Biogenic mediated synthesis, characterization, antimicrobial and radical scavenging studies of iron oxide nanoparticles (Fe3O4-NPs) using Eichhornia crassipes leaves extract

  • Abubakar Habib Idris Department of Chemistry, Abubakar Tafawa Balewa University, PMB 0248, Bauchi, Nigeria
  • Fartisincha Peingurta Andrew School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
  • Jamila Ibrahim Shekarau Department of Chemistry, Abubakar Tafawa Balewa University, PMB 0248, Bauchi, Nigeria
  • Yasser Sabo Takko Department of Chemistry, Abubakar Tafawa Balewa University, PMB 0248, Bauchi, Nigeria
  • Omolade Ojo Department of Chemistry, Modibbo Adama University, PMB 2076, Yola, Nigeria
  • Aishatu Habib Idris Department of Biological Science, Abubakar Tafawa Balewa University, PMB 0248, Bauchi, Nigeria
  • Abdullahi Aliyu Department of Biological Science, Abubakar Tafawa Balewa University, PMB 0248, Bauchi, Nigeria
  • Aisha Khalida Haladu Department of Chemistry, Abubakar Tafawa Balewa University, PMB 0248, Bauchi, Nigeria
  • Ibrahim Mohammed Warji Department of Chemistry, Abubakar Tafawa Balewa University, PMB 0248, Bauchi, Nigeria
Keywords: biogenic mediated, nanoparticles, water hyacinth, antimicrobial, antioxidant

Abstract

The plant Eichhornia crassipes (commonly known as water hyacinth) was obtained from Lake Geriyo, Yola, Adamawa State, Nigeria. The sampled leaves were gently washed with deionized (DI) water and air-dried at room temperature (25–30 °C). Iron nanoparticles were synthesized using Eichhornia crassipes (water hyacinth extract) and characterized using XRD, SEM, TEM, SEM-EDX, and FTIR. The antioxidant activity of the iron nanoparticles was analyzed using DPPH scavenging activity.

The plant extracts and iron nanoparticles were tested for antibacterial efficiency against Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, Salmonella typhi, and Klebsiella pneumoniae. The results revealed the proximate composition of the water hyacinth plant, including moisture content, ash content, fiber, fat content, protein, and carbohydrates. The proximate composition followed the order: carbohydrates > lipids > fiber > moisture > protein > ash content.

Qualitative phytochemical screening of the leaf revealed the presence of carbohydrates, terpenoids, phenolics, and saponins, while amino acids, terpenes, alkaloids, steroids, and flavonoids were absent. SEM-EDX, TEM, XRD, and FTIR confirmed the formation of iron nanoparticles. The iron nanoparticles exhibited higher percentage inhibition with varied concentrations of 25% FeNPs, 50/50 FeNPs, and 25/75 FeNPs, with 25/75 FeNPs showing significant scavenging activity of 24%, 39%, 47%, 55%, and 73% at 10, 20, 30, 40, and 50 µl/ml, respectively.

The minimum inhibitory concentration (MIC) of 25% FeNPs for Klebsiella pneumoniae and Staphylococcus aureus showed that the extract had a higher inhibitory effect on Klebsiella pneumoniae compared to Staphylococcus aureus. The inhibition sequence showed similar inhibition for all pathogens except Salmonella typhi and Klebsiella pneumoniae, which exhibited the least inhibition among all FeNP concentrations. An increase in material concentration resulted in higher inhibition for four organisms, while Klebsiella pneumoniae showed a different trend, with the highest inhibition observed at a 200 µg/L concentration.

