Study of DNA/RNA Aggregation Linked to Cadmium Oxide (CdO) Nanoparticles by Aryl Mercaptanes with Various Chain Length

  • Alireza Heidari Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
Keywords: aryl mercaptans, peak Plasmon absorption, aggregation, CdO nanoparticles, DNA/RNA

Abstract

CdO nanoparticles show a strong peak of Plasmon absorption in ultraviolet-visible zone. A strong interaction exists between the surface of CdO nanoparticles and aryl mercaptan compounds. Aryl mercaptan compounds cause to aggregation of CdO nanoparticles linked to DNA/RNA and hence, lead to widening of peak Plasmon of CdO nanoparticles surface at 550 (nm) and emerging a new peak at higher wavelength. In the current project, this optical characteristic of CdO nanoparticles is used to time investigate of interaction between different aryl mercaptanes and CdO nanoparticles. The results were shown that aryl mercaptan compounds with shorter chain length interact faster with CdO nanoparticles. Therefore, a simple and fast method for identification of aryl mercaptanes with various chain length using red shift in surficial Plasmon absorption is presented.

2022-03-08_21_19_53-Proofs_-_EJCS-2202384_-_Microsoft_Word.png

Schematic of Cadmium Oxide (CdO) Nanoparticles Aggregation Linked to DNA/RNA by Aryl Mercaptanes with Various Chain Length.

Author Biography

Alireza Heidari, Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA

BioSpectroscopy Core Research Laboratory, California South University, 14731 Comet St. Irvine, CA 92604, USA

Cancer Research Institute (CRI), California South University, 14731 Comet St. Irvine, CA 92604, USA

American International Standards Institute, Irvine, CA 3800, USA

References

Galindo-Rosales, F.J. (2016). Complex fluids in energy dissipating systems. Appl. Sci., 6(8), 206. https://doi.org/10.3390/app6080206

Tian, T., & Nakano, M. (2017). Design and testing of a rotational brake with shear thickening fluids. Smart Mater. Struct., 26(3), 035038. https://doi.org/10.1088/1361-665X/aa5a2c

Cohen, D. (2008). Shear-Thickening Fluid Reinforced Fabrics for Use with an Expandable Spacecraft, Patent No. US20080296435A1.

Decker, M.J., Halbach, C.J., Nam, C.H., Wagner, N.J., & Wetzel, E.D. (2007). Stab resistance of shear thickening fluid (Stf)-treated fabrics. Compos. Sci. Technol., 67(3-4), 565-578. https://doi.org/10.1016/j.compscitech.2006.08.007

Lee, Y.S., Wetzel, E.D., & Wagner, N.J. (2003). The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid. J. Mater. Sci., 38(13), 2825-2833. https://doi.org/10.1023/A:1024424200221

Mewis, J., & Wagner, N.J. (2012). Colloidal Suspension Rheology, Cambridge University Press.

Wagner, N.J., & Brady, J.F. (2009). Shear thickening in colloidal dispersions. Phys. Today, 62(10), 27-32. https://doi.org/10.1063/1.3248476

Brown, E., & Jaeger, H. M. (2014). Shear thickening in concentrated suspensions: phenomenology, mechanisms and relations to jamming. Rep. Prog. Phys., 77(4), 046602. https://doi.org/10.1088/0034-4885/77/4/046602

Maranzano, B.J., & Wagner, N.J. (2001). The effects of particle-size on reversible shear thickening of concentrated colloidal dispersions. J. Chem. Phys., 114(23), 10514-10527. https://doi.org/10.1063/1.1373687

Bender, J.W., & Wagner, N.J. (1995). Optical measurement of the contributions of colloidal forces to the rheology of concentrated suspensions. J. Colloid Interface Sci., 172 (1), 171-184. https://doi.org/10.1006/jcis.1995.1240

Bender, J., & Wagner, N.J. (1996). Reversible shear thickening in monodisperse and bidisperse colloidal dispersions. J. Rheol., 40(5), 899-916. https://doi.org/10.1122/1.550767

Foss, D.R., & Brady, J.F. (2000). Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation. J. Fluid Mech., 407, 167-200. https://doi.org/10.1017/S0022112099007557

Seto, R., Mari, R., Morris, J.F., & Denn, M.M. (2013). Discontinuous shear thickening of frictional hard-sphere suspensions. Phys. Rev. Lett., 111(21), 218301. https://doi.org/10.1103/PhysRevLett.111.218301

Guy, B., Hermes, M., & Poon, W. (2015). Towards a unified description of the rheology of hard-particle suspensions. Phys. Rev. Lett., 115(8), 088304. https://doi.org/10.1103/PhysRevLett.115.088304

Mari, R., Seto, R., Morris, J.F., & Denn, M.M. (2014). Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions. J. Rheol., 58(6), 1693-1724. https://doi.org/10.1122/1.4890747

Clavaud, C., Bérut, A., Metzger, B., & Forterre, Y. (2017). Revealing the frictional transition in shear-thickening suspensions. Proc. Natl. Acad. Sci. U.S.A., 114, 5147. https://doi.org/10.1073/pnas.1703926114

Royer, J.R., Blair, D.L., & Hudson, S.D. (2016). Rheological signature of frictional interactions in shear thickening suspensions. Phys. Rev. Lett., 116(18), 188301. https://doi.org/10.1103/PhysRevLett.116.188301

