Comparative Study of Bioethanol Produced from Different Agro-Industrial Biomass Residues

  • Z.I.S.G. Adiya Department of Pure and Applied Chemistry, Usman Danfodiyo University Sokoto, P.M.B. 2346, Sokoto State, Nigeria
  • S.S. Adamu Central Advanced Science Laboratory, Usmanu Danfodio University Sokoto, P.M.B. 2346, Sokoto State, Nigeria
  • M.A. Ibrahim Department of Pure and Applied Chemistry, Usman Danfodiyo University Sokoto, P.M.B. 2346, Sokoto State, Nigeria
  • E.V.C. Okoh Department of Pure and Applied Chemistry, Usman Danfodiyo University Sokoto, P.M.B. 2346, Sokoto State, Nigeria and Sokoto Energy Research Centre, Usmanu Danfodiyo University Sokoto, P.M.B. 2346, Sokoto State, Nigeria
  • D. Ibrahim Department of Chemical Engineering, University of Maiduguri, P.M.B 1069, Off Bama Road, Maiduguri, Borno State, Nigeria
Keywords: bioethanol, sugarcane bagasse, rice husk, corn cob

Abstract

Bioethanol was produced from the three different agro-industrial biomass residues, i.e., sugarcane bagasse (SB), rice husk (RH) and corn cob (CC)) at 35°C, 120hr with 90g of each substrate. 2% H2SO4 was used for hydrolysis of the samples while 3g of yeast (saccharomyces cerevisiae) was used for fermentation. Simple distillation was used for the distillation of the fermented broth. The concentration of reducing sugar and ethanol, quantity of produced bioethanol as well as the physical properties (pH, density, viscosity and flash point) was investigated. SB has the highest concentration of reducing sugar and ethanol as well as the quantity of produced bioethanol. The pH of bioethanol generated from all the three substrates are within the bioethanol standard value while the density, viscosity and flash point were higher than bioethanol standards. It was concluded that both SB, RH and CC has the potential of bioethanol production in commercial quantity under well-chosen production conditions.

References

Antoni, D., Zverlov, V.V., & Schwarz, W.H. (2007). Biofuels from microbes. Appl. Microbiol. Biotechnol., 77, 23-35. https://doi.org/10.1007/s00253-007-1163-x

Anyanwu, R.C., Rodriguez, C., Durrant, A., & Olabi, A.G. (2018). Micro-macroalgae properties and application. In S. Hashmi (Ed.), Reference Module in Materials Science and Materials Engineering. Elsevier B.V. https://doi.org/10.1016/B978-0-12-803581-8.09259-6

Balat, M. (2011). Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Convers. Manag., 52, 858-875. https://doi.org/10.1016/j.enconman.2010.08.013

Carrillo-Nieves, D., Alanís, M.J.R., De la Cruz Quiroz, R., Ruiz, H.A., Iqbal, H.M., & Parra-Saldívar, R. (2019). Current status and future trends of bioethanol production from agro-industrial wastes in Mexico. Renew. Sustain. Energy Rev., 102, 63-74. https://doi.org/10.1016/j.rser.2018.11.031

Chandel, A.K., Garlapati, V.K., Singh, A.K., Antunes, F.A.F., & Da Silva, S.S. (2018). The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization. Bioresour. Technol., 264, 370-381. https://doi.org/10.1016/j.biortech.2018.06.004

Ethanol Fact Sheet (2015). Clean cities, energy efficiency & renewable energy (EERE). https://www.afdc.energy.gov/uploads/publication/ethanol_basics.pdf

Herrera, S. (2014). Industrial biotechnology: a chance at redemption. Nature Biotechnol., 22, 671-675. https://doi.org/10.1038/nbt0604-671

Irfan, M., Nadeem, M., & Syed, Q. (2014). Ethanol production from agricultural wastes using Sacchromyces cerevisiae. Brazilian J. Microbiol., 45(2), 457-465. https://doi.org/10.1590/S1517-83822014000200012

Jambo, S.A., Abdulla, R., Marbawi, H., & Gansau, J.A. (2019). Response surface optimization of bioethanol production from third generation feedstock-Eucheuma cottonii. Renew. Energy, 132, 1-10. https://doi.org/10.1016/j.renene.2018.07.133

Kiran, B., Kumar, R., & Deshmukh, D. (2014). Perspectives of microalgal biofuels as a renewable source of energy. Energy Convers. Manage., 88, 1228-1244. https://doi.org/10.1016/j.enconman.2014.06.022

Lin, Y., & Tanaka, S. (2006). Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol., 69, 627-642. https://doi.org/10.1007/s00253-005-0229-x

Muhaji and D. H. Sutjahjo (2018). The characteristics of bioethanol fuel made of vegetable raw materials. IOP Conf. Ser.: Mater. Sci. Eng., 296, 012019. https://doi.org/10.1088/1757-899X/296/1/012019

Naik, S.N., Goud, V.V., Rout, P.K., & Dalai, A.K. (2010). Production of first- and second-generation biofuels: A comprehensive review. Renew Sustain Energy Rev., 14, 578-597. https://doi.org/10.1016/j.rser.2009.10.003

Nikolić, S., Pejin, J., & Mojović, L. (2016). Challenges in bioethanol production: utilization of cotton fabrics as a feedstock. Chem. Ind. Chem. Eng. Q., 22(4), 375-390. https://doi.org/10.2298/CICEQ151030001N

Saha, K., Mashewari, U., Sikder, J., Chakraborty, S., Da Silva, S.S., & Dos Santos, J.C. (2017). Membranes as a tool to support biorefineries: Applications in enzymatic hydrolysis, fermentation and dehydration for bioethanol production. Renew. Sustain. Energy Rev., 74, 873-890. https://doi.org/10.1016/j.rser.2017.03.015

Souza, G.M., Ballester, M.V.R., De Brito Cruz, C.H., Chum, H., Dale, B., Dale, V.H., Fernandes, E.C., Foust, T., Karp, A., & Lynd, L. (2017). The role of bioenergy in a climate-changing world. Environ. Dev., 23, 57-64. https://doi.org/10.1016/j.envdev.2017.02.008

Sasikumar, E., & Viruthagiri, T. (2010). Simultaneous saccharification and fermentation SSF of sugarcane bagasse - kinetics and modeling. Int. J. Chem. BiolEngin., 32.

Toor, M., Kumar, S.S., Malyan, S.K., Bishnoi, N.R., Mathimani, T., Rajendran, K., & Pugazhendhi, A. (2020). An overview on bioethanol production from lignocellulosic feedstocks. Chemosphere, 242, 1-12. https://doi.org/10.1016/j.chemosphere.2019.125080

Published
2022-01-25
How to Cite
Adiya, Z., Adamu, S., Ibrahim, M., Okoh, E., & Ibrahim, D. (2022). Comparative Study of Bioethanol Produced from Different Agro-Industrial Biomass Residues. Earthline Journal of Chemical Sciences, 7(2), 143-152. https://doi.org/10.34198/ejcs.7222.143152
Section
Articles