Production and biodegradability of a bio-based polylactide from corn

  • Yacouba Zoungranan Département de Mathématiques Physique Chimie (MPC), Université Peleforo GON COULIBALY, B.P. 1328 Korhogo, Côte d'Ivoire
  • Ouattara Taniky Sy Hamed Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, Université NANGUI ABROGOUA, 02 BP 802 Abidjan 02, Côte d’Ivoire
  • Attchelouwa Kouadio Constant Laboratoire de Biotechnologie et valorisation Agroalimentaire, Département Biochimie-Génétique, Université Peleforo GON COULIBALY, BP 1328, Korhogo, Côte d’Ivoire
  • Disseka William Kwithony Laboratoire de Biocatalyse et des Bioprocédés, Université NANGUI ABROGOUA, 02 BP 802 Abidjan 02, Côte d’Ivoire
  • Ane Taki Jospin Maurice Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, Université NANGUI ABROGOUA, 02 BP 802 Abidjan 02, Côte d’Ivoire
  • Ekou Lynda Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, Université NANGUI ABROGOUA, 02 BP 802 Abidjan 02, Côte d’Ivoire
Keywords: petrochemical plastic, bioplastic, lactic acid bacteria, lactic acid, biodegradability, Pediococcus acidilactici

Abstract

The proliferation of petrochemical plastic waste poses a threat to environmental quality and animal health. In this context, an alternative to traditional petrochemical plastics could be biodegradable bioplastics. In this study, a bioplastic based on polylactic acid (PLA) type of polyester was synthesized from local agricultural biomass. The objective is to propose a biodegradable plastic as an alternative to help reduce petrochemical plastic waste. The methodology for synthesizing the bioplastic from local corn biomass required several steps, ranging from corn germination to the polymerization of lactic acid. The natural germination method was used to obtain glucose. The glucose was then metabolized by the lactic acid bacterial strain Pediococcus acidilactici LabRcJ-10, leading to the formation of crude lactic acid. Liquid-liquid extraction was performed using diethyl ether. The bioplastic was synthesized with a yield of 7.87%, linked to the low growth of Lactobacillus in the substrate. FTIR analysis revealed an intense peak at 1748 cm⁻¹, characteristic of the C=O stretching vibration present in the esters of polylactic acid (PLA). The material also exhibited a low solubility index but a relatively high moisture content. The bioplastic degradation test, conducted by burial in three different types of matrices, revealed significant biodegradability under aerobic conditions, favored by the progressive enrichment of the matrix with microorganisms.

Downloads

Download data is not yet available.

References

Sylla, O., Spaliviero, M., Komenan, D., Leone, G., & Coulibaly, S. (2023). Une meilleure qualité de vie pour tous dans un monde en urbanisation. Côte d’Ivoire.

Nayanathara Thathsarani Pilapitiya, P. G. C., & Ratnayake, A. S. (2024). The world of plastic waste: A review. Cleaner Materials, 11, 100220. https://doi.org/10.1016/j.clema.2024.100220

Koumi, A. R., Ouattara-Soro, F. S., Quéré, Y., Louault, Y., Yayo N’Cho, A. J., Coulibaly, S., et al. (2021). Les déchets plastiques dans l’océan au cœur de l’Aquathon d’Abidjan, Côte d’Ivoire. Natures Sciences Sociétés, 29, 458–468. https://doi.org/10.1051/nss/2022004

Zoungranan, Y., Lynda, E., Dobi-Brice, K. K., Tchirioua, E., Bakary, C., & Yannick, D. D. (2020). Influence of natural factors on the biodegradation of simple and composite bioplastics based on cassava starch and corn starch. Journal of Environmental Chemical Engineering, 8, 104396. https://doi.org/10.1016/j.jece.2020.104396

Thiruchelvi, R., Das, A., & Sikdar, E. (2021). Bioplastics as better alternative to petro plastic. Materials Today: Proceedings, 37, 1634–1639. https://doi.org/10.1016/j.matpr.2020.07.176

Wang, Z., Xu, C., Qi, L., & Chen, C. (2024). Chemical modification of polysaccharides for sustainable bioplastics. Trends in Chemistry, 6, 314–331. https://doi.org/10.1016/j.trechm.2024.04.009

Karan, H., Funk, C., Grabert, M., Oey, M., & Hankamer, B. (2019). Green bioplastics as part of a circular bioeconomy. Trends in Plant Science, 24, 237–249. https://doi.org/10.1016/j.tplants.2018.11.010

Ali, S. S., Abdelkarim, E. A., Elsamahy, T., Al-Tohamy, R., Li, F., Kornaros, M., et al. (2023). Bioplastic production in terms of life cycle assessment: A state-of-the-art review. Environmental Science and Ecotechnology, 15, 100254. https://doi.org/10.1016/j.ese.2023.100254

Oluwasina, O. O., Olaleye, F. K., Olusegun, S. J., Oluwasina, O. O., & Mohallem, N. D. S. (2019). Influence of oxidized starch on physicomechanical, thermal properties, and atomic force micrographs of cassava starch bioplastic film. International Journal of Biological Macromolecules, 135, 282–293. https://doi.org/10.1016/j.ijbiomac.2019.05.150

Abdollahi Moghaddam, M. R., Hesarinejad, M. A., & Javidi, F. (2023). Characterization and optimization of polylactic acid and polybutylene succinate blend/starch/wheat straw biocomposite by optimal custom mixture design. Polymer Testing, 121, 108000. https://doi.org/10.1016/j.polymertesting.2023.108000

