A.K., Meister, A., O’dwyer, P.J., Huang, C.S., Hamilton, T.C., & Anderson, M.E. (1992). High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc. Natl. Acad. Sci. U.S.A., 89, 3070-3074.

Balendiran, G.K., Dabur, R., & Fraser, D. (2004). The role of glutathione in cancer. Cell Biochem. Funct., 22, 343-352.

Gronow, M. (2010). Studies on the non-protein thiols of a human prostatic cancer cell line: glutathione content. Cancers, 2, 1092-1106.

Guo, X., Wei, X., Jing, Y., & Zhou, S. (2015). Size changeable nanocarriers with nuclear targeting for effectively overcoming multidrug resistance in cancer therapy. Adv. Mater., 27, 6450-6456.

Heidari, A., & Brown, C. (2015). Study of composition and morphology of cadmium oxide (CdO) nanoparticles for eliminating cancer cells, J Nanomed Res., 2(5), 20 pp.

Heidari, A. (2016). Pharmacogenomics and pharmacoproteomics studies of phosphodiesterase-5 (PDE5) inhibitors and paclitaxel albumin-stabilized nanoparticles as sandwiched anti-cancer nano drugs between two DNA/RNA molecules of human cancer cells, J Pharmacogenomics Pharmacoproteomics 7, e153.

Heidari, A., & Brown, C. (2015). Study of surface morphological, phytochemical and structural characteristics of rhodium (III) oxide (Rh2O3) nanoparticles, International Journal of Pharmacology, Phytochemistry and Ethnomedicine, 1(1), 15-19.

Heidari, A. (2016). Extraction and preconcentration of N-tolyl-sulfonyl-phosphoramid-saeure-dichlorid as an anti-cancer drug from plants: a pharmacognosy study, J Pharmacogn Nat Prod 2, e103.

] Heidari, A. (2016). A chemotherapeutic and biospectroscopic investigation of the interaction of double-standard DNA/RNA-binding molecules with cadmium oxide (CdO) and rhodium (III) oxide (Rh2O3) nanoparticles as anti-cancer drugs for cancer cells’ treatment, Chemo Open Access 5, e129.

Heidari, A. (2016). Linear and non-linear quantitative structure-anti-cancer-activity relationship (QSACAR) study of hydrous ruthenium (IV) oxide (RuO2) nanoparticles as non-nucleoside reverse transcriptase inhibitors (NNRTIs) and anti-cancer nano drugs, J Integr Oncol 5, e110.

Heidari, A. (2016). Genomics and proteomics studies of zolpidem, necopidem, alpidem, saripidem, miroprofen, zolimidine, olprinone and abafungin as anti-tumor, peptide antibiotics, antiviral and central nervous system (CNS) drugs, J Data Mining Genomics & Proteomics 7, e125.

How to Cite
Heidari, A. (2022). Study of DNA/RNA Aggregation Linked to Cadmium Oxide (CdO) Nanoparticles by Aryl Mercaptanes with Various Chain Length. Earthline Journal of Chemical Sciences, 8(1), 13-34.