Comtet, J., Chatté, G., Niguès, A., Bocquet, L., Siria, A., & Colin, A. (2017). Pairwise frictional profile between particles determines discontinuous shear thickening transition in non-colloidal suspensions. Nat. Commun., 8, 15633. https://doi.org/10.1038/ncomms15633

Lin, N. Y., Guy, B. M., Hermes, M., Ness, C., Sun, J., Poon, W. C., & Cohen, I. (2015). Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions. Phys. Rev. Lett., 115(22), 228304. https://doi.org/10.1103/PhysRevLett.115.228304

Wyart, M., & Cates, M.E. (2014). Discontinuous shear thickening without inertia in dense non-Brownian suspensions. Phys. Rev. Lett., 112(9), 1. https://doi.org/10.1103/PhysRevLett.112.098302

Cates, M.E., Wittmer, J.P., Bouchaud, J.P., & Claudin, P. (1998). Jamming, force chains, and fragile matter. Phys. Rev. Lett., 81(9), 1841-1844. https://doi.org/10.1103/PhysRevLett.81.1841

Peters, I.R., Majumdar, S., & Jaeger, H.M. (2016). Direct observation of dynamic shear jamming in dense suspensions. Nature, 532(7598), 214-217. https://doi.org/10.1038/nature17167

Waitukaitis, S.R., & Jaeger, H.M. (2012). Impact-activated solidification of dense suspensions via dynamic jamming fronts. Nature, 487(7406), 205-209. https://doi.org/10.1038/nature11187

Han, E., Peters, I.R., & Jaeger, H.M. (2016). High-speed ultrasound imaging in dense suspensions reveals impact-activated solidification due to dynamic shear jamming. Nat. Commun., 7, 12243. https://doi.org/10.1038/ncomms12243

Maranzano, B.J., & Wagner, N.J. (2001). The effects of interparticle interactions and particle size on reversible shear thickening: hard-sphere colloidal dispersions. J. Rheol., 45(5), 1205-1222. https://doi.org/10.1122/1.1392295

Egres, R.G., Nettesheim, F., Wagner, N.J. (2006). Rheo-Sans investigation of acicular-precipitated calcium carbonate colloidal suspensions through the shear thickening transition. J. Rheol., 50(5), 685-709. https://doi.org/10.1122/1.2213245

Egres, R.G., Wagner, N.J. (2005). The rheology and microstructure of acicular precipitated calcium carbonate colloidal suspensions through the shear thickening transition. J. Rheol., 49(3), 719-746. https://doi.org/10.1122/1.1895800

Brown, E., Zhang, H., Forman, N.A., Maynor, B.W., Betts, D.E., DeSimone, J.M., & Jaeger, H.M. (2011). Shear thickening and jamming in densely packed suspensions of different particle shapes. Phys. Rev. E, 84(3), 031408. https://doi.org/10.1103/PhysRevE.84.031408

Raghavan, S.R., Walls, H., & Khan, S. A. (2000). Rheology of silica dispersions in organic liquids: new evidence for solvation forces dictated by hydrogen bonding. Langmuir, 16(21), 7920-7930. https://doi.org/10.1021/la991548q

Gálvez, L.O., de Beer, S., van der Meer, D., & Pons, A. (2017). Dramatic effect of fluid chemistry on cornstarch suspensions: linking particle interactions to macroscopic rheology. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 95(3), 030602. https://doi.org/10.1103/PhysRevE.95.030602

Chu, B., Brady, A.T., Mannhalter, B.D., & Salem, D.R. (2014). Effect of silica particle surface chemistry on the shear thickening behaviour of concentrated colloidal suspensions. J. Phys. D: Appl. Phys., 47(33), 335302. https://doi.org/10.1088/0022-3727/47/33/335302

Shan, L., Tian, Y., Jiang, J., Zhang, X., & Meng, Y. (2015). Effects of Ph on shear thinning and thickening behaviors of fumed silica suspensions. Colloids Surf., A, 464, 1-7. https://doi.org/10.1016/j.colsurfa.2014.09.040

Krishnamurthy, L.-N., Wagner, N.J., & Mewis, J. (2005). Shear thickening in polymer stabilized colloidal dispersions. J. Rheol., 49(6), 1347-1360. https://doi.org/10.1122/1.2039867

Shenoy, S.S., & Wagner, N.J. (2005). Influence of medium viscosity and adsorbed polymer on the reversible shear thickening transition in concentrated colloidal dispersions. Rheol. Acta, 44(4), 360-371. https://doi.org/10.1007/s00397-004-0418-z

Brown, E., Forman, N.A., Orellana, C.S., Zhang, H., Maynor, B.W., Betts, D.E., DeSimone, J.M., & Jaeger, H.M. (2010). Generality of shear thickening in dense suspensions. Nat. Mater., 9(3), 220-224. https://doi.org/10.1038/nmat2627

Gopalakrishnan, V., & Zukoski, C. (2004). Effect of attractions on shear thickening in dense suspensions. J. Rheol., 48(6), 1321-1344. https://doi.org/10.1122/1.1784785

Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev., 104(10), 4303-4418. https://doi.org/10.1021/cr030203g

Ding, J., Tian, T., Meng, Q., Guo, Z., Li, W., Zhang, P., Ciacchi, F.T., Huang, J., & Yang, W. (2013). Smart multifunctional fluids for lithium ion batteries: enhanced rate performance and intrinsic mechanical protection. Sci. Rep., 3, 2485. https://doi.org/10.1038/srep02485

