Enhanced Electrochemical Treatment of Phenanthrene-polluted Soil using Microbial Fuel Cells

  • Oluwaseun Adelaja Department of Life Sciences, Applied Biotechnology Research Group, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK and Department of Chemistry, Federal University of Technology, P.M.B 704, Akure, Ondo State, Nigeria
  • Tajalli Keshavarz Department of Life Sciences, Applied Biotechnology Research Group, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
  • Godfrey Kyazze Department of Life Sciences, Applied Biotechnology Research Group, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
Keywords: bromate, degradation efficiency, microbial fuel cells, phenanthrene, radius of influence

Abstract

In this study, tubular microbial fuel cells (MFCs) were inserted into phenanthrene-contaminated water-logged soil in order to evaluate their treatment efficiency and overall system performance within 60 days’ incubation period. At day 10, phenanthrene degradation rates were found to decrease with increasing distance from the anodes from 50-55 % at 2 cm to 38-40 % at 8 cm. Bromate (used as a catholyte) removal in both MFCs was about 80-95 % on average which is significantly higher than the open circuit controls (15-40 %) over the 60day period. Total chemical oxygen demand removal (72.8 %) in MFCs amended with surfactants was significantly higher than MFCs without surfactant (20 %). This suggests that surfactant addition may have enhanced bioavailability of not only phenanthrene, but other organic matter present in the soil. The outcomes of this work has demonstrated the simultaneous removal of phenanthrene (86%) and bromate (95%) coupled with concomitant bioelectricity generation (about 4.69 mWm-2) using MFC systems within a radius of influence (ROI) up to 8 cm. MFC technology may be used for in situ decontamination of soils due to its potential detoxification capacity and could be deployed directly as a prototype-MFC design in field applications.

References

X. Wang, Z. Cai, Q. Zhou, Z. Zhang and C. Chen, Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using U-tube microbial fuel cells, Biotech. and Bioeng. 109 (2012), 426-433. https://doi.org/10.1002/bit.23351

G. Guo and Q. Zhou, Advances of research on combined pollution in soil-plant systems, J. Appl. Ecol. 14 (2003), 823-828.

D. Sarkar, M. Ferguson, R. Datta and S. Birnbaum, Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation, Environ. Pollut. 136 (2005), 187-195. https://doi.org/10.1016/j.envpol.2004.09.025

Q. Zhou, F. Sun and R. Liu, Joint chemical flushing of soils contaminated with petroleum hydrocarbons, Environ Int. 31 (2005), 835-839. https://doi.org/10.1016/j.envint.2005.05.039

United Nations Environment Programme UNEP, Environmental Assessment of Ogoniland, 2011. [Online] Available at: (http://postconflict.unep.ch/publications/OEA/UNEP_OEA.pdf) Accessed on February 5, 2016.

J. M. Morris and S. Jin, Enhanced biodegradation of hydrocarbon-contaminated sediments using microbial fuel cells, J. Hazard. Mater. 213-214(0) (2012), 474-477. https://doi.org/10.1016/j.jhazmat.2012.02.029

T. Zhang, S.M. Gannon, K.P. Nevin, A.E. Franks and D.R. Lovley, Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor, Environ. Microbiol. 12(4) (2010), 1011-1020. https://doi.org/10.1111/j.1462-2920.2009.02145.x

J.M. Morris, S. Jin, B. Crimi and A. Pruden, Microbial fuel cell in enhancing anaerobic biodegradation of diesel, Chem. Eng. Journal 146(2) (2009), 161-167. https://doi.org/10.1016/j.cej.2008.05.028

C. Donovan, A. Dewana, P. Huan, H. Deukhyoun and B. Haluk, Power management system for a 2.5W remote sensor powered by a sediment microbial fuel cell, J. Power Sources 196 (2011), 1171-1177. https://doi.org/10.1016/j.jpowsour.2010.08.099

O.A. Adelaja, Bioremediation of petroleum hydrocarbons using microbial fuel cells, PhD thesis, University of Westminster, London, UK, 2015.

O. Adelaja, G. Kyazze and T. Keshavarz, Effect of hydraulic retention time on the performance of a novel tubular MFC fed with petroleum hydrocarbons, New Biotechnology 31 (2014), S98. https://doi.org/10.1016/j.nbt.2014.05.1845

X. Zhao, L. Huijuan, L. Angzhen, S. Yuanli and Q. Jiuhui, Bromate removal by electrochemical reduction at boron-doped diamond electrode, Electrochimica Acta 62 (2012), 181-184. https://doi.org/10.1016/j.electacta.2011.12.013

M.L. Bao, O. Griffini, D. Santianni, K. Barbieri, D. Burrini and F. Pantani, Removal of bromate ion from water using granular activated carbon, Wat. Res. 33(13) (1999), 2959-2970. https://doi.org/10.1016/S0043-1354(99)00015-9

A. Kermanshahi pour, D. Karamanev and A. Margaritis, Biodegradation of petroleum hydrocarbons in an immobilized cell airlift bioreactor, Water Research 39(15) (2005), 3704-3714. https://doi.org/10.1016/j.watres.2005.06.022

J.D. Coates, J. Woodward, J. Allen, P. Philp and D.R. Lovley, Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments, Appl. Environ. Microbiol. 63(9) (1997), 3589-3593. https://doi.org/10.1128/AEM.63.9.3589-3593.1997

M.O. Emeje, S.I. Ofoefule, A.C. Nnaji, A.U. Ofoefule and S.A. Brown, Assessment of bread safety in Nigeria: Quantitative determination of potassium bromate and lead, Afric. Jour. Food Sci. 4(6) (2010), 394 -397.