Yu, J., Xu, S., Liu, B., Wang, H., Qiao, F., Ren, X., et al. (2023). PLA bioplastic production: From monomer to the polymer. European Polymer Journal, 193, 112076. https://doi.org/10.1016/j.eurpolymj.2023.112076

Lasprilla, A. J. R., Martinez, G. A. R., Lunelli, B. H., Jardini, A. L., & Filho, R. M. (2012). Poly-lactic acid synthesis for application in biomedical devices — A review. Biotechnology Advances, 30, 321–328. https://doi.org/10.1016/j.biotechadv.2011.06.019

Fields, M., Hamad, A., & Smith, D. (2006). Natural lactic acid fermentation of corn meal. Journal of Food Science, 46, 900–902. https://doi.org/10.1111/j.1365-2621.1981.tb15375.x

Attchelouwa, C. K., N’Guessan, F. K., Aké, F. M. D., & Djè, M. K. (2018). Molecular identification of yeast, lactic and acetic acid bacteria species during spoilage of tchapalo, a traditional sorghum beer from Côte d’Ivoire. World Journal of Microbiology and Biotechnology, 34, 173. https://doi.org/10.1007/s11274-018-2555-z

Willem Schepers, A., Thibault, J., & Lacroix, C. (2002). Lactobacillus helveticus growth and lactic acid production during pH-controlled batch cultures in whey permeate/yeast extract medium. Part II: Kinetic modeling and model validation. Enzyme and Microbial Technology, 30, 187–194. https://doi.org/10.1016/S0141-0229(01)00466-5

Demmelmayer, P., Foo, J. W., Wiesler, D., Rudelstorfer, G., & Kienberger, M. (2024). Reactive liquid–liquid extraction of lactic acid from microfiltered sweet sorghum silage press juice in an agitated extraction column using a hydrophobic natural deep eutectic solvent as modifier. Journal of Cleaner Production, 458, 142463. https://doi.org/10.1016/j.jclepro.2024.142463

Ghadamyari, M., Chaemchuen, S., Zhou, K., Dusselier, M., Sels, B. F., Mousavi, B., et al. (2018). One-step synthesis of stereo-pure L,L-lactide from L-lactic acid. Catalysis Communications, 114, 33–36. https://doi.org/10.1016/j.catcom.2018.06.003

Muabu Kayeye, A. (2024). Essai de production de l’acide polylactique (PLA) à partir de la mélasse de canne à sucre en vue d’élaborer les emballages bioplastiques. Revue Congolaise des Sciences & Technologies, 3, 283–292. https://doi.org/10.59228/rcst.024.v3.i3.96

Boyaval, P., Terre, S., & Corre, C. (1988). Production d’acide lactique à partir de perméat de lactosérum par fermentation continue en réacteur à membrane. Lait, 68, 65–84. https://doi.org/10.1051/lait:198815

Xu, J.-J., Fu, L.-J., Si, K.-L., Yue, T.-L., & Guo, C.-F. (2020). 3-Phenyllactic acid production by free-whole-cells of Lactobacillus crustorum in batch and continuous fermentation systems. Journal of Applied Microbiology, 129, 335–344. https://doi.org/10.1111/jam.14599

Bajpai, P. K., Singh, I., & Madaan, J. (2014). Development and characterization of PLA-based green composites. Journal of Thermoplastic Composite Materials, 27, 52–81. https://doi.org/10.1177/0892705712439571

Nekhubvi, V. (2024). The investigation of chemical composition and the specific heat capacity of cow dung and water mixture. In Anaerobic Digestion – Biotechnology for Environmental Sustainability. IntechOpen. https://doi.org/10.5772/intechopen.112168

Birinci, E., Karamanoglu, M., Kesik, H. İ., & Kaymakci, A. (2022). Effect of heat treatment parameters on the physical, mechanical, and crystallinity index properties of Scots pine and beech wood. Bioresources, 17, 4713–4729. https://doi.org/10.15376/biores.17.3.4713-4729

Jia, X., Zhao, K., Zhao, J., Lin, C., Zhang, H., Chen, L., et al. (2023). Degradation of poly(butylene adipate-co-terephthalate) films by Thermobifida fusca FXJ-1 isolated from compost. Journal of Hazardous Materials, 441, 129958. https://doi.org/10.1016/j.jhazmat.2022.129958

Silveira, V. A. I., Marim, B. M., Hipólito, A., Gonçalves, M. C., Mali, S., Kobayashi, R. K. T., et al. (2020). Characterization and antimicrobial properties of bioactive packaging films based on polylactic acid–sophorolipid for the control of foodborne pathogens. Food Packaging and Shelf Life, 26, 100591. https://doi.org/10.1016/j.fpsl.2020.100591

Dilawar, H., & Eskicioglu, C. (2025). Biodegradation of bioplastics in aerobic and anaerobic environments. In Biocomposites and the Circular Economy (pp. 195–233). Elsevier. https://doi.org/10.1016/B978-0-443-23718-8.00009-0

Published
2025-11-08
How to Cite
Zoungranan, Y., Hamed, O. T. S., Constant, A. K., Kwithony, D. W., Maurice, A. T. J., & Lynda, E. (2025). Production and biodegradability of a bio-based polylactide from corn. Earthline Journal of Chemical Sciences, 12(4), 459-470. https://doi.org/10.34198/ejcs.12425.459470
Section
Articles