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Abstract

In this paper we obtain a common fixed point theorem for four self mappings under Chatterjea

contractive conditions in cone pentagonal metric space. We present an example in support of the

main result. Some Corollaries conclude the paper.

1 Introduction and Preliminaries

Definition 1.1. [1] Let E be a real Banach space and P be a subset of E. Then P is called a cone if

and only if

(a) P is closed, nonempty, and P 6= {0}

(b) a, b ∈ R, a, b ≥ 0 and x, y ∈ P =⇒ ax+ by ∈ P

(c) x ∈ P and −x ∈ P =⇒ x = 0.

Notation 1.2. [2] Given a cone P ⊆ E we define a partial ordering ≤ with respect to P by x ≤ y if

and only if y − x ∈ P . We shall write x < y to indicate that x ≤ y but x 6= y, while x� y will stand for

y − x ∈ int(P ), where int(P ) denotes the interior of P .

Remark 1.3. In this paper, we always suppose that E is a real Banach space and P is a cone in E with

int(P ) 6= ∅ and ≤ is a partial ordering with respect to P .

Definition 1.4. [1] Let X be a nonempty set. Suppose the mapping d : X ×X 7→ E satisfies

(a) 0 < d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y
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(b) d(x, y) = d(y, x) for all x, y ∈ X

(c) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Remark 1.5. The concept of a cone metric space is more general than that of a metric space, because

each metric space is a cone metric space where E = R and P = [0,∞) (e.g. see [1]).

Definition 1.6. [3] Let X be a nonempty set. Suppose the mapping d : X ×X 7→ E satisfies

(a) 0 < d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y

(b) d(x, y) = d(y, x) for all x, y ∈ X

(c) d(x, y) ≤ d(x,w) + d(w, z) + d(z, y) for all x, y ∈ X and for all distinct points w, z ∈ X − {x, y}
[Rectangular property].

Then d is called a cone rectangular metric on X and (X, d) is called a cone rectangular metric space.

Remark 1.7. Every cone metric space is a cone rectangular metric space. The converse is not necessarily

true (e.g. see [3]).

Definition 1.8. [4] Let X be a nonempty set. Suppose the mapping d : X ×X 7→ E satisfies

(a) 0 < d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y

(b) d(x, y) = d(y, x) for all x, y ∈ X

(c) d(x, y) ≤ d(x, z) + d(z, w) + d(w, u) + d(u, y) for all x, y, z, w, u ∈ X and for all distinct points

z, w, u ∈ X − {x, y} [Pentagonal property].

Then d is called a cone pentagonal metric on X and (X, d) is called a cone pentagonal metric space.

Remark 1.9. Every cone metric space and cone rectangular metric space is a cone pentagonal metric

space. The converse is not necessarily true (e.g. see [4]).

Definition 1.10. [2] Let (X, d) be a cone pentagonal metric space. Let {xn} be a sequence in (X, d) and

x ∈ X.

(a) If for every c ∈ E with 0� c there exists n0 ∈ N such that for all n > n0, d(xn, x)� c, then {xn}
is said to be convergent and {xn} converges to x. We denote this by limn→∞ xn = x or xn → x as

n→∞.
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(b) If for every c ∈ E with 0 � c there exists n0 ∈ N such that for all n,m > n0, d(xn, xm) � c, then

{xn} is called a Cauchy sequence in (X, d).

(c) If every Cauchy sequence is convergent in (X, d), then X is called a complete cone pentagonal metric

space.

Definition 1.11. [2] Let T and S be self-maps of a nonempty set X.

(a) If w = Tx = Sx for some x ∈ X, then x is called a coincidence point of T and S and w is called a

point of coincidence of T and S.

(b) T and S are said to be weakly compatible if they commute at their coincidence points, that is,

Tx = Sx implies that TSx = STx.

Lemma 1.12. [5] Let T and S be weakly compatible self mappings of a nonempty set X. If T and S

have a unique point of coincidence w = Tx = Sx, then w is the unique common fixed point of T and S.

