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Abstract

In this paper, we define the modified first and second KV indices, F-KV and Fi-KV
indices, hyper F-KV index and augmented KV index of a graph and compute exact
formulas for POPAM and tetrathiafulvalene dendrimers. Furthermore, we determine the
F-KV, hyper F-KV and augmented KV polynomials of POPAM dendrimers and

tetrathiafulvalene dendrimers.

1. Introduction

A molecular graph is a simple graph such that its vertices correspond to the atoms
and edges to the bonds. Chemical Graph Theory is a branch of Mathematical Chemistry
which has an important effect on the development of Chemical Sciences. Numerous
topological indices have been considered in Theoretical Chemistry, especially in
QSPR/QSAR study, see [1, 2].

Let V(G), E(G) be a vertex set and an edge set of a finite simple connected graph G
respectively. The degree d(v) of a vertex v is the number of edges incident to v. Let
M (v) denote the product of the degrees of all vertices adjacent to a vertex v. We refer

to [3] for undefined term and notation.

In [4], Kulli introduced the first and second KV indices, defined as
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Kvi(G Z[MG )+ Mg (), KV,(G) = Z Mg (u)Mg(v).

wlE(G) wlE(G)

We introduce the modified first and second KV indices of a graph, defined as

1
"gv (G) = )
AP RV P EIT

1
"mKEV,(G) = _
P YT ey

In [5], Furtula and Gutman proposed the F-index of a graph G, defined as

FG)= Y dw)= D [dw)’ +d)].

ullV(G) wlE(G)
The F-index was studied, for example, in [6, 7, 8, 9, 10, 11].

We introduce the F|-KV index of a graph G, defined as

RKV(G) = Z[Mc(u)z + Mg ()]
wlE(G)

We define the F'{-KV polynomial of a graph G as

FIKV(G, x) - ZX[MG(M)2+MG(V)2].
wlE(G)

We define the harmonic KV index of a graph G as

HKV(G)= . 2

uvDE(G) MG (u) + MG (V) ‘

We propose the general harmonic KV index of a graph G and it is defined as

HKV®(G) =

Wu%m(Mc(u)iMG(v)T‘

The harmonic index was studied in [12, 13, 14].

We introduce the augmented KV index of a graph as follows:

(D

2)

3)

“4)

&)
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The augmented KV index of a graph G is defined as

3
ARVIG) = Y [ Mg ()M, () 2}‘ (6)

wE(G) MG(”) + MG(V) -

The augmented index was studied in [15, 16, 17].

Considering the augmented KV index, we introduce the augmented KV polynomial of
a graph G as

[MG()MGHJ
AKVI(G, x) = ZX M (u)+Mg(v)-2

wOE(G)

(7

We propose the hyper F-KV index and hyper F-KV polynomial of a graph as follows:

The hyper F-KV index of a graph G is defined as

HFKV(G)= Y [Mg()* +Mg(v)*). ®)
wlE(G)

The hyper F-KV polynomial of a graph G is defined as

HFKV(G. )= Y x [Mg () +MG (Y 9)
wlE(G)

Very recently, some new KV indices have been introduced and studied such as hyper
KV and square KV indices [13], connectivity KV indices [19], multiplicative connectivity
KV indices [20], multiplicative KV indices and multiplicative hyper KV indices [21]. In
this paper, we compute the modified first and second KV indices, F-KV and hyper F-KV
indices, general harmonic KV index, augmented KV index of POPAM and
tetrathiafulvalene dendrimers. Also the F-KV polynomial, F{-KV polynomial, augmented

KV polynomial of POPAM and tetrathiafulvalene dendrimers are determined. For
dendrimers see [22].

2. Results for POPAM Dendrimers

The family of POPAM dendrimers is symbolized by POD,[n], where n is the steps
of growth in this type of dendrimers. The graph of POD,[2] is shown in Figure 1.
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Figure 1. The graph of POD,[2].

Let G be the graph of a POPAM dendrimer POD,[n]. By algebraic method, we

obtain that G has 2"*> —10 vertices and 2"* —11 edges. The edge partition of
POD,[n] based on the degree product of neighbors of end vertices of each edge is given

in Table 1.

Table 1. Edge partition of POD,[n].

