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Abstract

Let u, v, w, x, y, k and z be any integers and suppose that n is a given exponent. This study focuses

on the interplay between sums of four powers and product of symmetric sums. In particular, the

Diophantine equation un + vn +wn + (u+ v +w)n = k(u+ v +w)(xn−1 + yn−1 + zn−1) is introduced

and partially characterized within the set of integers for exponent n = 3. Moreover, this research

formulates a conjecture for the equation presented in the title.

1 Introduction

The concept of symmetric sums has its roots in the early development of algebra, particularly in the

work of mathematicians who were studying the properties of polynomial equations. Although the idea of

symmetric sums is not attributed to a single individual, it emerged gradually as mathematicians began

to explore the relationships between the roots of polynomials and their coefficients.

One of the earliest significant contributors to this area was François Viète, a French mathematician who

lived in the 16th century. Viète’s work laid the foundation for what would later become Vieta’s formulas,

which express the coefficients of a polynomial in terms of the elementary symmetric sums of its roots.

This was a major step forward in the algebraic understanding of equations.

The study of integer decomposition into sums of powers are classical and has been a subject of considerable

attention in recent years. Perhaps this is because the study of integer decomposition has direct applications

in cryptography. Most researchers seem to have devoted their attention to Ramanujan-Nagell Equation

and sums of powers. For recent work on polynomial equations of sums of powers the reader may survey

[9,10,11,12,13,14,15,16,17,18,19,20] and for detailed recap on Ramanujan-Nagell Equation the reader may

refer to [1,2,3,4,5,6,7,8]. In most of these studies, the literature involving mixed polynomial and sums of
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powers is still hardily available. Moreover, documented results on Diophantine equation un+vn+wn+(u+

v+w)n = k(u+v+w)(xn−1+yn−1+zn−1) proposed in this study is not known. This study is therefore, set

to introduce and develop the relationships un +vn +wn +(u+v+w)n = k(u+v+w)(xn−1 +yn−1 +zn−1)

which involves the relationships between sums of four powers and product of symmetric sums.

2 Main Results

In the following sections, we present our findings in the form of conjecture and proceed to solve particular

cases. It is important to note that, in this research, the condition w > v > u is maintained.

Conjecture 2.1. For any integer n > 3, the Diophantine equation

un + vn + wn + (u+ v + w)n = k(u+ v + w)(xn−1 + yn−1 + zn−1)

has no solution in integers for all u, v, w, x, y, k and z.

In the sequel, this research partially determines the specific cases of conjecture 2.1 as follows:

Theorem 2.2. For any integers u, v and w, the Diophantine equation

u3 + v3 + w3 + (u+ v + w)3 = 2(u+ v + w)(d2 + v2 + (2v)2)

admits solutions within the set of integers if w − v = v − u = d.

Proof. Consider the equation

u3 + v3 + w3 + (u+ v + w)3 = 2(u+ v + w)(d2 + v2 + (2v)2) · · · (∗)

and suppose that v = u+ d and w = u+ 2d. The L.H.S of equation (∗), expressed as

u3 + v3 + w3 + (u+ v + w)3 = u3 + (u+ d)3 + (u+ 2d)3 + (3u+ 2d)3

simplifies to

30u3 + 90u2d+ 96ud2 + 36d3 · · · (∗∗).

Decomposing equation (∗∗) into product of sums of symmetric sums, we have

30u3 + 90u2d+ 96ud2 + 36d3 = 2(15u3 + 45u2d+ 48ud2 + 18d3)

= 2(3u+ 2d)(5u2 + 10ud+ 6d2) = 2(u+ (u+ d) + (u+ 2d))(d2 + (u2 + 2ud+ d2) + (4u2 + 8ud+ 4d2))
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= 2(u+ (u+ d) + (u+ 2d))(d2 + (u+ d)2 + (2u+ 2d)2).

Since v = u+ d and w = u+ 2d, we have

u3 + v3 + w3 + (u+ v + w)3 = 2(u+ v + w)(d2 + v2 + (2v)2).

This concludes proof.

Theorem 2.3. For any integers u, v and w, the Diophantine equation

u3 + v3 + w3 + (u+ v + w)3 = 2(u+ v + w)(d2 + v2 + (u+ w)2)

admits solution within the set of integers if w − v = v − u = d.

Proof. The proof easily follows from Theorem 2.2 with some slight modification.

2.1 Examples

In this subsection, we provide some examples to support our results in Theorem 2.2.

Table 1: u3 + v3 + w3 + (u+ v + w)3 = 2(u+ v + w)(d2 + v2 + (2v)2).

u3 v3 w3 (u+ v + w)3 I 2(u+ v + w) d2 v2 (2v)2

1 8 27 216 252 12 1 4 16

1 27 125 729 882 18 4 9 36

8 125 512 3375 4020 30 9 25 100

27 216 729 5832 6804 36 9 36 144

64 216 512 5832 6624 36 4 36 144

8 216 1000 5832 7056 36 16 36 144

1 125 729 3375 4230 30 16 25 100

27 512 2197 13824 16560 48 25 64 256

125 1000 3375 27000 31500 60 25 100 400
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In this subsection, we provide some examples to argument our results in Theorem 2.3.

Table 2: u3 + v3 + w3 + (u+ v + w)3 = 2(u+ v + w)(d2 + v2 + (u+ v)2).

u3 v3 w3 (u+ v + w)3 I 2(u+ v + w) d2 v2 (u+ v)2

1 8 27 216 252 12 1 4 16

1 27 125 729 882 18 4 9 36

8 125 512 3375 4020 30 9 25 100

27 216 729 5832 6804 36 9 36 144

64 216 512 5832 6624 36 4 36 144

8 216 1000 5832 7056 36 16 36 144

1 125 729 3375 4230 30 16 25 100

27 512 2197 13824 16560 48 25 64 256

125 1000 3375 27000 31500 60 25 100 400

3 Conclusion

In summary, this research has provided some relationships between sums of four powers and product of

symmetric sums. Although this research has made significant progress in this area, there is still room

for further investigation. Future studies may also delve into extending these results to other classes of

Diophantine equations with higher degrees.
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