Lemma 1.13. [6] Let (X, d) be a cone metric space with cone P not necessarily to be normal. Then for

a, c, u, v, w ∈ E, we have

(a) If a ≤ ha and h ∈ [0, 1), then a = 0.

(b) If 0 ≤ u� c for each 0� c, then u = 0.

(c) If u ≤ v and v � w, then u� w.

(d) If c ∈ int(P ) and an → 0, then ∃n0 ∈ N 3 ∀n > n0, an � c.

Lemma 1.14. [2] Let (X, d) be a complete cone pentagonal metric space. Let {xn} be a Cauchy sequence

in X and suppose there is a natural number N such that

(a) xn 6= xm for all n,m > N .

(b) xn, x are distinct points in X for all n > N .

(c) xn, y are distinct points in X for all n > N .

(d) xn → x, xn → y as n→∞.

Then x = y.
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2 Main Result

In this section, we prove Chatterjea-type theorem for four self mappings in cone pentagonal metric space.

Theorem 2.1. Let (X, d) be a cone pentagonal metric space. Suppose the mappings f, g, U, V : X 7→ X

satisfy the following contractive conditions

(a) d(fx, gy) ≤ λ[d(Ux, gy) + d(V y, fx)]

(b) d(fx, fy) ≤ λ[d(Ux, fy) + d(Uy, fx)]

(c) d(gx, gy) ≤ λ[d(V x, gy) + d(V y, gx)]

for all x, y ∈ X, where λ ∈ [0, 12). Suppose that f(X) ⊆ V (X), g(X) ⊆ U(X), and one of

f(X), g(X), U(X), V (X) is a complete subspace of X, then the pairs (f, U) and (g, V ) have a unique

point of coincidence in X. Moreover, if (f, U) and (g, V ) are weakly compatible pairs then f, g, U, V have

a unique common fixed point in X.

Proof. Let x0 ∈ X. Since f(X) ⊆ V (X) and g(X) ⊆ U(X), starting with x0 we define a sequence {yn}
in X such that

y2n = fx2n = V x2n+1 and y2n+1 = gx2n+1 = Ux2n+2 for all n = 0, 1, 2, · · · .

Suppose that yk = yk+1 for some k ∈ N. If k = 2m, then y2m = y2m+1 for some m ∈ N, then from (a) we

obtain

d(y2m+2, y2m+1) = d(fx2m+2, gx2m+1)

≤ λ(d(Ux2m+2, gx2m+1) + d(V x2m+1, fx2m+2))

≤ λ(d(y2m+1, y2m+1) + d(y2m, y2m+2))

= λd(y2m, y2m+2)

≤ λ(d(y2m, y2m+1) + d(y2m+1, y2m+2))

≤ λd(y2m+1, y2m+2).

From the above we have d(y2m+1, y2m+2) = 0. That is y2m+1 = y2m+2. In a similar way we can deduce

that y2m+2 = y2m+3 = y2m+4 = · · · . Hence yn = yk, for all n ≥ k. Therefore, {yn} is a Cauchy sequence
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in (X, d). Now assume that yn 6= yn+1 for all n ∈ N. Then from (a) we have

d(y2m, y2m+1) = d(fx2m, gx2m+1)

≤ λ(d(Ux2m, gx2m+1) + d(V x2m+1, fx2m))

≤ λ(d(y2m−1, y2m+1) + d(y2m, y2m))

≤ λd(y2m−1, y2m+1)

≤ λ(d(y2m−1, y2m) + d(y2m, y2m+1)).

From the above we have

d(y2m, y2m+1) ≤
λ

1− λ
d(y2m−1, y2m) = αd(y2m−1, y2m) (1)

where α = λ
1−λ ∈ [0, 1). Also

d(y2m+1, y2m+2) = d(fx2m+1, gx2m+2)

≤ λ(d(Ux2m+1, gx2m+2) + d(V x2m+2, fx2m+1))

≤ λ(d(y2m, y2m+2) + d(y2m+1, y2m+1))

≤ λd(y2m, y2m+2)

≤ λ(d(y2m, y2m+1) + d(y2m+1, y2m+2)).