Veith, G.M., Armstrong, B.L., Wang, H., Kalnaus, S., Tenhaeff, W.E., & Patterson, M.L. (2017). Shear thickening electrolytes for high impact resistant batteries. ACS Energy Lett., 2(9), 2084-2088. https://doi.org/10.1021/acsenergylett.7b00511

Shen, B.H., Veith, G.M., Armstrong, B.L., Tenhaeff, W.E., & Sacci, R.L. (2017). Predictive design of shear-thickening electrolytes for safety considerations. J. Electrochem. Soc., 164(12), A2547-A2551. https://doi.org/10.1149/2.1171712jes

Shen, B., Armstrong, B.L., Doucet, M., Heroux, L., Browning, J.F., Agamalian, M., Tenhaeff, W.E., & Veith, G.M. (2018). Shear thickening electrolyte built from sterically stabilized colloidal particles. ACS Appl. Mater. Interfaces, 10(11), 9424-9434. https://doi.org/10.1021/acsami.7b19441

Murphy, R.P., Hong, K.L., & Wagner, N.J. (2016). Thermoreversible gels composed of colloidal silica rods with short range attractions. Langmuir, 32(33), 8424-8435. https://doi.org/10.1021/acs.langmuir.6b02107

Belyakova, L.A., Varvarin, A.M., Lyashenko, D.Y., & Roik, N.V. (2003). Study of interaction of Poly(1-Vinyl-2-Pyrrolidone) with a surface of highly dispersed amorphous silica. J. Colloid Interface Sci., 264(1), 2-6. https://doi.org/10.1016/S0021-9797(03)00395-3

Ewoldt, R.H., Johnston, M.T., & Caretta, L.M. (2015). Experimental challenges of shear rheology: how to avoid bad data. In Complex Fluids in Biological Systems, Springer, pp. 207-241.

Mewis, J., & Wagner, N.J. (2009). Thixotropy. Adv. Colloid Interface Sci., 147, 214-227. https://doi.org/10.1016/j.cis.2008.09.005

Pednekar, S., Chun, J., & Morris, J.F. (2017). Simulation of shear thickening in attractive colloidal suspensions. Soft Matter, 13(9), 1773-1779. https://doi.org/10.1039/C6SM02553F

Zaccarelli, E., & Poon, W.C. (2009). Colloidal glasses and gels: the interplay of bonding and caging. Proc. Natl. Acad. Sci. U.S.A., 106(36), 15203-15208. https://doi.org/10.1073/pnas.0902294106

Faroughi, S.A., & Huber, C. (2015). A generalized equation for rheology of emulsions and suspensions of deformable particles subjected to simple shear at low Reynolds number. Rheol. Acta, 54(2), 85-108. https://doi.org/10.1007/s00397-014-0825-8

Cwalina, C.D., Harrison, K.J., & Wagner, N.J. (2016). Rheology of cubic particles suspended in a Newtonian fluid. Soft Matter, 12(20), 4654-4665. https://doi.org/10.1039/C6SM00205F

Trappe, V., Prasad, V., Cipelletti, L., Segre, P., & Weitz, D. (2001). Jamming phase diagram for attractive particles. Nature, 411(6839), 772. https://doi.org/10.1038/35081021

Philipse, A. P. (1996). The random contact equation and its implications for (colloidal) rods in packings, suspensions, and anisotropic powders. Langmuir, 12(5), 1127-1133. https://doi.org/10.1021/la950671o

Krishnamurthy, L.N., & Wagner, N.J. (2005). Letter to the Editor: Comment on “Effect of attractions on shear thickening in dense suspensions”. J. Rheol., 49(3), 799-803. https://doi.org/10.1122/1.1895797

Krishnamurthy, L.-N., & Wagner, N.J. (2005). The influence of weak attractive forces on the microstructure and rheology of colloidal dispersions. J. Rheol., 49(2), 475-499. https://doi.org/10.1122/1.1859792

Eberle, A.P.R., Castaneda-Priego, R., Kim, J.M., & Wagner, N.J. (2012). Dynamical arrest, percolation, gelation, and glass formation in model nanoparticle dispersions with thermoreversible adhesive interactions. Langmuir, 28(3), 1866-1878. https://doi.org/10.1021/la2035054

Gao, J., Ndong, R.S., Shiflett, M.B., Wagner, N.J. (2015). Creating nanoparticle stability in ionic liquid [C4mim][Bf4] by inducing solvation layering. ACS Nano, 9(3), 3243-3253. https://doi.org/10.1021/acsnano.5b00354

Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev., 104(10), 4303-4417. https://doi.org/10.1021/cr030203g

Yoon, I.-N., Song, H.-K., Won, J., Kang, & Y.S. (2014). Shape dependence of SiO2 nanomaterials in a quasi-solid electrolyte for application in dye-sensitized solar cells. J. Phys. Chem. C, 118(8), 3918-3924. https://doi.org/10.1021/jp4104454

Kuijk, A., van Blaaderen, A., & Imhof, A. (2011). Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio. J. Am. Chem. Soc., 133(8), 2346-2349. https://doi.org/10.1021/ja109524h

Lai, C.Y., Trewyn, B.G., Jeftinija, D.M., Jeftinija, K., Xu, S., Jeftinija, S., & Lin, V.S.Y. (2003). A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J. Am. Chem. Soc., 125, 4451-4459. https://doi.org/10.1021/ja028650l

