Optimization of the manure/water ratio for maximum biogas production: Case of the FONSTI-CRDI digester in the East of Côte d’Ivoire

  • Adjoumani Rodrigue Kouakou Laboratoire de Thermodynamique et de Physico-Chimie du Milieu (LTPCM), UFR Sciences Fondamentales Appliquées, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire
  • Marc Cyril Kouadio Laboratoire de Biomasse Energie, Institut de Recherche sur les Energies Nouvelles, Université Nangui Abrogoua, B.P. 801 Abidjan 02, Côte d’Ivoire
  • Daouda Oseni Laboratoire de Physique Fondamentale et Appliquée (LPFA), Université NANGUI ABROGOUA, 02 BP 801 Abidjan 02, Côte d’Ivoire
  • Koffi Eric Igor Adjoumani Laboratoire de Thermodynamique et de Physico-Chimie du Milieu (LTPCM), UFR Sciences Fondamentales Appliquées, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire
  • Ahissan Donatien Ehouman Laboratoire de Thermodynamique et de Physico-Chimie du Milieu (LTPCM), UFR Sciences Fondamentales Appliquées, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire
  • Benjamin Yao Centre d’Excellence Africain Pour la Valorisation des Déchets en Produits À Haute Valeur Ajoutée (CEA-VALOPRO), Institut National Polytechnique Félix Houphouët-Boigny (INP-HB), BP 1093, Yamoussoukro, Côte d’Ivoire
Keywords: anaerobic digestion, biogas production, poultry manure valorization, waste-to-energy, sustainable agriculture

Abstract

Effective waste management is crucial in addressing global environmental challenges. This study focuses on optimizing biogas production through anaerobic digestion of poultry manure, which is a significant agricultural waste in Côte d’Ivoire. The aim is to identify the optimal manure-to-water ratio to maximize biogas output using a FONSTI-CRDI digester with a capacity of 20 m³. The study was conducted at the Brin Foundation poultry farm in Côte d’Ivoire. Three manure-to-water ratios (1:3, 1:2, and 1:1) were tested over 15-day cycles. A range of laboratory and field equipment, including pH meters and biogas analyzers, was employed to monitor digestion conditions and measure biogas production. Physicochemical properties of the manure, such as pH, total solids, and the carbon-to-nitrogen ratio, were also analyzed to understand their impact on biogas yield. The 1:3 ratio yielded an average biogas production of 4.1 m³/day, with a methane content of 43%. The 1:2 ratio showed an improvement, achieving 5.3 m³/day with 51% methane. The 1:1 ratio produced the highest biogas output at 6.23 m³/day and 58% methane. However, operational challenges like digester blockages were observed at the 1:1 ratio. The digestate quality improved with lower water content, emitting less odor. The 1:2 manure-to-water ratio was determined to be the most effective for sustained biogas production, balancing high output and operational stability. This configuration supports renewable energy goals and sustainable agricultural practices, offering an efficient solution for managing poultry manure. Further research on co-substrates could enhance biogas yields and optimize the methanization process.

References

Bourdin, S., & Torre, A. (2023). L’économie circulaire, nouveau levier de développement et de transition écologique pour les territoires. Population & Avenir, 763(3), 4-7. https://doi.org/10.3917/popav.763.0004

Wang, D., Dong, L., & Mei, J. (2023). An advanced review of climate change mitigation policies in Germany, France, and the Netherlands. Environmental Research Letters, 18(10), 103001. https://doi.org/10.1088/1748-9326/acf58f

Lamnatou, C., Cristofari, C., & Chemisana, D. (2023). Renewable energy sources as a catalyst for energy transition: Technological innovations and an example of the energy transition in France. Renewable Energy, 119600. https://doi.org/10.1016/j.renene.2023.119600

Halkos, G. E., & Aslanidis, P. S. C. (2023). Promoting sustainable waste management for regional economic development in European Mediterranean countries. Euro-Mediterranean Journal for Environmental Integration, 8(4), 767-775. https://doi.org/10.1007/s41207-023-00405-y

Angouria-Tsorochidou, E., Walk, S., Körner, I., & Thomsen, M. (2023). Environmental and economic assessment of household food waste source-separation efficiency in a German case study. Cleaner Waste Systems, 5, 100092. https://doi.org/10.1016/j.clwas.2023.100092

da Silva, G. H. R., Nascimento, A., Baum, C. D., & Mathias, M. H. (2024). Renewable energy potentials and roadmap in Brazil, Austria, and Germany. Energies, 17(6), 1482. https://doi.org/10.3390/en17061482

Bumharter, C., Bolonio, D., Amez, I., Martínez, M. J. G., & Ortega, M. F. (2023). New opportunities for the European biogas industry: A review on current installation development, production potentials and yield improvements for manure and agricultural waste mixtures. Journal of Cleaner Production, 388, 135867. https://doi.org/10.1016/j.jclepro.2023.135867

Bucur, C. G. (2024). Challenges for biomass production in the context of an expansion of biogas plants. In Proceedings of the International Conference on Business Excellence, 18(1), 1131-1140. https://doi.org/10.2478/picbe-2024-0097

Bhatnagar, N., Ryan, D., Murphy, R., & Enright, A. M. (2022). A comprehensive review of green policy, anaerobic digestion of animal manure and chicken litter feedstock potential – Global and Irish perspective. Renewable and Sustainable Energy Reviews, 154, 111884. https://doi.org/10.1016/j.rser.2021.111884

