Production and biodegradability of a bio-based polylactide from corn
Abstract
The proliferation of petrochemical plastic waste poses a threat to environmental quality and animal health. In this context, an alternative to traditional petrochemical plastics could be biodegradable bioplastics. In this study, a bioplastic based on polylactic acid (PLA) type of polyester was synthesized from local agricultural biomass. The objective is to propose a biodegradable plastic as an alternative to help reduce petrochemical plastic waste. The methodology for synthesizing the bioplastic from local corn biomass required several steps, ranging from corn germination to the polymerization of lactic acid. The natural germination method was used to obtain glucose. The glucose was then metabolized by the lactic acid bacterial strain Pediococcus acidilactici LabRcJ-10, leading to the formation of crude lactic acid. Liquid-liquid extraction was performed using diethyl ether. The bioplastic was synthesized with a yield of 7.87%, linked to the low growth of Lactobacillus in the substrate. FTIR analysis revealed an intense peak at 1748 cm⁻¹, characteristic of the C=O stretching vibration present in the esters of polylactic acid (PLA). The material also exhibited a low solubility index but a relatively high moisture content. The bioplastic degradation test, conducted by burial in three different types of matrices, revealed significant biodegradability under aerobic conditions, favored by the progressive enrichment of the matrix with microorganisms.
Downloads
References
Sylla, O., Spaliviero, M., Komenan, D., Leone, G., & Coulibaly, S. (2023). Une meilleure qualité de vie pour tous dans un monde en urbanisation. Côte d’Ivoire.
Nayanathara Thathsarani Pilapitiya, P. G. C., & Ratnayake, A. S. (2024). The world of plastic waste: A review. Cleaner Materials, 11, 100220. https://doi.org/10.1016/j.clema.2024.100220
Koumi, A. R., Ouattara-Soro, F. S., Quéré, Y., Louault, Y., Yayo N’Cho, A. J., Coulibaly, S., et al. (2021). Les déchets plastiques dans l’océan au cœur de l’Aquathon d’Abidjan, Côte d’Ivoire. Natures Sciences Sociétés, 29, 458–468. https://doi.org/10.1051/nss/2022004
Zoungranan, Y., Lynda, E., Dobi-Brice, K. K., Tchirioua, E., Bakary, C., & Yannick, D. D. (2020). Influence of natural factors on the biodegradation of simple and composite bioplastics based on cassava starch and corn starch. Journal of Environmental Chemical Engineering, 8, 104396. https://doi.org/10.1016/j.jece.2020.104396
Thiruchelvi, R., Das, A., & Sikdar, E. (2021). Bioplastics as better alternative to petro plastic. Materials Today: Proceedings, 37, 1634–1639. https://doi.org/10.1016/j.matpr.2020.07.176
Wang, Z., Xu, C., Qi, L., & Chen, C. (2024). Chemical modification of polysaccharides for sustainable bioplastics. Trends in Chemistry, 6, 314–331. https://doi.org/10.1016/j.trechm.2024.04.009
Karan, H., Funk, C., Grabert, M., Oey, M., & Hankamer, B. (2019). Green bioplastics as part of a circular bioeconomy. Trends in Plant Science, 24, 237–249. https://doi.org/10.1016/j.tplants.2018.11.010
Ali, S. S., Abdelkarim, E. A., Elsamahy, T., Al-Tohamy, R., Li, F., Kornaros, M., et al. (2023). Bioplastic production in terms of life cycle assessment: A state-of-the-art review. Environmental Science and Ecotechnology, 15, 100254. https://doi.org/10.1016/j.ese.2023.100254
Oluwasina, O. O., Olaleye, F. K., Olusegun, S. J., Oluwasina, O. O., & Mohallem, N. D. S. (2019). Influence of oxidized starch on physicomechanical, thermal properties, and atomic force micrographs of cassava starch bioplastic film. International Journal of Biological Macromolecules, 135, 282–293. https://doi.org/10.1016/j.ijbiomac.2019.05.150
Abdollahi Moghaddam, M. R., Hesarinejad, M. A., & Javidi, F. (2023). Characterization and optimization of polylactic acid and polybutylene succinate blend/starch/wheat straw biocomposite by optimal custom mixture design. Polymer Testing, 121, 108000. https://doi.org/10.1016/j.polymertesting.2023.108000
Yu, J., Xu, S., Liu, B., Wang, H., Qiao, F., Ren, X., et al. (2023). PLA bioplastic production: From monomer to the polymer. European Polymer Journal, 193, 112076. https://doi.org/10.1016/j.eurpolymj.2023.112076
