Semiconductor Metal Oxide Nanoparticles: A Review for the Potential of H2S Gas Sensor Application

  • Zaid Hameed Mahmoud Department of Chemistry, College of Sciences, Diyala University, Iraq
  • Omar Dhaa Abdalstar Department of Chemistry, College of Sciences, Diyala University, Iraq
  • Noor Sabah Department of Chemistry, College of Sciences, Diyala University, Iraq
Keywords: gas sensor, MOS, nanoparticles, H2S


In modern world, gas sensors play important role in many fields of technology used for air pollution, breath analysis, public safety and many others. Gas sensor based semiconductor metal oxide is mostly used in these applications because of low cost, ease-to-use, high sensitivity and lower power consumption. This paper gives an overview about the semiconductor metal oxide and reviews why using it as sensing of gases in electrical applications and then it addresses to the work mechanism of a sensor to sensing H2S gas.


K. Dieter, Function and applications of gas sensors, J. Phys. D Appl. Phys. 34(19) (2001), R125.

G. F. Fine, L. M. Cavanagh, A. Afonja and R. Binions, Metal oxide semi-conductor gas sensors in environmental monitoring, Sensors 10(6) (2010), 5469-5502.

J. Zhang, Z. Qin, D. Zeng and C. Xie, Metal-oxide semiconductor based gas sensors: screening, preparation, and integration, Phys. Chem. Chem. Phys. 19(9) (2017), 6313-6329.

S. S. Varghese, S. Lonkar, K. K. Singh, S. Swaminathan and A. Abdala, Recent advances in graphene based gas sensors, Sensors Actuators B Chem. 218(Supplement C) (2015), 160-183.

A. Gusain, N. J. Joshi, P. V. Varde and D. K. Aswal, Flexible NO gas sensor based on conducting polymer poly[N-9-heptadecanyl-2,7-carbazole-alt-5,5-(4,7-di-2-thienyl-2,1,3-benzothiadiazole)] (PCDTBT), Sensors Actuators B Chem. 239 (2017), 734-745.

N. Joshi, V. Saxena, A. Singh, S. P. Koiry, A. K. Debnath, M. M. Chehimi and D. K. Aswal, SK Gupta Flexible H2S sensor based on gold modified polycarbazole films, Sensors Actuators B Chem. 200(Supplement C) (2014), 227-234.

S. Yoriya, H. E. Prakasam, O. K. Varghese, K. Shankar, M. Paulose, G. K. Mor, T. J. Latempa and C. A. Grimes, Initial studies on the hydrogen gas sensing properties of highly-ordered high aspect ratio TiO2 nanotube-arrays 20m to 222m in length, Sens. Lett. 4(3) (2006), 334-339.

A. Singh, A. Kumar, A. Kumar, S. Samanta, N. Joshi, V. Balouria, A. K. Debnath, R. Prasad, Z. Salmi, M. M. Chehimi, D. K. Aswal and S. K. Gupta, Bending stress induced improved chemiresistive gas sensing characteristics of flexible cobalt-phthalocyanine thin films, Appl. Phys. Lett. 102(13) (2013), 132107.

N. Ramgir, N. Datta, M. Kaur, S. Kailasaganapathi, A. K. Debnath, D. K. Aswal and S. K. Gupta, Metal oxide nanowires for chemiresistive gas sensors: Issues, challenges and prospects, Colloids Surf. A Physicochem. Eng. Asp. 439 (2013), 101-116.

M. Shaik, V. K. Rao, M. Gupta, K. S. R. C. Murthy and R. Jain Chemiresistive gas sensor for the sensitive detection of nitrogen dioxide based on nitrogen doped grapheme nanosheets, RSC Adv. 6(2) (2016), 1527-1534.

K. A. Mirica, J. M. Azzarelli, J. G. Weis, J. M. Schnorr and T. M. Swager, Rapid prototyping of carbon-based chemiresistive gas sensors on paper, Proc. Natl. Acad. Sci. 110(35) (2013), E3265-E3270.