From the above we obtain

d(y2m+1, y2m+2) ≤
λ

1− λ
d(y2m, y2m+1) = αd(y2m, y2m+1). (2)

From (2) and (3) it follows that

d(y2m, y2m+1) ≤ αd(y2m−1, y2m)

≤ α2d(y2m−2, y2m−1)

...

≤ α2md(y0, y1) ∀m ≥ 1

(3)

and

d(y2m+1, y2m+2) ≤ αd(y2m, y2m+1)

≤ α2d(y2m−1, y2m)

...

≤ α2m+1d(y0, y1) ∀m ≥ 1.

(4)

Hence, from (4) and (5) we deduce that

d(yn, yn+1) ≤ αnd(y0, y1) ∀n ≥ 1. (5)
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From (b), (c), (6) and the fact that 0 ≤ λ ≤ α < 1, we obtain

d(y2m, y2m+2) = d(fx2m, fx2m+2)

≤ λ(d(Ux2m, fx2m+2) + d(Ux2m+2, fx2m))

≤ λ(d(y2m−1, y2m+2) + d(y2m+1, y2m))

≤ λ(d(y2m−1, y2m) + d(y2m, y2m+1) + d(y2m+1, y2m+2) + d(y2m+1, y2m))

≤ λ(d(y2m−1, y2m) + 2d(y2m, y2m+1) + d(y2m+1, y2m+2))

≤ λ(α2m−1d(y0, y1) + 2α2md(y0, y1) + α2m+1d(y0, y1))

≤ α2md(y0, y1) + 2α2m+1d(y0, y1) + α2m+2d(y0, y1)

≤ α2md(y0, y1)(1 + 2α+ α2)

≤ α2md(y0, y1)(1 + 2 + α)

≤ α2md(y0, y1)(3 + α) ∀m ≥ 1

(6)

and

d(y2m+1, y2m+3) = d(gx2m+1, gx2m+3)

≤ λ(d(V x2m+1, gx2m+3) + d(V x2m+3, gx2m+1))

≤ λ(d(y2m, y2m+3) + d(y2m+2, y2m+1))

≤ λ(d(y2m, y2m+1) + d(y2m+1, y2m+2) + d(y2m+2, y2m+3) + d(y2m+2, y2m+1))

≤ λ(d(y2m, y2m+1) + 2d(y2m+1, y2m+2) + d(y2m+2, y2m+3))

≤ λ(α2md(y0, y1) + 2α2m+1d(y0, y1) + α2m+2d(y0, y1))

≤ α2m+1d(y0, y1) + 2α2m+2d(y0, y1) + α2m+3d(y0, y1)

≤ α2m+1d(y0, y1)(1 + 2α+ α2)

≤ α2md(y0, y1)(1 + 2 + α)

≤ α2md(y0, y1)(3 + α).

(7)

Hence from (7) and (8) we have

d(yn, yn+2) ≤ (3 + α)αnd(y0, y1) ∀n ≥ 1. (8)

For the sequence {yn} we consider d(yn, yn+p) in two cases as follows: If p is odd say p = 2k + 1 where
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k ≥ 1, then by the pentagonal property and (6), we have

d(yn, yn+2k+1) ≤ d(yn, yn+1) + d(yn+1, yn+2) + d(yn+2, yn+3) + d(yn+3, yn+2k+1)

≤ d(yn, yn+1) + d(yn+1, yn+2) + d(yn+2, yn+3) + · · ·

+ d(yn+2k−1, yn+2k) + d(yn+2k, yn+2k+1)

≤ αnd(y0, y1) + αn+1d(y0, y1) + αn+2d(y0, y1) + · · ·

+ αn+2k−1d(y0, y1) + αn+2kd(y0, y1)

≤ αn

1− α
d(y0, y1) ∀n ≥ 1.