Sinha, A., Chakraborty, A., & Jana, N.R. (2014). Dextran-gated, multifunctional mesoporous nanoparticle for glucose-responsive and targeted drug delivery. ACS Appl. Mater. Interfaces, 6, 22183-22191. https://doi.org/10.1021/am505848p

Kurtoglu, Y.E., Navath, R.S., Wang, B., Kannan, S., Romero, R., & Kannan, R.M. (2009). Poly(amidoamine) dendrimer-drug Conjugates with disulfide linkages for intracellular drug delivery. Biomaterials, 30, 2112-2121. https://doi.org/10.1016/j.biomaterials.2008.12.054

Kesharwani, P., Jain, K., & Jain, N. K. (2014). Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci., 39, 268-307. https://doi.org/10.1016/j.progpolymsci.2013.07.005

Müller, R. H., Mäder, K., & Gohla, S. (2000). Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. Eur. J. Pharm. Biopharm., 50, 161-177. https://doi.org/10.1016/S0939-6411(00)00087-4

Muchow, M., Maincent, P., & Müller, R.H. (2008). Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery. Drug Dev. Ind. Pharm., 34, 1394-1405. https://doi.org/10.1080/03639040802130061

Bae, Y., Fukushima, S., Harada, A., & Kataoka, K. (2003). Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew. Chem., Int. Ed., 42, 4640-4643. https://doi.org/10.1002/anie.200250653

Nasongkla, N., Bey, E., Ren, J., Ai, H., Khemtong, C., Guthi, J.S., Chin, S.F., Sherry, A.D., Boothman, D.A., & Gao, J. (2006). Multifunctional polymeric micelles as cancer-Targeted, MRI-ultrasensitive drug delivery systems. Nano Lett., 6, 2427-2430. https://doi.org/10.1021/nl061412u

Lian, T., & Ho, R.J.Y. (2001). Trends and developments in liposome drug delivery systems. J. Pharm. Sci., 90, 667-680. https://doi.org/10.1002/jps.1023

Allen, T.M., & Cullis, P.R. (2013). Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Delivery Rev., 65, 36-48. https://doi.org/10.1016/j.addr.2012.09.037

Hamidi, M., Azadi, A., & Rafiei, P. (2008). Hydrogel nanoparticles in drug delivery. Adv. Drug Delivery Rev., 60, 1638-1649. https://doi.org/10.1016/j.addr.2008.08.002

Merino, S., Martin, C., Kostarelos, K., Prato, M., & Vazquez, E. (2015). Nanocomposite hydrogels: 3D polymer-nanoparticle synergies for on-demand drug delivery. ACS Nano, 9, 4686-4697. https://doi.org/10.1021/acsnano.5b01433

Chilkoti, A., Dreher, M.R., Meyer, D.E., & Raucher, D. (2002). Targeted drug delivery by thermally responsive polymers. Adv. Drug Delivery Rev., 54, 613-630. https://doi.org/10.1016/S0169-409X(02)00041-8

Sawant, R.M., Hurley, J.P., Salmaso, S., Kale, A., Tolcheva, E., Levchenko, T.S., & Torchilin, V.P. (2006). “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjugate Chem., 17, 943-949. https://doi.org/10.1021/bc060080h

Luo, Z., Cai, K., Hu, Y., Zhao, L., Liu, P., Duan, L., & Yang, W. (2011). Mesoporous silica nanoparticles end-capped with collagen: redox-responsive nanoreservoirs for targeted drug delivery. Angew. Chem., Int. Ed., 50, 640-643. https://doi.org/10.1002/anie.201005061

Cheng, R., Feng, F., Meng, F., Deng, C., Feijen, J., & Zhong, Z. (2011). Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J. Controlled Release, 152, 2-12. https://doi.org/10.1016/j.jconrel.2011.01.030

Wang, Y., Wei, G., Zhang, X., Xu, F., Xiong, X., & Zhou, S. (2017). A step-by-step multiple stimuli-responsive nanoplatform for enhancing combined chemo-photodynamic therapy. Adv. Mater., 29, 1605357. https://doi.org/10.1002/adma.201605357

Ulbrich, K., Hola, K., Subr, V., Bakandritsos, A., Tucek, J., & Zboril, R. (2016). Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev., 116, 5338-5431. https://doi.org/10.1021/acs.chemrev.5b00589

Moradi, E., Vllasaliu, D., Garnett, M., Falcone, F., & Stolnik, S. (2012). Ligand density and clustering effects on endocytosis of folate modified nanoparticles. RSC Adv., 2, 3025-3033. https://doi.org/10.1039/c2ra01168a

Saha, A., Basiruddin, S.K., Maity, A.R., & Jana, N.R. (2013). Synthesis of nanobioconjugates with a controlled average number of biomolecules between 1 and 100 per nanoparticle and observation of multivalency dependent interaction with proteins and cells. Langmuir, 29, 13917-13924. https://doi.org/10.1021/la402699a

Tang, Z., Li, D., Sun, H., Guo, X., Chen, Y., & Zhou, S. (2014). Quantitative control of active targeting of nanocarriers to tumor cells through optimization of folate ligand density. Biomaterials, 35, 8015-8027. https://doi.org/10.1016/j.biomaterials.2014.05.091

Dalal, C., Saha, A., & Jana, N. R. (2016). Nanoparticle multivalency directed shifting of cellular uptake mechanism. J. Phys. Chem. C, 120, 6778-6786. https://doi.org/10.1021/acs.jpcc.5b11059