N. Joshi, L. F. da Silva, H. Jadhav, J.-C. M’Peko, B. B. Millan Torres, K. Aguir, V. R. Mastelaro and O. N. Oliveira, Jr., One-step approach for preparing ozone gas sensors based on hierarchical NiCo2O4 structures, RSC Adv. 6(95) (2016), 92655-92662.

A. Kumar, N. Joshi, S. Samanta, A. Singh, A.K. Debnath, A.K. Chauhan, M. Roy, R. Prasad, K. Roy, M.M. Chehimi, D.K. Aswal, S.K. Gupta, Room temperature detection of H2S by flexible gold–cobalt phthalocyanine heterojunction thin films, Sensors Actuators B Chem. 206(Supplement C) (2015), 653-662.

V. Balouria, S. Samanta, A. Singh, A. K. Debnath, A. Mahajan, R. K. Bedi, D. K. Aswal and S. K. Gupta, Chemiresistive gas sensing properties of nanocrystalline Co3O4 thin films, Sensors Actuators B Chem. 176(Supplement C) (2013), 38-45.

N. Joshi, F. M. Shimizu, I. T. Awan, J. C. M’Peko, V. R. Mastelaro, O. N. Oliveira and L. F. da Silva, Ozone sensing properties of nickel phthalocyanine: ZnO nanorod heterostructures, 2016 IEEE Sensors, Orlando, USA, 2016, pp. 1-3.

T. Seiyama, A. Kato, K. Fujiishi and M. Nagatani A new detector for gaseous components using semiconductive thin films, Anal. Chem. 34(11) (1962), 1502-1503.

X. Liu, J. Zhang, S. Wu, D. Yang, P. Liu, H. Zhang, S. Wang, X. Yao, G. Zhu and H. Zhao, Single crystal α-Fe2O3 with exposed 104 facets for high performance gas sensor applications, RSC Adv. 2 (2012), 6178-6184.

X. Li, W. Wei, S. Wang, L. Kuai and B. Geng, Single-crystalline α-Fe2O3 oblique nanoparallelepipeds: High-yield synthesis, growth mechanism and structure enhanced gas-sensing properties, Nanoscale 3 (2011), 718-724.

A. I. Ayesh, A. F. S. Abu-Hani, S. T. Mahmoud and Y. Haik, Selective H2S sensor based on CuO nanoparticles embedded in organic membranes, Sens. Actuators B Chem. 231 (2016), 593-600.

M. E. Franke, T. J. Koplin and U. Simon, Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter?, Small 2 (2006), 36-50.

N. Barsan, M. Schweizer-Berberich and W. Göpel, Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report, Fresenius J. Anal. Chem. 365 (1999), 287-304.

F. H. Saboor, T. Ueda, K. Kamada, T. Hyodo, Y. Mortazavi, A. A. Khodadadi and Y. Shimizu, Enhanced NO2 gas sensing performance of bare and Pd-loaded SnO2 thick film sensors under UV-light irradiation at room temperature, Sensors Actuators B Chem. 223(Supplement C) (2016), 429-439.

T. Ueda, H. Abe, K. Kamada, S. R. Bishop, H. L. Tuller, T. Hyodo and Y. Shimizu, Enhanced sensing response of solid-electrolyte gas sensors to toluene: Role of composite Au/metal oxide sensing electrode, Sensors Actuators B Chem. 252(Supplement C) (2017), 268-276.

A. Ponzoni, C. Baratto, N. Cattabiani, M. Falasconi, V. Galstyan, E .Nunez-Carmona, F. Rigoni, V. Sberveglieri, G. Zambotti, D. Zappa, Metal oxide gas sensors, a survey of selectivity issues addressed at the SENSOR Lab, Brescia (Italy), Sensors 17(4) (2017), 714.

T. Gessner, K. Gottfried, R. Hoffmann, C. Kaufmann, U. Weiss, E. Charetdinov, P. Hauptmann, R. Lucklum, B. Zimmermann, U. Dietel, G. Springer and M. Vogel, Metal oxide gas sensor for high temperature application, Microsyst. Technol. 6(5) (2000), 169-174.

C. Wang, L. Yin, L. Zhang, D. Xiang and R. Gao, Metal oxide gas sensors: sensitivity and influencing factors, Sensors 10(3) (2010), 2088-2106.