O. Adelaja, G. Kyazze and T. Keshavarz, Treatment of phenanthrene and benzene using microbial fuel cells operated continuously for possible in situ and ex situ applications, Intl. Biodeter. & Biodegrad. 116 (2017), 91-103. https://doi.org/10.1016/j.ibiod.2016.10.021

APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association, Washington DC, 1997. [Online] Available at: (http://www.norweco.com/html/lab/test_methods/5220bfp.htm) Accessed on January 24, 2019.

B.E. Logan, B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete and K. Rabaey, Microbial fuel cells: Methodology and technology, Environ Sci. Technol. 40 (2006), 5181-5192. https://doi.org/10.1021/es0605016

Y. Fan, E. Sharbrough and H. Liu, Quantification of the internal resistance distribution of microbial fuel cells, Environ. Sci. Technol. 42 (2008), 8101-8107. https://doi.org/10.1021/es801229j

T.A. Sleutels, D. Libertus, V.M. Hubertus and J.N. Cees, Effect of operational parameters on Coulombic efficiency in bioelectrochemical systems, Bioresour. Technol. 102(24) (2011), 11172-11176. https://doi.org/10.1016/j.biortech.2011.09.078

I. Gaudet, Standard procedure for MICROTOX analysis, Alberta Environmental Centre, 1994.

L. Lu, H. Yazdi, S. Jin, Y. Zuo, P.H. Fallgren and Z.J. Ren, Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems, J. Hazard. Mater. 274 (2014), 8-15. https://doi.org/10.1016/j.jhazmat.2014.03.060

D.Y. Huang, S.G. Zhou, Q. Chen, B. Zhao, Y. Yuan and L. Zhuang, Enhanced anaerobic degradation of organic pollutants in a soil microbial fuel cell, Chem. Eng. Journal 172(2-3) (2011), 647-653. https://doi.org/10.1016/j.cej.2011.06.024

L.P. Nielsen, N. Risgaard-Petersen, H. Fossing, P.B. Christensen and M. Sayama, Electric currents couple spatially separated biogeochemical processes in marine sediment, Nature 463 (2010), 1071-1074. https://doi.org/10.1038/nature08790

C. Wu, I. Yet-Pole, C. Yu-Hsuan and L. Chi-Wen, Enhancement of power generation by toluene biodegradation in a microbial fuel cell in the presence of pyocyanin, J. Taiw. Insti. Chem. Engin. 45 (2014), 2319-2324. https://doi.org/10.1016/j.jtice.2014.05.019

W. Du, Y. Wan, N. Zhong, J. Fei, Z. Zhang, L. Chen and J. Hao, Status quo of soil petroleum contamination and evolution of bioremediation, Pet. Sci. 8 (2011), 502-514. https://doi.org/10.1007/s12182-011-0168-3

J.P. Allen, E.A. Atekwana, J.W. Duris, D.D. Werkema and S. Rossbach, The microbial community structure in petroleum-contaminated sediments corresponds to geophysical signatures, Appl. Environ. Microbiol. 73(9) (2007), 2860-2870. https://doi.org/10.1128/AEM.01752-06

A.R. Johnsen, Y.W. Lukas and H. Hauke, Principles of microbial PAH-degradation in soil, Environ. Poll. 133 (2005), 71-84. https://doi.org/10.1016/j.envpol.2004.04.015

W.X. Liu, Y.M. Luo, Y. Teng, Z.G. Li and L.Q. Ma, Bioremediation of oily sludge contaminated soil by stimulating indigenous microbes, Environ. Geochem. Health 32 (2010), 23-29. https://doi.org/10.1007/s10653-009-9262-5

E.D. de Melo, A.H. Mounteer, L.H.S. Leao, R.C.B. Bahia, I.M.F. Campos, Toxicity identification evaluation of cosmetics industry wastewater, J. Hazard. Mater. 244-245 (2013), 329-334. https://doi.org/10.1016/j.jhazmat.2012.11.051

L. Ayed, A. Mahdhi, A. Cheref and A. Bakhrouf, Decolorization and degradation of azo dye Methyl Red by an isolated Sphingomonas paucimobilis: Biotoxicity and metabolites characterization, Desalination 274 (2011), 272-277. https://doi.org/10.1016/j.desal.2011.02.024

J. Rodrigo, K. Boltes and A. Esteve-Nunez, Microbial-electrochemical bioremediation and detoxification of dibenzothiophene-polluted soil, Chemosphere 101 (2014), 61-65. https://doi.org/10.1016/j.chemosphere.2013.11.060

H. Hamdi, S. Benzarti, L. Manusadžianas, I. Aoyama and N. Jedidi, Bioaugmentation and biostimulation effects on PAH dissipation and soil ecotoxicity under controlled conditions, Soil Bio. and Biochem. 39(8) (2007), 1926-1935. https://doi.org/10.1016/j.soilbio.2007.02.008

P.K. Hankard, C. Svendsen, J. Wright, C. Wienberg, S.K. Fishwick, D.J. Spurgeon and J.M. Weeks, Biological assessment of contaminated land using earthworm biomarkers in support of chemical analysis, Sci. Total Environ. 330 (2004), 9-20. https://doi.org/10.1016/j.scitotenv.2003.08.023

C. Vogt, S. Gödeke, H.C. Treutler, H. Weiß, M. Schirmer and H. Richnow, Benzene oxidation under sulfate-reducing conditions in columns simulating in situ conditions, Biodegradation 18 (2007), 625-636. https://doi.org/10.1007/s10532-006-9095-1

Published
2021-05-04
How to Cite
Adelaja, O., Keshavarz, T., & Kyazze, G. (2021). Enhanced Electrochemical Treatment of Phenanthrene-polluted Soil using Microbial Fuel Cells. Earthline Journal of Chemical Sciences, 6(1), 37-63. https://doi.org/10.34198/ejcs.6121.3763
Section
Articles