Lasprilla, A. J. R., Martinez, G. A. R., Lunelli, B. H., Jardini, A. L., & Filho, R. M. (2012). Poly-lactic acid synthesis for application in biomedical devices — A review. Biotechnology Advances, 30, 321–328. https://doi.org/10.1016/j.biotechadv.2011.06.019
Fields, M., Hamad, A., & Smith, D. (2006). Natural lactic acid fermentation of corn meal. Journal of Food Science, 46, 900–902. https://doi.org/10.1111/j.1365-2621.1981.tb15375.x
Attchelouwa, C. K., N’Guessan, F. K., Aké, F. M. D., & Djè, M. K. (2018). Molecular identification of yeast, lactic and acetic acid bacteria species during spoilage of tchapalo, a traditional sorghum beer from Côte d’Ivoire. World Journal of Microbiology and Biotechnology, 34, 173. https://doi.org/10.1007/s11274-018-2555-z
Willem Schepers, A., Thibault, J., & Lacroix, C. (2002). Lactobacillus helveticus growth and lactic acid production during pH-controlled batch cultures in whey permeate/yeast extract medium. Part II: Kinetic modeling and model validation. Enzyme and Microbial Technology, 30, 187–194. https://doi.org/10.1016/S0141-0229(01)00466-5
Demmelmayer, P., Foo, J. W., Wiesler, D., Rudelstorfer, G., & Kienberger, M. (2024). Reactive liquid–liquid extraction of lactic acid from microfiltered sweet sorghum silage press juice in an agitated extraction column using a hydrophobic natural deep eutectic solvent as modifier. Journal of Cleaner Production, 458, 142463. https://doi.org/10.1016/j.jclepro.2024.142463
Ghadamyari, M., Chaemchuen, S., Zhou, K., Dusselier, M., Sels, B. F., Mousavi, B., et al. (2018). One-step synthesis of stereo-pure L,L-lactide from L-lactic acid. Catalysis Communications, 114, 33–36. https://doi.org/10.1016/j.catcom.2018.06.003
Muabu Kayeye, A. (2024). Essai de production de l’acide polylactique (PLA) à partir de la mélasse de canne à sucre en vue d’élaborer les emballages bioplastiques. Revue Congolaise des Sciences & Technologies, 3, 283–292. https://doi.org/10.59228/rcst.024.v3.i3.96
Boyaval, P., Terre, S., & Corre, C. (1988). Production d’acide lactique à partir de perméat de lactosérum par fermentation continue en réacteur à membrane. Lait, 68, 65–84. https://doi.org/10.1051/lait:198815
Xu, J.-J., Fu, L.-J., Si, K.-L., Yue, T.-L., & Guo, C.-F. (2020). 3-Phenyllactic acid production by free-whole-cells of Lactobacillus crustorum in batch and continuous fermentation systems. Journal of Applied Microbiology, 129, 335–344. https://doi.org/10.1111/jam.14599
Bajpai, P. K., Singh, I., & Madaan, J. (2014). Development and characterization of PLA-based green composites. Journal of Thermoplastic Composite Materials, 27, 52–81. https://doi.org/10.1177/0892705712439571
Nekhubvi, V. (2024). The investigation of chemical composition and the specific heat capacity of cow dung and water mixture. In Anaerobic Digestion – Biotechnology for Environmental Sustainability. IntechOpen. https://doi.org/10.5772/intechopen.112168
Birinci, E., Karamanoglu, M., Kesik, H. İ., & Kaymakci, A. (2022). Effect of heat treatment parameters on the physical, mechanical, and crystallinity index properties of Scots pine and beech wood. Bioresources, 17, 4713–4729. https://doi.org/10.15376/biores.17.3.4713-4729
Jia, X., Zhao, K., Zhao, J., Lin, C., Zhang, H., Chen, L., et al. (2023). Degradation of poly(butylene adipate-co-terephthalate) films by Thermobifida fusca FXJ-1 isolated from compost. Journal of Hazardous Materials, 441, 129958. https://doi.org/10.1016/j.jhazmat.2022.129958
Silveira, V. A. I., Marim, B. M., Hipólito, A., Gonçalves, M. C., Mali, S., Kobayashi, R. K. T., et al. (2020). Characterization and antimicrobial properties of bioactive packaging films based on polylactic acid–sophorolipid for the control of foodborne pathogens. Food Packaging and Shelf Life, 26, 100591. https://doi.org/10.1016/j.fpsl.2020.100591
Dilawar, H., & Eskicioglu, C. (2025). Biodegradation of bioplastics in aerobic and anaerobic environments. In Biocomposites and the Circular Economy (pp. 195–233). Elsevier. https://doi.org/10.1016/B978-0-443-23718-8.00009-0

This work is licensed under a Creative Commons Attribution 4.0 International License.