Dalal, C., & Jana, N. R. (2017). Multivalency effect of TAT-peptide-functionalized nanoparticle in cellular endocytosis and subcellular trafficking. J. Phys. Chem. B, 121, 2942-2951. https://doi.org/10.1021/acs.jpcb.6b12182

Schmaljohann, D. (2006). Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Delivery Rev., 58, 1655-1670. https://doi.org/10.1016/j.addr.2006.09.020

Gao, W., Chan, J.M., & Farokhzad, O.C. (2010). pH-responsive nanoparticles for drug delivery. Mol. Pharmaceutics, 7, 1913-1920. https://doi.org/10.1021/mp100253e

Saha, A., Mohanta, S.C., Deka, K., Deb, P., & Devi, P.S. (2017). Surface-engineered multifunctional Eu:Gd2O3 nanoplates for targeted and pH-responsive drug delivery and imaging applications. ACS Appl. Mater. Interfaces, 9, 4126-4141. https://doi.org/10.1021/acsami.6b12804

Zhang, L., Guo, R., Yang, M., Jiang, X., & Liu, B. (2007). Thermo and pH dual-responsive nanoparticles for anti-cancer drug delivery. Adv. Mater., 19, 2988-2992. https://doi.org/10.1002/adma.200601817

Bikram, M., & West, J.L. (2008). Thermo-responsive systems for controlled drug delivery. Expert Opin. Drug Delivery, 5, 1077-1091. https://doi.org/10.1517/17425247.5.10.1077

Liu, J., Detrembleur, C., Debuigne, A., De Pauw-Gillet, M.C., Mornet, S., Vander Elst, L., Laurent, S., Duguet, E., & Jerome, C. (2014). Glucose-, pH- and thermo-responsive nanogels crosslinked by functional superparamagnetic maghemite nanoparticles as innovative drug delivery systems. J. Mater. Chem. B, 2, 1009-1023. https://doi.org/10.1039/c3tb21272f

Luo, Z., Cai, K., Hu, Y., Li, J., Ding, X., Zhang, B., Xu, D., Yang, W., & Liu, P. (2012). Redox-responsive molecular nanoreservoirs for controlled intracellular anticancer drug delivery based on magnetic nanoparticles. Adv. Mater., 24, 431-435. https://doi.org/10.1002/adma.201103458

Wen, H., Dong, C., Dong, H., Shen, A., Xia, W., Cai, X., Song, Y., Li, X., Li, Y., & Shi, D. (2012). Engineered redox-responsive PEG detachment mechanism in PEGylated nano-graphene oxide for intracellular drug delivery. Small, 8, 760-769. https://doi.org/10.1002/smll.201101613

Shao, Y., Shi, C., Xu, G., Guo, D., & Luo, J. (2014). Photo and redox dual responsive reversibly cross-linked nanocarrier for efficient tumor-targeted drug delivery. ACS Appl. Mater. Interfaces, 6, 10381-10392. https://doi.org/10.1021/am501913m

Shi, C., Guo, X., Qu, Q., Tang, Z., Wang, Y., & Zhou, S. (2014). Actively targeted delivery of anticancer drug to tumor cells by redox-responsive star-shaped micelles. Biomaterials, 35, 8711-8722. https://doi.org/10.1016/j.biomaterials.2014.06.036

Yui, N., Okano, T., & Sakurai, Y. (1993). Photo-responsive degradation of heterogeneous hydrogels comprising crosslinked hyaluronic acid and lipid microspheres for temporal drug delivery. J. Controlled Release, 26, 141-145. https://doi.org/10.1016/0168-3659(93)90113-J

Mathiyazhakan, M., Wiraja, C., & Xu, C. (2018). A concise review of gold nanoparticles-based photo-responsive liposomes for controlled drug delivery. Nano-Micro Lett., 10, 10. https://doi.org/10.1007/s40820-017-0166-0

Yang, Y., Aw, J., Chen, K., Liu, F., Padmanabhan, P., Hou, Y., Cheng, Z., & Xing, B. (2011). Enzyme-responsive multifunctional magnetic nanoparticles for tumor intracellular drug delivery and imaging. Chem. - Asian J., 6, 1381-1389. https://doi.org/10.1002/asia.201000905

Hu, Q., Katti, P.S., & Gu, Z. (2014). Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale, 6, 12273-12286. https://doi.org/10.1039/C4NR04249B

Huang, J., Shu, Q., Wang, L., Wu, H., Wang, A.Y., & Mao, H. (2015). Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine. Biomaterials, 39, 105-113. https://doi.org/10.1016/j.biomaterials.2014.10.059

Kim, J., Kim, H.S., Lee, N., Kim, T., Kim, H., Yu, T., Song, I.C., Moon, W.K., & Hyeon, T. (2008). Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem., Int. Ed., 47, 8438-8441. https://doi.org/10.1002/anie.200802469

Liong, M., Lu, J., Kovochich, M., Xia, T., Ruehm, S.G., Nel, A.E., Tamanoi, F., & Zink, J.I. (2008). Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano, 2, 889-896. https://doi.org/10.1021/nn800072t

Taylor-Pashow, K.M.L., Della Rocca, J., Xie, Z., Tran, S., & Lin, W. (2009). Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J. Am. Chem. Soc., 131, 14261-14263. https://doi.org/10.1021/ja906198y