Mgu), MgO)\uv DE(G)  (2,2) (2,4 44 (4, 6) (6, 8)
Number of edges ont2  ont2 1 3x2M2 _g 3x2*2 _g

Theorem 1. The modified first and second KV indices of a POPAM dendrimer
POD;[n] are given by

9N e 253

(i) " KV;(POD,[n]) = 20 280"

.. 9 +2 5
ii) " KV, (POD = 2" - =
(i) " KV (PODy[n]) = 227+ - 2
Proof. Let G be the graph of POD,|n].

(i) From equation (1) and by using Table 1, we deduce

http://www.earthlinepublishers.com
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m n 1
KV, (POD5[n]) Z )MG(”) +Mqg(v)

wlE(G

(2 1 2j2n+2 +(2 1 4)2n+2 +(4 1 4) +(4 1 6)(3x2n+2 —6)
+ + + +

+[ ! j(3><2”+2—6)
6+8

_ 391 jnea 253
420 280"

(i1) By using equation (2) and Table 2, we obtain

KV,(POD,[n]) = MVDZE(G) Mgu)Mg(v)

— (2 1 2)2n+2 +[2 1 4j2n+2 +(4 1 4) +(4 1 6)(3x2n+2 _6)
X X X X

+[ ! j(3><2"+2—6)

6x8

9 2n+2 _i

16 16

Theorem 2. The F(-KV index and its polynomial of a POPAM dendrimer POD, [n]

are given by
(i) FKV(POD,[n]) = 484 x 2"*2 - 830.
(i) FKV(POD,[n], x) = 2"*2x8 + 21220 4 32
F(3% 272 —6)x52 + (3% 212 — 6) 100,
Proof. Let G be the graph of a POPAM dendrimer POD;[n].

(i) From equation (3) and using Table 1, we derive

FKV(POD;[n]) = Z[MG(”)Z + Mg ()]
wlE(G)

Earthline J. Math. Sci. Vol. 2 No. 1 (2019), 69-86
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+(4% +6%)(3x2"*2 - 6) + (62 +8%)(3x2""2 —6)

= 484 x 2"*2 — 880.

(i) By using equation (4) and Table 1, we have

FKV(POD;[n], x) = ZX[MG(M)2 +Mg ()]
wlE(G)

= 2”+2x22 ? 2n+2x22+42 + x42 +42
+(3x2"2 - 6)x42+62 +(3x2"2 - 6)x62+82
- 2n+2x8 + 2n+2x20 + x32
+ (3 % 2n+2 _ 6)x52 + (3 x 2n+2 _ 6)x100.

Theorem 3. The general harmonic KV index of POD5[n] is

HKV *(POD,[n]) = {(éja + (%)a}gnﬂ + {G)a + (%)a} (3x2"*2 —6)+ (ija (10)

Proof. Let G = POD,[n]. By using equation (5) and Table 1, we deduce

a n = 2 a
HKV (POD,[n]) W%G)[MG@:) +MG<V)J

EEE R E) i =)
2+2 2+4 4+4

+ (Lja(g, x 22 —6) + (

4+6

[T [ oo

a
) (3x2"2 - ¢)
6+8
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Corollary 3.1. The harmonic KV index of POD,[n] is

391 e 253
210 140"

Proof. Put ¢ =1 in equation (10), we get the desired result.

Theorem 4. The augmented KV index and its polynomial of a POPAM dendrimer
POD,[n] are given by

14230

(i) AKVI(POD,[n]) = 289 x 2"*? - =

(i) AKVI(POD,[n], x) = 2x2"*2x8 + (3% 2"*2 - 6)x*

512
+(3x2"2 —6)x% + x 27,

Proof. Let G = POD,|n].