References

Mbachu, C. A., Babayemi, A. K., Egbosiuba, T. C., Ike, J. I., Ani, I. J., & Mustapha, S. (2023). Green synthesis of iron oxide nanoparticles by Taguchi design of experiment method for effective adsorption of methylene blue and methyl orange from textile wastewater. Results in Engineering, 19, 101198. https://doi.org/10.1016/j.rineng.2023.101198

Irshad, M. A., Nawaz, R., Wojciechowska, E., Mohsin, M., Nawrot, N., Nasim, I., & Hussain, F. (2023). Application of nanomaterials for cadmium adsorption for sustainable treatment of wastewater: A review. Water, Air, & Soil Pollution, 234(1), 54. https://doi.org/10.1007/s11270-023-06064-7

Alfieri, A., Anantharaman, S. B., Zhang, H., & Jariwala, D. (2023). Nanomaterials for quantum information science and engineering. Advanced Materials, 35(27), 2109621. https://doi.org/10.1002/adma.202109621

Winkler, R., Ciria, M., Ahmad, M., Plank, H., & Marcuello, C. (2023). A review of the current state of magnetic force microscopy to unravel the magnetic properties of nanomaterials applied in biological systems and future directions for quantum technologies. Nanomaterials, 13(18), 2585. https://doi.org/10.3390/nano13182585

Sharma, M., Das, P. P., & Purkait, M. K. (2023). Energy storage properties of nanomaterials. In Advances in smart nanomaterials and their applications (pp. 337-350). Elsevier. https://doi.org/10.1016/B978-0-323-99546-7.00005-7

Uwaya, G. E., Fayemi, O. E., Sherif, E. S. M., Junaedi, H., & Ebenso, E. E. (2020). Synthesis, electrochemical studies, and antimicrobial properties of Fe₃O₄ nanoparticles from Callistemon viminalis plant extracts. Materials, 13(21), 4894. https://doi.org/10.3390/ma13214894

Yusefi, M., Shameli, K., Su Yee, O., Teow, S. Y., Hedayatnasab, Z., Jahangirian, H., & Kuča, K. (2021). Green synthesis of Fe₃O₄ nanoparticles stabilized by a Garcinia mangostana fruit peel extract for hyperthermia and anticancer activities. International Journal of Nanomedicine, 16, 2515-2532. https://doi.org/10.2147/IJN.S284134

Sathishkumar, G., Logeshwaran, V., Sarathbabu, S., Jha, P. K., Jeyaraj, M., Rajkuberan, C., & Sivaramakrishnan, S. (2018). Green synthesis of magnetic Fe₃O₄ nanoparticles using Couroupita guianensis Aubl. fruit extract for their antibacterial and cytotoxicity activities. Artificial Cells, Nanomedicine, and Biotechnology, 46(3), 589-598. https://doi.org/10.1080/21691401.2017.1332635

Ramesh, A. V., Rama Devi, D., Mohan Botsa, S., & Basavaiah, K. (2018). Facile green synthesis of Fe₃O₄ nanoparticles using aqueous leaf extract of Zanthoxylum armatum DC. for efficient adsorption of methylene blue. Journal of Asian Ceramic Societies, 6(2), 145-155. https://doi.org/10.1080/21870764.2018.1459335

Karami, N., Mohammadpour, A., Samaei, M. R., Amani, A. M., Dehghani, M., Varma, R. S., & Sahu, J. N. (2024). Green synthesis of sustainable magnetic nanoparticles Fe₃O₄ and Fe₃O₄-chitosan derived from Prosopis farcta biomass extract and their performance in the sorption of lead (II). International Journal of Biological Macromolecules, 254, 127663. https://doi.org/10.1016/j.ijbiomac.2023.127663

Ghoohestani, E., Samari, F., Homaei, A., & Yosuefinejad, S. (2024). A facile strategy for preparation of Fe₃O₄ magnetic nanoparticles using Cordia myxa leaf extract and investigating its adsorption activity in dye removal. Scientific Reports, 14(1), 84. https://doi.org/10.1038/s41598-023-50550-1

Zakernezhad, F., Rasekh, B., Yazdian, F., & Maghami, P. (2024). The role of surface modification of silica-coated Fe₃O₄ nanoparticles in the structure and enzyme activity of lysozyme. BioNanoScience, 1-14. https://doi.org/10.1007/s12668-024-01298-z

Abdelmonem, M., Albert, E. L., Alhadad, M. A., & Abdullah, C. A. (2024). Plant-polyphenol-mediated synthesis of magnetic biocompatible iron oxide nanoparticles for diagnostic imaging and management of neurodegenerative diseases. Precision Nanomedicine, 1233-1251. https://doi.org/10.33218/001c.92424