If p is even say p = 2k where k ≥ 1, then by the pentagonal property, (6) and (9), we have

d(yn, yn+2k) ≤ d(yn, yn+2) + d(yn+2, yn+3) + d(yn+3, yn+4) + d(yn+4, yn+2k)

≤ d(yn, yn+2) + d(yn+2, yn+3) + d(yn+3, yn+4) + · · ·

+ d(yn+2k−2, yn+2k−1) + d(yn+2k−1, yn+2k)

≤ (3 + α)αnd(y0, y1) + αn+2d(y0, y1) + αn+3d(y0, y1) + · · ·

+ αn+2k−2d(y0, y1) + αn+2k−1d(y0, y1)

≤ αn

1− α
d(y0, y1) ∀n ≥ 1.

Therefore, combining the above two cases, we get

d(yn, yn+p) ≤
αn

1− α
d(y0, y1) ∀n, p ∈ N.

Since α ∈ [0, 1), we get, as n→∞, αn

1−α → 0. Hence, for every c ∈ E with c� 0 ∃n0 ∈ N such that

d(yn, yn+p)� c ∀n ≥ n0.

Therefore, {yn} is a Cauchy sequence in (X, d). Suppose U(X) is a complete subspace of X, then there

exists points p, q ∈ U(X) such that limn→∞ y2n+1 = limn→∞ Ux2n+2 = q = Up. Now we show that

Up = fp. Given c� 0, we choose natural numbers T1, T2, T3, T4, T5 such that d(q, y2n)� c(1−λ)
5λ ∀n ≥ T1,

d(q, y2n−1) � c(1−λ)
5λ ∀n ≥ T2, d(y2n+1, y2n) � c(1−λ)

5 ∀n ≥ T3, d(y2n+1, y2n+2) � c(1−λ)
5 ∀n ≥ T4,

d(y2n+2, q)� c(1−λ)
5 ∀n ≥ T5. Since yn 6= ym for n 6= m, by pentagonal property and (b) we have

d(fp, q) ≤ d(fp, y2n) + d(y2n, y2n+1) + d(y2n+1, y2n+2) + d(y2n+2, q)

≤ d(fp, fx2n) + d(y2n, y2n+1) + d(y2n+1, y2n+2) + d(y2n+2, q)

≤ λ(d(Up, fx2n) + d(Ux2n, fp)) + d(y2n, y2n+1) + d(y2n+1, y2n+2) + d(y2n+2, q)

≤ λd(q, y2n) + λd(y2n−1, fp) + d(y2n, y2n+1) + d(y2n+1, y2n+2) + d(y2n+2, q)

≤ λd(q, y2n) + λ(d(y2n−1, q) + d(q, fp)) + d(y2n, y2n+1) + d(y2n+1, y2n+2) + d(y2n+2, q).
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From the above we have

d(fp, q) ≤ 1

1− λ
(λd(q, y2n) + λd(y2n−1, q) + d(y2n, y2n+1) + d(y2n+1, y2n+2) + d(y2n+2, q))

� c

5
+
c

5
+
c

5
+
c

5
+
c

5

= c ∀n ≥ L1

where L1 = max{T1, T2, T3, T4, T5}. Since c is arbitrary we have d(fp, q) � c
m , ∀m ∈ N. Since c

m → 0

as m → ∞, we conclude c
m − d(fp, q) → −d(fp, q) as m → ∞. Since P is closed, −d(fp, q) ∈ P . Hence

d(fp, q) ∈ P ∩ −P . By definition of cone we get that d(fp, q) = 0, and so Up = fp = q. Hence q is a

point of coincidence of f and U . Since q = fp ∈ f(X) and f(X) ⊆ V (X), there exists r ∈ X such that

q = V r. Now, we show that V r = gr. Given c � 0, we can choose natural numbers T6, T7, T8, T9, T10

such that d(q, y2n−1) � c(1−λ)
5λ ∀n ≥ T6, d(q, y2n) � c(1−λ)