(i) From equation (6) and by using Table 1, we deduce

AKVI(PODy[n]) = )" [ MG(”)MG(V)_ 2]3

uvDE(G) MG(”) + MG(V)
_ (&fzm . (Afzm N (Lf
2+2-2 2+4-2 4+4-2

3 3
+ (&) (3x ot _ 6) + (&) (3x 22 6)

4+6-2 6+8-2

14230
27

=289 x 22

(i) By using equation (7) and Table 1, we derive

(Mc(u)Mc(v)f
AKVI(POD,[n], x) = ) x M (u)+M g (v)-2
uv[IE(G)

( 2x2 )3 ( 2x4 f ( 4x4 f
— 2”+2x 242-2) 4 2"+2x 2+4-2) 4 (\4+4-2
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( 4%6 f ( 6x8 f
+ (3% 22 —6)x\ 4672/ 4 (3x 22 — ) x| 6+8-2

512
=2x2"2,8 + (3% 2"*2 —6)x? + (3x2"2 —6)x% + 1 27 .

Theorem 5. The hyper F-KV index and its polynomial of a POPAM dendrimer
POD,[n] are given by

(i) HFKV(POD,[n]) = 38576 x 2""*2 - 75200.
(i) HFKV(POD,[n], x) = 2772 5% 4 21+2,400 4 1024
+ (32172 — 6) 8112 4 (3x 212 — ) x30000.
Proof. Let G = POD,|n].
(i) From equation (8) and using Table 1, we deduce

HFKV (POD,[n]) = Z[MG )2+ Mg (v)*T?
wlE(G)

— (22 + 22)22n+2 + (22 +42)22n+2 + (42 +42)2
+ (4% +6%)7 (3% 2" - 6) + (6% +8%)*(3x 2"*? - 6)

= 38576 x 2"*% - 75200.

(i1) From equation (9) and Table 1, we obtain

HFKV(PODy[n), x) = Y M6 () RO
wlE(G)

_ 2n+2x(22+22)2 + 2n+2x(22+42)2 + x(42+42)2

+ (3 X 2n+2 _ 6)x(42+62)2 + (3 X 2n+2 _ 6)x(62+82)2

- 2n+2x64 + 2n+2x400 + x1024 + (3 % 2n+2 _ 6)x8112

+ (3 x 2n+2 _ 6)x30000.

http://www.earthlinepublishers.com
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3. Results for Tetrathiafulvalene Dendrimers

We consider the family of tetrathiafulvalene dendrimers. This family of dendrimers

is symbolized by TD,[n], where n is the steps of growth in this type of dendrimers. The

graph of TD,[2] is presented in Figure 2.

Figure 2. The graph of 7D,[2].

Let G be the graph of a tetrathiafulvalene dendrimer TD,[n]. By calculation, we

obtain that G has 31x2"*% - 24 vertices and 32 x 2"*? -85 edges. The edge partition
of G based on the degree product of neighbors of end vertices of each edge is given in
Table 2.

Table 2. Edge partition of 7D,[n].

Mg(u), Mg(v)\uv O E(G) | Number of edges
2.3) 42
3, 6) 2y
(3.8) 2
(6, 6) 7x2"™_ 16

Earthline J. Math. Sci. Vol. 2 No. 1 (2019), 69-86
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6, 8) 11x2"2 24

(6,9) 2y
6, 12) 3x 2™ 8
9, 12) 8x 2™ _24
(12, 12) 2x 2" 5

Theorem 6. The modified first and second KV indices of TD, [n] are given by

(i) "KV,(TD5[n]) = 562 jnva _ 13997

165 2520
.. 53 _,+2 85
ii) " KV, (TD = pnte =
(i1) 5 (TD,[n]) 7 s

Proof. Let G = TD,[n].

(1) By using equation (1) and Table 2, we obtain

" KVi(TD;[n]) = Z !

wlE(G) MG(”) + MG (V)

2+3 3+6 3+8

+(—1 )(7><2’1+2 —16)+( !
6+6 6+8

(il

(8 x 22 - 24) +
J (

j(ll x 272 — 24)

j(ZX 22 _5)

{
9+12 12 +12

B @2“2 13997
162 2520

(i1) By using equation (2) and Table 2, we deduce

http://www.earthlinepublishers.com



Some KV Indices of Certain Dendrimers

79

RUACADERDY 1

wOE(G) Mg (M)MG (v)

2x3 3x6 3x8
+( : )(7><2”+2—16)+( !
6x%6 6%x8

' (@j (1 -4y (6 ><112j(3 <2 -8)

)(11 x 22 —24)

+( j(8><2”+2—24)+( j(zxz’”z—s)
9x12 12x12
:22”4-2—&

72 54"

Theorem 7. The F1-KV index and its polynomial of TD,[n] are given by
(i) FKV(TD,[n]) = 4768 x 2"*? —12480.
(i) FKV(TDy[n], x) = 272 %13 + (2772 = 4)x® + 2772473

F (7272 —16)x72 + (11 % 272 - 24) 225

£ (272 = 4)x17 4 (3272 - 8) 180

+ (8 x 2n+2 _ 24)x225 + (2 x 2n+2 _ 5)x288.
Proof. Let G = TD,[n].