Cai, Y., Janke, L., Zheng, Z., Wang, X., Pröter, J., & Schäfer, F. (2021). Enhancing anaerobic digestion of chicken manure leachate: Effects of trace elements supplementation on methane production. Bioresource Technology Reports, 14, 100662. https://doi.org/10.1016/j.biteb.2021.100662

Liu, Z., & Wang, X. (2020). Manure treatment and utilization in production systems. In Animal agriculture (pp. 455-467). Academic Press. https://doi.org/10.1016/b978-0-12-817052-6.00026-4

Smith, P., Reay, D., & Smith, J. (2021). Agricultural methane emissions and the potential formitigation. Philosophical Transactions of the Royal Society A, 379(2210), 20200451. https://doi.org/10.1098/rsta.2020.0451

Edeoja, A., & Eloka-Eboka, A. (2021). Comparative analysis of biogas and yields from cattle, sheep, poultry wastes and their combinations. International Journal of Ambient Energy, 42(11), 1297-1306. https://doi.org/10.1080/01430750.2019.1594372

Sadh, P. K., Chawla, P., Kumar, S., Das, A., Kumar, R., Bains, A., & Sharma, M. (2023). Recovery of agricultural waste biomass: A path for circular bioeconomy. Science of The Total Environment, 870, 161904. https://doi.org/10.1016/j.scitotenv.2023.161904

Jimenez-Lopez, C., Fraga-Corral, M., Carpena, M., García-Oliveira, P., Echave, J., Pereira, A. G., & Simal-Gandara, J. (2020). Agriculture waste valorisation as a source of antioxidant phenolic compounds within a circular and sustainable bioeconomy. Food & function, 11(6), 4853-4877. https://doi.org/10.1039/d0fo00937g

Calero, M., Godoy, V., Heras, C. G., Lozano, E., Arjandas, S., & Martín-Lara, M. A. (2023). Current state of biogas and biomethane production and its implications for Spain. Sustainable Energy & Fuels, 7(15), 3584-3602. https://doi.org/10.1039/d3se00419h

Ehouman, A. D., Kouakou, A. R., Konan, G. R., Abi, K. B., N’Dri, A. A. E., & Yao, B. (2023). Study of the physico-chemical characteristics of methacompost from a poultry company in Ivory Coast: Test for growing big sun chilli. Journal of Agricultural Chemistry and Environment, 12(4), 335-350. https://doi.org/10.4236/jacen.2023.124024

Ahissan Donatien, E., Dèka Raïssa Hermione, A.-K. F., Sheiddu, O., Adjoumani Rodrigue, K., Koffi Kan Raymond, K., & Benjamin, Y. (2024). Study of the methanogenic potential of used grease and bleaching earth by conversion into biogas: The case of a wastewater treatment plant and a refinery. Applied Chemical Engineering, 7(2), 5499. https://doi.org/10.59429/ace.v7i2.5499

Rodrigue, K. A., Donatien, E. A., Sylvie, K. A. T., Marie-Emmanuelle, T. A., Cyril, K. M., Eric, A. K., & Remis, K. G. (2022). Dimensioning of an anaerobic digester for the treatment of chicken manure and for the production of biogas: The case study of a chicken farm in Yaokokoroko (Côte d’Ivoire). Green and Sustainable Chemistry, 12(4), 91-103. https://doi.org/10.4236/gsc.2022.124008

Elasri, O., & El amin Afilal, M. (2016). Potential for biogas production from the anaerobic digestion of chicken droppings in Morocco. International Journal of Recycling of Organic Waste in Agriculture, 5, 195-204. https://doi.org/10.1007/s40093-016-0128-4

Shapovalov, Y., Zhadan, S., Bochmann, G., Salyuk, A., & Nykyforov, V. (2020). Dry anaerobic digestion of chicken manure: A review. Applied Sciences, 10(21), 7825. https://doi.org/10.3390/app10217825

Nuhu, S. K., Gyang, J. A., & Kwarbak, J. J. (2021). Production and optimization of biomethane from chicken, food, and sewage wastes: The domestic pilot biodigester performance. Cleaner Engineering and Technology, 5, 100298. https://doi.org/10.1016/j.clet.2021.100298

Kouakou, A. R., Abollé, A., Kouadio, M. C., Akossi, M. J. C., Donatien, E. A., & Kouassi, E. K. (2022). Estimation of the energy potential by anaerobic digestion of food waste at Nangui Abrogoua University: Codigestion of food waste with cow dung. Journal of Ultra Chemistry, 18(3), 37-43. https://doi.org/10.22147/juc/180301

Le Hyaric, R., Chardin, C., Benbelkacem, H., Bollon, J., Bayard, R., Escudié, R., & Buffière, P. (2011). Influence of substrate concentration and moisture content on the specific methanogenic activity of dry mesophilic municipal solid waste digestate spiked with propionate. Bioresource Technology, 102(2), 822-827. https://doi.org/10.1016/j.biortech.2010.08.124

Published
2025-02-14
How to Cite
Kouakou, A. R., Kouadio, M. C., Oseni, D., Adjoumani, K. E. I., Ehouman, A. D., & Yao, B. (2025). Optimization of the manure/water ratio for maximum biogas production: Case of the FONSTI-CRDI digester in the East of Côte d’Ivoire. Earthline Journal of Chemical Sciences, 12(2), 137-153. https://doi.org/10.34198/ejcs.12225.137153
Section
Articles