5λ ∀n ≥ T7, d(y2n+1, y2n) � c(1−λ)
5 ∀n ≥ T8,

d(y2n+1, y2n+2)� c(1−λ)
5 ∀n ≥ T9, d(y2n+2, q)� c(1−λ)

5 ∀n ≥ T10. Since yn 6= ym for n 6= m, by pentagonal

property and (a) we have that

d(gr, q) ≤ d(gr, y2n) + d(y2n, y2n+1) + d(y2n+1, y2n+2) + d(y2n+2, q)

≤ d(gr, fx2n) + d(y2n, y2n+1) + d(y2n+1, y2n+2) + d(y2n+2, q)

≤ λ(d(Ux2n, gr) + d(V r, fx2n)) + d(y2n, y2n+1) + d(y2n+1, y2n+2) + d(y2n+2, q)

≤ λd(y2n−1, gr) + λd(q, y2n) + d(y2n, y2n+1) + d(y2n+1, y2n+2) + d(y2n+2, q)

≤ λ(d(y2n−1, q) + d(q, gr)) + λd(q, y2n) + d(y2n, y2n+1) + d(y2n+1, y2n+2) + d(y2n+2, q).

From the above we have

d(gr, q) ≤ 1

1− λ
(λd(y2n−1, q) + λd(q, y2n) + d(y2n, y2n+1) + d(y2n+1, y2n+2) + d(y2n+2, q))

� c

5
+
c

5
+
c

5
+
c

5
+
c

5

= c ∀n ≥ L2

where L2 = max{T6, T7, T8, T9, T10}. Since c is arbitrary we have d(gr, q) � c
m , ∀m ∈ N. Since c

m → 0

as m → ∞, we conclude c
m − d(gr, q) → −d(gr, q) as m → ∞. Since P is closed, −d(gr, q) ∈ P . Hence

d(gr, q) ∈ P ∩−P . By definition of cone we get that d(gr, q) = 0, and so V r = gr = q. Hence q is a point

of coincidence of g and V . Thus, the pairs (f, U) and (g, V ) have common point of coincidence q in X.

Now, suppose the pairs (f, U) and (g, V ) are weakly compatible mappings. Then

fq = fUp = Ufp = Uq = q1 for some q1 ∈ X

and

gq = gV r = V gr = V q = q2 for some q2 ∈ X.

http://www.earthlinepublishers.com



Chatterjea-Type Contraction Mapping Theorem for Four Self-Mappings ... 177

Hence, from (a) we have

d(q1, q2) = d(fq, gq)

≤ λ(d(Uq, gq) + d(V q, fq))

= λ(d(q1, q2) + d(q2, q1))

= 2λd(q1, q2)

which implies d(q1, q2) = 0. Hence, q1 = q2. Therefore

fq = gq = Uq = V q.

Also

d(q, gq) = d(fp, gq)

≤ λ(d(Up, gq) + d(V q, fp))

= λ(d(q, gq) + d(gq, q))

= 2λd(q, gq)

which implies d(q, gq) = 0. Hence gq = q or fq = gq = Uq = V q = q. Thus, q is the common fixed point

of f, g, U, V . Next we show that q is unique. For suppose q′ be another common fixed point of f, g, U, V .

That is,

fq′ = gq′ = Uq′ = V q′ = q′

for some q′ ∈ X. Then from (a) we have

d(q, q′) = d(fq, gq′)

≤ λ(d(Uq, gq′) + d(V q′, fq))

= λ(d(q, q′) + d(q′, q))

= 2λd(q, q′)

which implies d(q, q′) = 0. Hence, q = q′. Therefore the mappings f, g, U.V have a unique common fixed

point in X. Similarly if f(X), g(X), or V (X) is a complete subspace of X, then we can easily prove that

f, g, U, V have unique common fixed point in X. This completes the proof of the theorem.