Maity, A.R., Saha, A., Roy, A., & Jana, N. R. (2013). Folic acid functionalized nanoprobes for fluorescence-, dark-field-, and dual-imaging-based selective detection of cancer cells and tissue. ChemPlusChem, 78, 259-267. https://doi.org/10.1002/cplu.201200296

Sun, C., Lee, J.S.H., & Zhang, M. (2008). Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Delivery Rev., 60, 1252-1265. https://doi.org/10.1016/j.addr.2008.03.018

Yang, X., Hong, H., Grailer, J.J., Rowland, I.J., Javadi, A., Hurley, S.A., Xiao, Y., Yang, Y., Zhang, Y., Nickles, R.J., Cai, W., Steeber, D.A., & Gong, S. (2011). cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials, 32, 4151-4160. https://doi.org/10.1016/j.biomaterials.2011.02.006

Mukai, H., Ozaki, D., Cui, Y., Kuboyama, T., Yamato-Nagata, H., Onoe, K., Takahashi, M., Wada, Y., Imanishi, T., Kodama, T., Obika, S., Suzuki, M., Doi, H., & Watanabe, Y. (2014). Quantitative evaluation of the improvement in the pharmacokinetics of a nucleic acid drug delivery system by dynamic PET imaging with 18F-incorporated oligodeoxynucleotides. J. Controlled Release, 180, 92-99. https://doi.org/10.1016/j.jconrel.2014.02.014

Hendriks, B., Shields, A., Siegel, B.A., Miller, K., Munster, P., Ma, C., Campbell, K., Moyo, V., Wickham, T., & Lo Russo, P. (2014). PET/CT imaging of 64Cu-labelled HER2 liposomal doxorubicin (64Cu-MM-302) quantifies variability of liposomal drug delivery to diverse tumor lesions in HER2-positive breast cancer patients. Ann. Oncol., 25, i19. https://doi.org/10.1093/annonc/mdu068.1

Lin, W., Yao, N., Zhang, X., & Zhang, L. (2017). pH-sensitive polymer-gold nanohybrid system for antitumor drug delivery and CT imaging. J. Controlled Release, 259, e14110. https://doi.org/1016/j.jconrel.2017.03.286

Bridot, J.L., Faure, A.C., Laurent, S., Riviere, C., Billotey, C., Hiba, B., Janier, M., Josserand, V., Coll, J.L., Vander Elst, L., Muller, R., Roux, S., Perriat, P., & Tillement, O. (2007). Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J. Am. Chem. Soc., 129, 5076-5084. https://doi.org/10.1021/ja068356j

Kim, J., Piao, Y., & Hyeon, T. (2009). Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem. Soc. Rev., 38, 372-390. https://doi.org/10.1039/B709883A

Saha, A., Basiruddin, S.K., Sarkar, R., Pradhan, N., & Jana, N.R. (2009). Functionalized plasmonic-fluorescent nanoparticles for imaging and detection. J. Phys. Chem. C, 113, 18492-18498. https://doi.org/10.1021/jp904791h

Qi, J., Han, M.S., Chang, Y.C., & Tung, C.H. (2011). Developing visible fluorogenic ‘click-on’ dyes for cellular imaging. Bioconjugate Chem., 22, 1758-1762. https://doi.org/10.1021/bc200282t

Zhu, S., Yang, Q., Antaris, A.L., Yue, J., Ma, Z., Wang, H., Huang, W., Wan, H., Wang, J., Diao, S., Zhang, B., Li, X., Zhong, Y., Yu, K., Hong, G., Luo, J., Liang, Y., & Dai, H. (2017). Molecular imaging of biological systems with a clickable dye in the broad 800- to 1,700-nm near-infrared window. Proc. Natl. Acad. Sci. U.S.A., 114, 962-967. https://doi.org/10.1073/pnas.1617990114

Bruchez, M., Jr., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A.P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science, 281, 2013-2016. https://doi.org/10.1126/science.281.5385.2013

Kim, S., Lim, Y.T., Soltesz, E.G., De Grand, A.M., Lee, J., Nakayama, A., Parker, J.A., Mihaljevic, T., Laurence, R.G., Dor, D.M., Cohn, L.H., Bawendi, M.G., & Frangioni, J.V. (2004). Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol., 22, 93-97. https://doi.org/10.1038/nbt920

Derfus, A.M., Chan, W.C.W., & Bhatia, S.N. (2004). Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv. Mater., 16, 961-966. https://doi.org/10.1002/adma.200306111

Gnach, A., & Bednarkiewicz, A. (2012). Lanthanide-doped up-converting nanoparticles: merits and challenges. Nano Today, 7, 532-563. https://doi.org/10.1016/j.nantod.2012.10.006

Park, Y., Kim, H.M., Kim, J.H., Moon, K.C., Yoo, B., Lee, K.T., Lee, N., Choi, Y., Park, W., Ling, D., Na, K., Moon, W.K., Choi, S.H., Park, H.S., Yoon, S.Y., Suh, Y.D., Lee, S.H., & Hyeon, T. (2012). Theranostic probe based on lanthanide-doped nanoparticles for simultaneous in vivo dual-modal imaging and photodynamic therapy. Adv. Mater., 24, 5755-5761. https://doi.org/10.1002/adma.201202433

Ray, S.C., Saha, A., Jana, N.R., & Sarkar, R. (2009). Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J. Phys. Chem. C, 113, 18546-18551. https://doi.org/10.1021/jp905912n