Nozhat, Z., Wang, S., Mushtaq, A., Deng, T., Iqbal, M. Z., & Kong, X. (2024). Temozolomide loaded Fe₃O₄@SiO₂ nanoparticles for MR-imaging directed synergistic therapy of glioblastoma multiforme in vitro. Materials Today Communications, 108289. https://doi.org/10.1016/j.mtcomm.2024.108289

Phumying, S., Labuayai, S., Thomas, C., Amornkitbamrung, V., Swatsitang, E., & Maensiri, S. (2013). Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe₃O₄) nanoparticles. Applied Physics A, 111, 1187-1193. https://doi.org/10.1007/s00339-012-7340-5

Mitchell, E., De Souza, F., Gupta, R. K., Kahol, P. K., Kumar, D., Dong, L., & Gupta, B. K. (2015). Probing on the hydrothermally synthesized iron oxide nanoparticles for ultra-capacitor applications. Powder Technology, 272, 295-299. https://doi.org/10.1016/j.powtec.2014.12.021

Khan, S. R., Jamil, S., Janjua, M. R. S. A., & Khera, R. A. (2017). Synthesis of ferric oxyhydroxide nanoparticles and ferric oxide nanorods by reflux-assisted coprecipitation method and comparative study of their thermal properties. Materials Research Express, 4(11), 115019. https://doi.org/10.1088/2053-1591/aa971e

Mohammed, S. A. J., Al-Rawi, B. K., & Al-Haddad, R. M. (2023). Fe₃O₄@SiO₂ core-shell nanoparticles: Synthesis, characterization prepared by green method for Iraqi Aloe vera extract. International Journal of Nanoscience, 22(02), 2350009. https://doi.org/10.1142/S0219581X23500096

Tovar, G. I., Briceño, S., Suarez, J., Flores, S., & González, G. (2020). Biogenic synthesis of iron oxide nanoparticles using Moringa oleifera and chitosan and its evaluation on corn germination. Environmental Nanotechnology, Monitoring & Management, 14, 100350. https://doi.org/10.1016/j.enmm.2020.100350

Sari, I. P., & Yulizar, Y. (2017, April). Green synthesis of magnetite (Fe₃O₄) nanoparticles using Graptophyllum pictum leaf aqueous extract. In IOP Conference Series: Materials Science and Engineering (Vol. 191, No. 1, p. 012014). IOP Publishing. https://doi.org/10.1088/1757-899X/191/1/012014

Ramesh, A. V., Rama Devi, D., Mohan Botsa, S., & Basavaiah, K. (2018). Facile green synthesis of Fe₃O₄ nanoparticles using aqueous leaf extract of Zanthoxylum armatum DC. for efficient adsorption of methylene blue. Journal of Asian Ceramic Societies, 6(2), 145-155. https://doi.org/10.1080/21870764.2018.1459335

Salem, D. M., Ismail, M. M., & Aly-Eldeen, M. A. (2019). Biogenic synthesis and antimicrobial potency of iron oxide (Fe₃O₄) nanoparticles using algae harvested from the Mediterranean Sea, Egypt. The Egyptian Journal of Aquatic Research, 45(3), 197-204. https://doi.org/10.1016/j.ejar.2019.07.002

Mousavi, S. M., Hashemi, S. A., Ramakrishna, S., Esmaeili, H., Bahrani, S., Koosha, M., & Babapoor, A. (2019). Green synthesis of supermagnetic Fe₃O₄-MgO nanoparticles via Nutmeg essential oil toward superior anti-bacterial and anti-fungal performance. Journal of Drug Delivery Science and Technology, 54, 101352. https://doi.org/10.1016/j.jddst.2019.101352

Cai, L., Cai, L., Jia, H., Liu, C., Wang, D., & Sun, X. (2020). Foliar exposure of Fe₃O₄ nanoparticles on Nicotiana benthamiana: Evidence for nanoparticles uptake, plant growth promoter, and defense response elicitor against plant virus. Journal of Hazardous Materials, 393, 122415. https://doi.org/10.1016/j.jhazmat.2020.122415

