Comparative Study of Bioethanol Produced from Different Agro-Industrial Biomass Residues
Abstract
Bioethanol was produced from the three different agro-industrial biomass residues, i.e., sugarcane bagasse (SB), rice husk (RH) and corn cob (CC)) at 35°C, 120hr with 90g of each substrate. 2% H2SO4 was used for hydrolysis of the samples while 3g of yeast (saccharomyces cerevisiae) was used for fermentation. Simple distillation was used for the distillation of the fermented broth. The concentration of reducing sugar and ethanol, quantity of produced bioethanol as well as the physical properties (pH, density, viscosity and flash point) was investigated. SB has the highest concentration of reducing sugar and ethanol as well as the quantity of produced bioethanol. The pH of bioethanol generated from all the three substrates are within the bioethanol standard value while the density, viscosity and flash point were higher than bioethanol standards. It was concluded that both SB, RH and CC has the potential of bioethanol production in commercial quantity under well-chosen production conditions.
References
Antoni, D., Zverlov, V.V., & Schwarz, W.H. (2007). Biofuels from microbes. Appl. Microbiol. Biotechnol., 77, 23-35. https://doi.org/10.1007/s00253-007-1163-x
Anyanwu, R.C., Rodriguez, C., Durrant, A., & Olabi, A.G. (2018). Micro-macroalgae properties and application. In S. Hashmi (Ed.), Reference Module in Materials Science and Materials Engineering. Elsevier B.V. https://doi.org/10.1016/B978-0-12-803581-8.09259-6
Balat, M. (2011). Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Convers. Manag., 52, 858-875. https://doi.org/10.1016/j.enconman.2010.08.013
Carrillo-Nieves, D., Alanís, M.J.R., De la Cruz Quiroz, R., Ruiz, H.A., Iqbal, H.M., & Parra-Saldívar, R. (2019). Current status and future trends of bioethanol production from agro-industrial wastes in Mexico. Renew. Sustain. Energy Rev., 102, 63-74. https://doi.org/10.1016/j.rser.2018.11.031
Chandel, A.K., Garlapati, V.K., Singh, A.K., Antunes, F.A.F., & Da Silva, S.S. (2018). The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization. Bioresour. Technol., 264, 370-381. https://doi.org/10.1016/j.biortech.2018.06.004
Ethanol Fact Sheet (2015). Clean cities, energy efficiency & renewable energy (EERE). https://www.afdc.energy.gov/uploads/publication/ethanol_basics.pdf
Herrera, S. (2014). Industrial biotechnology: a chance at redemption. Nature Biotechnol., 22, 671-675. https://doi.org/10.1038/nbt0604-671
Irfan, M., Nadeem, M., & Syed, Q. (2014). Ethanol production from agricultural wastes using Sacchromyces cerevisiae. Brazilian J. Microbiol., 45(2), 457-465. https://doi.org/10.1590/S1517-83822014000200012
Jambo, S.A., Abdulla, R., Marbawi, H., & Gansau, J.A. (2019). Response surface optimization of bioethanol production from third generation feedstock-Eucheuma cottonii. Renew. Energy, 132, 1-10. https://doi.org/10.1016/j.renene.2018.07.133
Kiran, B., Kumar, R., & Deshmukh, D. (2014). Perspectives of microalgal biofuels as a renewable source of energy. Energy Convers. Manage., 88, 1228-1244. https://doi.org/10.1016/j.enconman.2014.06.022
Lin, Y., & Tanaka, S. (2006). Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol., 69, 627-642. https://doi.org/10.1007/s00253-005-0229-x
Muhaji and D. H. Sutjahjo (2018). The characteristics of bioethanol fuel made of vegetable raw materials. IOP Conf. Ser.: Mater. Sci. Eng., 296, 012019. https://doi.org/10.1088/1757-899X/296/1/012019
Naik, S.N., Goud, V.V., Rout, P.K., & Dalai, A.K. (2010). Production of first- and second-generation biofuels: A comprehensive review. Renew Sustain Energy Rev., 14, 578-597. https://doi.org/10.1016/j.rser.2009.10.003
Nikolić, S., Pejin, J., & Mojović, L. (2016). Challenges in bioethanol production: utilization of cotton fabrics as a feedstock. Chem. Ind. Chem. Eng. Q., 22(4), 375-390. https://doi.org/10.2298/CICEQ151030001N
Saha, K., Mashewari, U., Sikder, J., Chakraborty, S., Da Silva, S.S., & Dos Santos, J.C. (2017). Membranes as a tool to support biorefineries: Applications in enzymatic hydrolysis, fermentation and dehydration for bioethanol production. Renew. Sustain. Energy Rev., 74, 873-890. https://doi.org/10.1016/j.rser.2017.03.015
Souza, G.M., Ballester, M.V.R., De Brito Cruz, C.H., Chum, H., Dale, B., Dale, V.H., Fernandes, E.C., Foust, T., Karp, A., & Lynd, L. (2017). The role of bioenergy in a climate-changing world. Environ. Dev., 23, 57-64. https://doi.org/10.1016/j.envdev.2017.02.008
Sasikumar, E., & Viruthagiri, T. (2010). Simultaneous saccharification and fermentation SSF of sugarcane bagasse - kinetics and modeling. Int. J. Chem. BiolEngin., 32.
Toor, M., Kumar, S.S., Malyan, S.K., Bishnoi, N.R., Mathimani, T., Rajendran, K., & Pugazhendhi, A. (2020). An overview on bioethanol production from lignocellulosic feedstocks. Chemosphere, 242, 1-12. https://doi.org/10.1016/j.chemosphere.2019.125080
This work is licensed under a Creative Commons Attribution 4.0 International License.