(i) From equation (3) and using Table 2, we derive

REVID ) = 3 M) + M ()]
wlE(G)

— (22 + 32)2n+2 + (32 + 62)(2n+2 _4) + (32 + 82)2n+2

+(62 +62)(7x2"2 —16) + (6% +82) (11 x 2"*? - 24)

Earthline J. Math. Sci. Vol. 2 No. 1 (2019), 69-86
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+ (62 + 92)(2n+2 _ 4) + (62 + 122)(3 % 2n+2 _ 8)
+(97 +12%) (8 x 2"*% - 24) + (122 +122) (2 x 2"*? - 5)

= 4768 x 2"*2 — 12480.

(i1) From equation (4) and using Table 2, we deduce

FlKV(TDZ[n], x) = ZX[MG(“)2+MG(V)2]
wlE(G)

_ 2n+2x(22+32) + (22 - 4)x(32+62) + 2n+2x(32+82)
+ (7% 272 —16)x446) 1 (11 x 27%2 — 24) (6°+87)
2.02 2 2

2 2 2 2
+ (8272 = 24)2 0712 4 (2% 2142 - 5),(1274127)

_ 2n+2x13 + (2n+2 _ 4))645 + 2n+2x73 + (7 % 2n+2 _ 16)x72
+ (11 % 2n+2 _ 24)x225 + (2n+2 _ 4)x117 + (3 x 2n+2 _ 8)x180
+ (8 x 2n+2 _ 24)x225 + (2 X 2n+2 _ 5)x288

Theorem 8. The general harmonic KV index of TD, [n] is given by

v <[ 5T G A 5] (3
A AT A
4 T 2T A
G 4]

http://www.earthlinepublishers.com
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Proof. Let G = TD,[n]. From equation (5) and Table 2, we derive

HKVa(TDz[”]) = z (MG (u) i MG(V)J

wlE(G)
_ (_2 jazm + (—2 ] (272 - 4) + (_2 j’”zm
2+3 3+6 3+8
2 ) n+2 2 ) n+2
+ (7x2"7° -16) + (11x2"7= = 24)
6+6 6+38

+( 2 ja(2"+2—4)+( 2 )a(3x2"+2—8)

6+9 6+12

+( 2 ja(SXZ”+2—24)+( 2 )a(zxz””—s)

9+12 12+12
a a a a a
|G +6) (5 e +n(5)
5 9 11 6 7
a a a a
() +A5) A5 )
15 9 11 12
a a a a a
|45) ils) 243) S )
9 6 7 15 9
a a
+ 24(3) + 5(Lj .
11 12
Corollary 8.1. The harmonic KV index of TDz[n] is

HKv(TD[n])—(E+§+§+§j2n+2+(§+ﬂ+ﬁ+i+ij
2 7 9 11 15 7 9 11 12 15)

Proof. Put a =1 in equation (11), we obtain the desired result.

Theorem 9. The augmented KV index and its polynomial of TD[n] are given by

() AKVI(TD,[n]) = [(gf (] o) (2] 1y

Earthline J. Math. Sci. Vol. 2 No. 1 (2019), 69-86
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3 3 3 3
+2(7_2) +2899 |2"*2 - 4(§j +16(§) +4(ﬁ)
11 7 5 13
3 3
+24(@) +5(2j +7368 |.
19 11

2 e 3
(ii) AKVI(TD,[n], x) = 22,8 + (2"*2 - 4)x(7 +21*2x\3

ﬁf
+(7x2"2 - 16)x( 5/ 4 (11% 22 - 24) x5

) 3
+(2M2 - 4)x 3+ (3% 2772 - g)x\2

(5 )
+(8x 22 —24)x\ 19/ 4+ (2x 22 —5) 1L

Proof. Let G be the graph of TD,[n].