Bhunia, S.K., Saha, A., Maity, A.R., Ray, S.C., & Jana, N.R. (2013). Carbon nanoparticle-based fluorescent bioimaging probes. Sci. Rep., 3, 1473. https://doi.org/10.1038/srep01473

Das, P., Saha, A., Maity, A.R., Ray, S.C., Jana, N.R. (2013). Silicon nanoparticle based fluorescent biological label via low temperature thermal degradation of chloroalkylsilane. Nanoscale, 5, 5732-5737. https://doi.org/10.1039/c3nr00932g

Pan, D., Zhang, J., Li, Z., & Wu, M. (2010). Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater., 22, 734-738. https://doi.org/10.1002/adma.200902825

Shen, J., Zhu, Y., Yang, X., & Li, C. (2012). Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun., 48, 3686-3699. https://doi.org/10.1039/c2cc00110a

Renikuntla, B.R., Rose, H.C., Eldo, J., Waggoner, A. S., & Armitage, B.A. (2004). Improved photostability and fluorescence properties through polyfluorination of a cyanine dye. Org. Lett., 6, 909-912. https://doi.org/10.1021/ol036081w

Guo, L., & Gai, F. (2013). Simple method to enhance the photostability of the fluorescence reporter R6G for prolonged single molecule studies. J. Phys. Chem. A, 117, 6164-6170. https://doi.org/10.1021/jp4003643

Grimm, J.B., English, B.P., Chen, J., Slaughter, J.P., Zhang, Z., Revyakin, A., Patel, R., Macklin, J.J., Normanno, D., Singer, R.H., Lionnet, T., & Lavis, L.D. (2015). A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods, 12, 244-250. https://doi.org/10.1038/nmeth.3256

Jiao, L., Song, F., Zhang, B., Ning, H., Cui, J., & Peng, X. (2017). Improving the brightness and photostability of NIR fluorescent silica nanoparticles through rational fine-tuning of the covalent encapsulation methods. J. Mater. Chem. B, 5, 5278-5283, https://doi.org/10.1039/C7TB00856B

Kim, J., Lee, J. E., Lee, J., Yu, J. H., Kim, B. C., An, K., Hwang, Y., Shin, C. H., Park, J. G., Kim, J., & Hyeon, T. (2006). Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J. Am. Chem. Soc., 128, 688-689. https://doi.org/10.1021/ja0565875

Corr, S.A., Rakovich, Y.P., & Gun’ko, Y.K. (2008). Multifunctional magnetic-fluorescent nanocomposites for biomedical applications. Nanoscale Res. Lett., 3, 87-104. https://doi.org/10.1007/s11671-008-9122-8

Saha, A., Basiruddin, S. K., Pradhan, N., & Jana, N. R. (2010). Ligand exchange approach in deriving magnetic-fluorescent and magnetic-plasmonic hybrid nanoparticle. Langmuir, 26, 4351-4356. https://doi.org/10.1021/la903428r

Jin, Y., & Gao, X. (2009). Plasmonic fluorescent quantum dots. Nat. Nanotechnol., 4, 571-576. https://doi.org/10.1038/nnano.2009.193

Bigall, N.C., Parak, W.J., & Dorfs, D. (2012). Fluorescent, magnetic and plasmonic-hybrid multifunctional colloidal nano objects. Nano Today, 7, 282-296. https://doi.org/10.1016/j.nantod.2012.06.007

Xu, Z., Hou, Y., & Sun, S. (2007). Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J. Am. Chem. Soc., 129, 8698-8699. https://doi.org/10.1021/ja073057v

Fan, Z., Shelton, M., Singh, A. K., Senapati, D., Khan, S. A., & Ray, P. C. (2012). Multifunctional plasmonic shell-magnetic core nanoparticles for targeted diagnostics, isolation, and photothermal destruction of tumor cells. ACS Nano, 6, 1065-1073. https://doi.org/10.1021/nn2045246

Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., & Ruoff, R.S. (2006). Graphene-based composite materials. Nature, 442, 282-286. https://doi.org/10.1038/nature04969

Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites. Chem. Soc. Rev., 41, 666-686. https://doi.org/10.1039/C1CS15078B

Jiang, J., Gu, H., Shao, H., Devlin, E., Papaefthymiou, G.C., & Ying, J.Y. (2008). Bifunctional Fe3O4-Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation. Adv. Mater., 20, 4403-4407. https://doi.org/10.1002/adma.200800498

Deng, S., Ruan, G., Han, N., & Winter, J.O. (2010). Interactions in fluorescent-magnetic heterodimer nanocomposites. Nanotechnology, 21, 145605. https://doi.org/10.1088/0957-4484/21/14/145605

Basiruddin, S.K., Saha, A., Pradhan, N., & Jana, N.R. (2010). Advances in coating chemistry in deriving soluble functional nanoparticle. J. Phys. Chem. C, 114, 11009-11017. https://doi.org/10.1021/jp100844d

Jia, G., You, H., Liu, K., Zheng, Y., Guo, N., & Zhang, H. (2010). Highly uniform Gd2O3 hollow microspheres: template-directed synthesis and luminescence properties. Langmuir, 26, 5122-5128. https://doi.org/10.1021/la903584j

Ahren, M., Selegard, L., Klasson, A., Soderlind, F., Abrikossova, N., Skoglund, C., Bengtsson, T., Engstrom, M., Kall, P.O., & Uvdal, K. (2010). Synthesis and characterization of PEGylated Gd2O3 nanoparticles for MRI contrast enhancement. Langmuir, 26, 5753-5762. https://doi.org/10.1021/la903566y