Alexeree, S. M., Abou-Seri, H. M., El-Din, H. E. S., Youssef, D., & Ramadan, M. A. (2024). Green synthesis of silver and iron oxide nanoparticles mediated photothermal effects on Blastocystis hominis. Lasers in Medical Science, 39(1), 43. https://doi.org/10.1007/s10103-024-03984-6

Shelar, A., Didwal, P. N., & Patil, R. (2024). Recent advances in antifungal nanomaterials for combating biofilm infection caused by Candida albicans. In Applications of nanotechnology in microbiology (pp. 271-290). Springer. https://doi.org/10.1007/978-3-031-49933-3_10

Kale, S. S., Chauhan, R., Nigam, B., Gosavi, S., & Chaudhary, I. J. (2024). Effectiveness of nanoparticles in improving soil fertility and eco-friendly crop resistance: A comprehensive review. Biocatalysis and Agricultural Biotechnology, 103066. https://doi.org/10.1016/j.bcab.2024.103066

Ikhuoria, E. U., Uwidia, I. E., Okojie, R. O., Ifijen, I. H., & Chikaodili, I. D. (2024). Synergistic antibacterial action of iron, silver, and vanadium ternary oxide nanoparticles: Green mediated synthesis using tailored plant extract blends. Biomedical Materials & Devices, 1-19. https://doi.org/10.1007/s44174-024-00162-8

Sullivan, P. R., & Wood, R. (2012, October). Water hyacinth (Eichhornia crassipes (Mart.) Solms) seed longevity and the implications for management. In Eighteenth Australasian Weeds Conference (Vol. 1933, pp. 37-40). Weed Society of Victoria Inc.

Pendse, D. S., & Deshmukh, M. P. (2024). A comprehensive study on an integrated approach for water hyacinth management to conserve natural water resources in India. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.12.047

Ayanda, O. I., Ajayi, T., & Asuwaju, F. P. (2020). Eichhornia crassipes (Mart.) Solms: Uses, challenges, threats, and prospects. The Scientific World Journal, 2020, 3452172. https://doi.org/10.1155/2020/3452172

Sandeep, P., Neha, S., Nirala, A. K., & Anup, G. (2015). Dynamics of water weed Eichhornia crassipes: A review. International Journal for Research in Applied Science and Engineering Technology, 3(10), 137-140.

Lalitha, P., & Jayanthi, P. (2014). Antiaging activity of the skin cream containing ethyl acetate extract of Eichhornia crassipes (Mart.) Solms. https://doi.org/10.1155/2014/943287

Aboul-Enein, A. M., Shanab, S. M., Shalaby, E. A., Zahran, M. M., Lightfoot, D. A., & El-Shemy, H. A. (2014). Cytotoxic and antioxidant properties of active principals isolated from water hyacinth against four cancer cell lines. BMC Complementary and Alternative Medicine, 14(1), 1-11. https://doi.org/10.1186/1472-6882-14-397

Aida, P., Rosa, V., Blamea, F., Tomas, A., & Salvador, C. (2001). Paraguayan plants used in traditional medicine. Journal of Ethnopharmacology, 16, 93-98. https://doi.org/10.1016/S0378-8741(01)00214-8

Sud, D., & Kaur, P. (2011). Heterogeneous photocatalytic degradation of selected organophosphate pesticides: A review. Critical Reviews in Environmental Science and Technology, 42(22), 2365-2407. https://doi.org/10.1080/10643389.2011.574184

Published
2025-03-18
How to Cite
Idris, A. H., Andrew, F. P., Shekarau, J. I., Takko, Y. S., Ojo, O., Idris, A. H., Aliyu, A., Haladu, A. K., & Warji, I. M. (2025). Biogenic mediated synthesis, characterization, antimicrobial and radical scavenging studies of iron oxide nanoparticles (Fe3O4-NPs) using Eichhornia crassipes leaves extract. Earthline Journal of Chemical Sciences, 12(2), 179-191. https://doi.org/10.34198/ejcs.12225.179191
Section
Articles