(i) By using equation (6) and Table 2, we obtain

AKVI(TD,[n]) M () M(v) T

uvDE(G)(MG(u) + MG(V) -2

( 2%3 )32n+2+( 3% 6 )3(2n+2_4)+( 3x8 )32n+z
2+3-2 3+6-2 3+8-2

3 3
+(ﬂj (7 x 21*2 —16)+(&) (1% 22 - 24)
6+6-2 6+8-2

RN N h

6+9-2 6+12-2

3 3
9+12-2 12+12-2

3 3 3 3 3 3
(38 A ) A
7 3 5 13 19 11

http://www.earthlinepublishers.com
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3 3 3 3 3
_ {ﬁj +16(§) +4(ﬁ) +24(@) +5(7_2) +7368.
7 5 13 19 T

(i1) From equation (7) and by using Table 2, we deduce

(Mc(u)Mc(v)f
AKVI(TD,[n], x) = ) x Mg (u)+Mg(v)-2
uv[IE(G)

2x3 3x6 j3

(5% ( )
= on+2,\2+43-2) (2n+2 — 4)x\3+6-2

+ 2n+2x(3+8—2

( 6%6 j3 ( 6x8 j3
+(7x2"*2 —16)x\6+672) 4 (11x 2"*2 — 24) 5\ 6482

( 6x9 j3 ( 6x12 )3
+ (212 - 4)x\04972) 4 (3x 212 —g) x| 6+12-2

( 9x12 )3 ( 12x12 )3
+ (8% 212 = 24)x\9+1272) 4 (2 x 212 — 5) 1241272

SN R
— 2n+2x8 + (2n+2 _ 4)X( 7 + 2"+2x 3 + (7 X 2n+2 - 16)X 5

(3 )
+(11%x 22 = 24) x5 + (212 — 4)x\13) + (3% 272 —8)x\2

(5 )
+(8x 272 —24)x\ 19/ +(2x 22 —5) L)

Theorem 10. The hyper F-KV index and its polynomial of TDz[n] are given by
(i) HFKV(TD,[n]) = 835588 x 2"*2 - 2274720.
(ii) HFKV(TDZ[H], x) — 2n+2x169 + (2n+2 _ 4)x2025 + 2n+2x5329

+ (7 x 2n+2 _ 16)x5184 + (11 x 2n+2 _ 24)x10000

+ (2n+2 _ 4)x13689 + (3 % 2n+2 _ 8))632400

Earthline J. Math. Sci. Vol. 2 No. 1 (2019), 69-86
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Proof. Let G = TD,[n].

(1) By using equation (8) and Table 2, we deduce

HFKV(IDy[n]) = Y [Mg(u)* + Mg ()T
wlE(G)

- (22 + 32)22n+2 + (32 + 62)2(2n+2 _ 4) + (32 + 82)22n+2
+ (6% +6%)*(7x 2" —16) + (6% +8%)*(11x 2"+ - 24)
+(6% +9%)2 (2" —4) + (6% +122)2(3x 2"*2 -§)
+(9% +122)2(8 x 22 - 24) + (122 +122)?(2x 2"*2 - 5)

= 835588 x 2""*2 — 2274720,

(i1) From equation (9), we have

HFKV(TD,[n], x) = Y xMc(®) MG OY T
wlE(G)

Then by using Table 2, we obtain
HFKV(1Dy[n], x) = 27252743 4 (2”+2 — 4)x (37467’
4 ont2 (37482 | (7x27%2 - 16)x(62+62)2

+ (11 % 2n+2 _ 24) ( +8 + (2n+2 4)x(62+92)2

+ (3% 212 - g) (67 +12%) 4 (g 912 _ gy (07 +12%)7

F(2x2"2 - 5))6(122+122)2
= QM2 169 4 (n*2 _ 4) 2005 4 pn+2 5329

# (7% 22 2 16) 5184 4 (11x 272 — 24) 10000

+ (2n+2 _ 4)x13689 + (3 % 2n+2 _ 8)x32400

+ (8 % 2n+2 _ 24)x50625 + (2 x 2n+2 _ 5))(82944.
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