Schiff Base of Metal Complex Derived from Glycine and Benzaldehyde
Abstract
Schiff base ligand derived from glycine and benzaldehyde was synthesized together with its metal complexes (zinc and cobalt). The solubility, IR analysis and conductivity measurement were carried out. Antibacterial activities were evaluated using well-diffusion method. The bacterial assay was carried out on two pyogenic bacteria E. coli and Staphylococci and the results showed that the complexes have high antibacterial activity.
References
Feng Guo, Thermodecomposition kinetics of La(III) complex with Schiff base ligand derived from glycine and O-vanillin, Asian J. Chem. 20(4) (2008), 2962-2968.
Feng Guo, Zhen Jia, B. L. Wen, M. L. Yu and L. Z. Xiu, Electrochemical characteristics of a Cu(II) Schiff base complex and its interaction with DNA, Asian J. Chem. 20(3) (2008), 1692-1696.
A. A. Chavan and N. R. Pai, Synthesis and biological activity of N-substituted-3-chloro-2 azetidinones, Molecules 12 (2007), 2467-2477. https://doi.org/10.3390/12112467
Sushilkumar S. Bahekar and Devanand B. Shinde, Synthesis and anti-inflammatory activity of [2-(Benzothiazol-2-ylimino)-4-oxo-3-phenylthiazolidin-5-yl]-acetic acid derivatives, J. Korean Chem. Soc. 47 (2003), 237-240. https://doi.org/10.5012/jkcs.2003.47.3.237
L. Racane, V. Tralic-Kulenovic, L. Fiser-Jakic, D. W. Boykin and G. Karminski-Zamola, Synthesis of bis-substituted amidinobenzothiazoles as potential anti-HIV agents, Heterocyclic 55 (2001), 2085-2098. https://doi.org/10.3987/COM-01-9305
I. Caleta, M. Grdisa, D. Mrvos-Sermek, M. Cetina, V. Tralic-Kulenovic, K. Pavelic and G. Karminski-Zamola, Synthesis, crystal structure and antiproliferative evaluation of some new substituted benzothiazoles and styrylbenzothiazoles, Farmaco 59 (2004), 297-305. https://doi.org/10.1016/j.farmac.2004.01.008
C. T. Supuran and A. Scozzafava, Carbonic anhydrase and their therapeutic potentials, Exp. Opin. Ther. Pat. 10 (2000), 575-600. https://doi.org/10.1517/13543776.10.5.575
Mahmood Ul-Hasan, Zahid H. Chohan, Andrea Scozzafava and Claudiu T. Supuran, Carbonic anhydrase inhibitors: Schiff’s bases of aromatic and heterocyclic sulfonamides and their metal complexes, J. Enzyme Inhibition & Medicinal Chemistry 19(3) (2004), 263-267. https://doi.org/10.1080/14756360410001689595
M. A. Neelakantan, M. Esakkiammal, S. S. Mariappan, J. Dharmaraja and T. Jeyakumar, Synthesis, characterization and biocidal activities of some Schiff base metal complexes, Indian J. Pharm. Sci. 72(2) (2010), 216-222. https://doi.org/10.4103/0250-474X.65015
Ehab M. Zayed et al., Thermal and spectroscopic investigation of novel Schiff base, its metal complexes, and their biological activities, Journal of Thermal Analysis and Colorimetry 116 (2014), 391-400. https://doi.org/10.1007/s10973-013-3560-y
Omima M. I. Adly et al., Synthesis, spectral characterization, molecular modeling and antimicrobial activity of new potentially N2O2 Schiff base complexes, Journal of Molecular Structure 1054-1055 (2013), 239-250. https://doi.org/10.1016/j.molstruc.2013.09.037
Magdy Shebl, Synthesis, spectroscopic characterization and antimicrobial activity of binuclear metal complexes of a new asymmetrical Schiff base ligand: DNA binding affinity of copper(II) complexes, Spectrochimica Acta Part A: Molecular and Biomolecular Pectroscopy 117 (2014), 127-137. https://doi.org/10.1016/j.saa.2013.07.107
Laila H. Abdel-Rahman et al., DNA binding ability mode, spectroscopic studies, hydrophobicity, and in vitro antibacterial evaluation of some new Fe(II) complexes bearing ONO donors amino acid Schiff bases, Arabian Journal of Chemistry 10 (2017), S1835-S1846. https://doi.org/10.1016/j.arabjc.2013.07.010
Laila H. Abdel-Rahman et al., Design, characterization, teratogenicity testing, antibacterial, antifungal and DNA interaction of few high spin Fe(II) Schiff base amino acid complexes, Spectrochimica Acta Part A: Molecular and Bio Molecular Spectroscopy 111 (2013), 266-276. https://doi.org/10.1016/j.saa.2013.03.061
Laila H. Abdel-Rahman et al., Metal based pharmacologically active agents: Synthesis, structural characterization, molecular modeling, CT-DNA binding studies and in vitro antimicrobial screening of iron(II) bromosalicylidene amino acid chelates, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 117 (2014), 366-378. https://doi.org/10.1016/j.saa.2013.07.056
Selma Celen et al., Synthesis, spectroscopic characterization, and antimicrobial activities of Ni(II) and Fe(II) complexes with N-(2-hydroxyethyl)-5-nitrosalicylaldimine, Journal of Coordination Chemistry 66 (2013), 3170-3181. https://doi.org/10.1080/00958972.2013.829568
M. I. Khan et al., Spectral, XRD, SEM and biological properties of new mononuclear Schiff base transition metal complexes, Inorganic Chemistry Communications 35 (2013), 104-109. https://doi.org/10.1016/j.inoche.2013.06.014
P. A. Vigato and S. Tamburini, Coord. Chem. Rev. 248 (2004), 1717. https://doi.org/10.1016/j.cct.2003.09.003
C. T. Barboiu, M. Luca, C. Pop, E. Brewster and M. E. Dinculescu, Eur. J. Med. Chem. 31 (1996), 597.
(a) S. Gaur, Asian J. Chem. 15(1) (2003), 250. (b) M. J. Genin, C. Biles, B. J. Keiser, S. M. Poppe, S. M. Swaney, W. G. Tarpley, Y. Yage and D. L. Romero, J. Med. Chem. 43(5) (2000), 1034. https://doi.org/10.1021/jm990383f
H. Keypour, M. Rezaeivala, L. Valencia, P. Perez-Lourido and H. Reza Khavasi, Synthesis and characterization of some new Co(II) and Cd(II) macroacyclic Schiff-base complexes containing piperazine moiety, Polyhedron 28 (2009), 3755. https://doi.org/10.1016/j.poly.2009.08.021
K. S. Suslick and T. J. Reinert, The synthetic analogs of O2-binding heme proteins, J. Chem. Educ. 62 (1985), 974. https://doi.org/10.1021/ed062p974
F. Tisato, F. Refosco and G. Bandoli, Structural survey of technetium complexes, Coord. Chem. Rev. 135-136 (1994), 325-397. https://doi.org/10.1016/0010-8545(94)80072-3
This work is licensed under a Creative Commons Attribution 4.0 International License.