Dosev, D., Nichkova, M., Liu, M., Guo, B., Liu, G.Y., Hammock, B.D., & Kennedy, I.M. (2005). Application of luminescent Eu:Gd2O3 nanoparticles to the visualization of protein micropatterns. J. Biomed. Opt., 10, 064006. https://doi.org/10.1117/1.2136347

Paik, T., Gordon, T.R., Prantner, A.M., Yun, H., & Murray, C.B. (2013). Designing tripodal and triangular gadolinium oxide nanoplates and self-assembled nanofibrils as potential multimodal bioimaging probes. ACS Nano, 7, 2850-2859. https://doi.org/10.1021/nn4004583

Zhou, C., Wu, H., Huang, C., Wang, M., & Jia, N. (2014). Facile synthesis of single-phase mesoporous Gd2O3:Eu nanorods and their application for drug delivery and multimodal imaging. Part. Part. Syst. Charact., 31, 675-684. https://doi.org/10.1002/ppsc.201300342

Kim, W.J., Gwag, J.S., Kang, J.G., & Sohn, Y. (2014). Photoluminescence imaging of Eu(III), Eu(III)/Ag, Eu(III)/Tb(III), and Eu(III)/Tb(III)/Ag-doped Gd(OH)3 and Gd2O3 nanorods. Ceram. Int., 40, 12035-12044. https://doi.org/10.1016/j.ceramint.2014.04.043

Wawrzynczyk, D., Samoc, M., & Nyk, M. (2015). Controlled synthesis of luminescent Gd2O3:Eu3+ nanoparticles by alkali ion doping. CrystEngComm, 17, 1997-2003. https://doi.org/10.1039/C4CE02500H

Geng, Y., Dalhaimer, P., Cai, S., Tsai, R., Tewari, M., Minko, T., & Discher, D.E. (2007). Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol., 2, 249-255. https://doi.org/10.1038/nnano.2007.70

Toy, R., Peiris, P.M., Ghaghada, K.B., & Karathanasis, E. (2014). Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine, 9, 121-134. https://doi.org/10.2217/nnm.13.191

Godwin, A.K., Meister, A., O’dwyer, P.J., Huang, C.S., Hamilton, T.C., & Anderson, M.E. (1992). High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc. Natl. Acad. Sci. U.S.A., 89, 3070-3074. https://doi.org/10.1073/pnas.89.7.3070

Balendiran, G.K., Dabur, R., & Fraser, D. (2004). The role of glutathione in cancer. Cell Biochem. Funct., 22, 343-352. https://doi.org/10.1002/cbf.1149

Gronow, M. (2010). Studies on the non-protein thiols of a human prostatic cancer cell line: glutathione content. Cancers, 2, 1092-1106. https://doi.org/10.3390/cancers2021092

Guo, X., Wei, X., Jing, Y., & Zhou, S. (2015). Size changeable nanocarriers with nuclear targeting for effectively overcoming multidrug resistance in cancer therapy. Adv. Mater., 27, 6450-6456. https://doi.org/10.1002/adma.201502865

Heidari, A., & Brown, C. (2015). Study of composition and morphology of cadmium oxide (CdO) nanoparticles for eliminating cancer cells, J Nanomed Res., 2(5), 20 pp.

Heidari, A. (2016). Pharmacogenomics and pharmacoproteomics studies of phosphodiesterase-5 (PDE5) inhibitors and paclitaxel albumin-stabilized nanoparticles as sandwiched anti-cancer nano drugs between two DNA/RNA molecules of human cancer cells, J Pharmacogenomics Pharmacoproteomics 7, e153.

Heidari, A., & Brown, C. (2015). Study of surface morphological, phytochemical and structural characteristics of rhodium (III) oxide (Rh2O3) nanoparticles, International Journal of Pharmacology, Phytochemistry and Ethnomedicine, 1(1), 15-19.

Heidari, A. (2016). Extraction and preconcentration of N-tolyl-sulfonyl-phosphoramid-saeure-dichlorid as an anti-cancer drug from plants: a pharmacognosy study, J Pharmacogn Nat Prod 2, e103.

] Heidari, A. (2016). A chemotherapeutic and biospectroscopic investigation of the interaction of double-standard DNA/RNA-binding molecules with cadmium oxide (CdO) and rhodium (III) oxide (Rh2O3) nanoparticles as anti-cancer drugs for cancer cells’ treatment, Chemo Open Access 5, e129.

Heidari, A. (2016). Linear and non-linear quantitative structure-anti-cancer-activity relationship (QSACAR) study of hydrous ruthenium (IV) oxide (RuO2) nanoparticles as non-nucleoside reverse transcriptase inhibitors (NNRTIs) and anti-cancer nano drugs, J Integr Oncol 5, e110.

Heidari, A. (2016). Genomics and proteomics studies of zolpidem, necopidem, alpidem, saripidem, miroprofen, zolimidine, olprinone and abafungin as anti-tumor, peptide antibiotics, antiviral and central nervous system (CNS) drugs, J Data Mining Genomics & Proteomics 7, e125.

Published
2022-03-08
How to Cite
Heidari, A. (2022). Study of DNA/RNA Aggregation Linked to Cadmium Oxide (CdO) Nanoparticles by Aryl Mercaptanes with Various Chain Length. Earthline Journal of Chemical Sciences, 8(1), 13-34. https://doi.org/10.34198/ejcs.8122.1334
Section
Articles