Example 2.2. Let X = {1, 2, 3, 4, 5}, E = R2 and P = {(x, y) : x, y ≥ 0} is a cone in E. Define

d : X ×X 7→ E as follows:

d(x, x) = 0 ∀x ∈ X

d(1, 2) = d(2, 1) = (4, 16)

d(1, 3) = d(3, 1) = d(3, 4) = d(4, 3) = d(2, 3) = d(3, 2) = d(2, 4) = d(4, 2) = d(1, 4) = d(4, 1) = (1, 4)
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d(1, 5) = d(5, 1) = d(2, 5) = d(5, 2) = d(3, 5) = d(5, 3) = d(4, 5) = d(5, 4) = (5, 20).

Then (X, d) is a complete cone pentagonal metric space, but (X, d) is not a complete cone rectangular

metric space because it lacks the rectangular property:

(4, 16) = d(1, 2)

> d(1, 3) + d(3, 4) + d(4, 2)

= (1, 4) + (1, 4) + (1, 4)

= (3, 12) as (4, 16)− (3, 12) = (1, 4) ∈ P.

Define mappings f, g, U.V : X 7→ X as follows:

f(x) = 4 ∀x ∈ X

g(x) =

4 if x 6= 5

2 if x = 5

U(x) =



3 if x = 1

1 if x = 2

2 if x = 3

4 if x = 4

5 if x = 5

V (x) = x ∀x ∈ X.

Clearly f(X) ⊆ V (X), g(X) ⊆ U(X), and the pairs (f, U) and (g, V ) are weakly compatible mappings.

The condition of the above theorem holds for all x, y ∈ X, where λ = 1
5 , and 4 is the unique common fixed

point of the mappings f, g, U, V .

3 Consequences of the Main Result

If V = U in the above theorem, then we have the following

Corollary 3.1. Let (X, d) be a cone pentagonal metric space. Suppose the mappings f, g, U : X 7→ X

satisfy the following contractive conditions
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(a) d(fx, gy) ≤ λ[d(Ux, gy) + d(Uy, fx)]

(b) d(fx, fy) ≤ λ[d(Ux, fy) + d(Uy, fx)]

(c) d(gx, gy) ≤ λ[d(Ux, gy) + d(Uy, gx)]

for all x, y ∈ X, where λ ∈ [0, 12). Suppose that f(X) ∪ g(X) ⊆ U(X), and if U(X) or f(X) ∪ g(X)

is a complete subspace of X, then the pairs (f, U) and (g, U) have a unique point of coincidence in X.

Moreover, if (f, U) and (g, U) are weakly compatible pairs then f, g, U have a unique common fixed point

in X.

If g = f and V = U in the above theorem, then we have the following

Corollary 3.2. Let (X, d) be a cone pentagonal metric space. Suppose the mappings f, U : X 7→ X satisfy

the condition:

d(fx, fy) ≤ λ(d(Ux, fy) + d(Uy, fx))

for all x, y ∈ X, where λ ∈ [0, 12). Suppose that f(X) ⊆ U(X), and, if U(X) or f(X) is a complete

subspace of X, then the pair (f, U) have a unique point of coincidence in X. Moreover, if f and U are

weakly compatible pairs, then f and U have a unique common fixed point in X.

If g = f , V = U = I (identity mapping), and P is a normal cone in the above theorem, then we have the

following

Corollary 3.3. Let (X, d) be a complete cone pentagonal metric space and P be a normal cone with

normal constant k. Suppose the mapping f : X 7→ X satisfies the contractive condition:

d(fx, fy) ≤ λ(d(x, fy) + d(y, fx))

for all x, y ∈ X where λ ∈ [0, 12). Then

(a) f has a unique fixed point in X

(b) For any x ∈ X, the iterative sequence {fnx} converges to the fixed point.
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