Enhancement of Thermoelectric Properties of P3HT by Addition of Carbon Nanotubes
Abstract
In this paper, the enhancement in the thermoelectric properties of the organic semiconducting material, poly(3-hexylthiophene) (P3HT) by addition of carbon nanotubes (CNTs), have been studied for applications in the renewable energy. For this purpose, the thin film of P3HT: CNTs blend has been deposited on the glass substrate by drop casting technique. The blend is prepared by the ratio of 10: 0.5 mg of P3HT: CNTs at room temperature in chloroform. The thickness of P3HT: CNTs nanocomposite found by ellipsometer was 2570 nm. The Seebeck coefficient of the film is measured to be 58.18 mV/K and the electrical conductivity of nanocomposite was 254 S/cm found by four probe method. The bandgap of P3HT: CNTs nanocomposite was 1.4 eV measured by UV-Vis spectrometer. In this blend, the CNTs are used for enhancement of the thermoelectric properties of the film. The films are also characterized by different material characterization techniques. These characterizations are correlated with the thermoelectric properties of the material. The optimized value of the figure of merit (ZT) for the thin film has been achieved ZT = 0.14 for the P3HT: CNTs nanocomposites.
This work is licensed under a Creative Commons Attribution 4.0 International License.