A. Arbab, A. Spetz and I. Lundström, Gas sensors for high temperature operation based on metal oxide silicon carbide (MOSiC) devices, Sensors Actuators B Chem. 15(1) (1993), 19-23.

H. Yoon, Current trends in sensors based on conducting polymer nanomaterials, Nanomaterials 3(3) (2013), 524-549.

Zaid Hamid Mahmoud, Omaima Emad Khalaf and Mohammed Alwan Farhan, Novel photosynthesis of CeO2 nanoparticles from its salt with structural and spectral study, Egyptian Journal of Chemistry 62(1) (2019), 141-148.

Zaid Hamid Mahmoud and Aklas Ahmed Abdalkareem, Removal of Pb+2 ions from water by magnetic iron oxide nanoparticles that prepared via ECD, European Journal of Scientific Research 145(4) (2017), 354-365.

A. F. Mohammed, H. M. Zaid and S. F. Marwa, Syntheses and characterization of TiO2/Au nanocomposite using UV-irradiation method and its photocatalytic activity to degradation of methylene blue, Asian J. Chem. 30 (2018), 1142-1146.

H. M. Zaid, The magnetic properties of alpha phase for iron oxide NPs that prepared from its salt by novel photolysis method, Journal of Chemical and Pharmaceutical Research 9(8) (2017), 29-33.

H. M. Zaid, Effect of Au doping on the magnetic properties of Fe3O4 NPs prepared via photolysis and co-precipitation methods, Diyala Journal for Pure Science 14 (2018), 137-147.

Zaid Hamid, Synthesis of bismuth oxide nano powders via electrolysis method and study the effect of change voltage on the size for it, Aust. J. Basic & Appl. Sci. 11(7) (2017), 97-101.

Z. H. Mahmoud and R. F. Khudeer, Spectroscopy and structural study of oxidative degradation Congo Red Dye under sunlight using TiO2/Cr2O3-CdS nanocomposite, International Journal of ChemTech Research 12(3) (2019), 64-71.

Zaid Hamid Mahmoud, Marwa Sabbar Falih, Omaima Emad Khalaf, Mohammed Alwan Farhan and Farah Kefah Ali, Photosynthesis of AgBr Doping TiO2 Nanoparticles and degradation of reactive red 120 dye, J. Adv. Pharm. Edu. Res. 8(4) (2018), 51-55.

Zaid Hamid Mahmoud, Marwah Hashim and Farah Kefah Ali, Low temperature photosynthesis of Bi2O3 nano powder, Earthline Journal of Chemical Sciences 2(2) (2019), 303-307.

Nuha Abdul Jaleel Omran, Zaid Hamid Mahmoud, Noor Kadhum Ahmed and Farah Kefah Ali, Low-temperature synthesis of α-Fe2O3/MWCNTS as photo-catalyst for degradation of organic pollutants, Orient J. Chem. 35(1) (2019), 332-336.

Wijdan Amer Ibrahim and Zaid Hamid Mahmoud, Synthesis and characterization of new Fe-complex and its nanoparticle oxide using the novel photolysis method, International Journal of Pharmaceutical and Phytopharmacological Research 8 (2018), 57-61.

Noor Sabah Al-Obaidi, Zaid Hamid Mahmoud, Ahlam Ahmed Frayyih Anfal S. Ali and Farah K. Ali, Evaluating the electric properties of poly aniline with doping ZnO and α Fe2O3 nanoparticles, Pharmacophore 9(5) (2018), 61-67

H. M. Zaid, F. A. Nuha and A. A. Aklas, Effect of solvents on the size of copper oxide particles fabricated using photolysis method, Asian J. Chem. 30 (2018), 223-225.

N. A. Ahmed and H. M. Zaid, Synthesis of α-Fe2O3 nano powders by novel UV irradiation method, Diyala Journal for Pure Science 14 (2018), 57-67.

How to Cite
Mahmoud, Z. H., Abdalstar , O. D., & Sabah, N. (2020). Semiconductor Metal Oxide Nanoparticles: A Review for the Potential of H2S Gas Sensor Application. Earthline Journal of Chemical Sciences, 4(2), 199-208.