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Abstract

In this paper, it is shown that a number of properties of permanent of both square and
non-square matrices present under fuzzy environment. We establish the basic formulas of
determinant and permanent of matrices which contains the new properties to compare the
both notions. We investigate the permanent of square L-R hexagonal fuzzy matrix (L-R
HFM) using in different ways from partial derivatives. The notions of permanent of non-
square L-R hexagonal fuzzy matrix are defined. Moreover, we derive some of the
standard properties and constant matrix with the aid of above notion.

1. Introduction

The permanent has a rich structure when restricted to certain class of matrices,
particularly, matrices of zeros and ones (entrywise) non-negative matrices and positive
semi defined matrices. Furthermore, there is a certain similarity of its properties over the
class of non-negative matrices and class of positive semi defined matrices. Romanwicz
and Grabowski [6] used permanent of square matrix. Permanent is also used in graph-
theoretic interpretations. One is, as the sum of the weights of cycle covers of a directed
graph, yet another one is as the sum of weights of perfect matching in a bipartite graph.
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The concept of fuzzy matrix (FM) is one of the recent developments for dealing with
uncertainties present in engineering, agriculture, science, social science and also in most
of our real life situations. Thomason [13] presented the article entitled convergence of
power of fuzzy matrix. Ryser and Brualdi [7] studied different form of permanent of
matrix. Moreover, some important results of the permanent of fuzzy matrix are
established by Glynn [3]. Some of the interesting arithmetic works on fuzzy number can
be found in [2]. For the first time the notion of a triangular matrix was proposed by
Shyamal and Pal [8]. Recently, Das et al. [1] introduces the concept of permanent of
interval valued and triangular fuzzy matrices. Stephen Dinagar and Latha [9] presented
the constant type-2 TFMs. Most of our real life problems in medical sciences,
engineering, management, environment and social science often involve data which are
not necessarily crisp, precise, lucid and deterministic in character due to various
uncertainties associated with these problems. Such uncertainties are usually being
handled with the help of the topics like probability, fuzzy sets, intuitionistic fuzzy sets of
fuzziness by membership function, the fuzzy number can be classified in different forms,
such as triangular fuzzy number (TFN), trapezoidal fuzzy number (TrFN). At present, we
introduce the proposed number in the article of L-R hexagonal fuzzy number (L-R HFN).
Recently, Stephen Dinagar and Rajesh Kannan [10] presented the article entitled as on
inventory model with allowable shortage using L-R type hexagonal fuzzy number.

Recently [11, 12], we develop the concept of permanent of hexagonal fuzzy matrices.

In this article, we introduce the notion of L-R hexagonal fuzzy number (L-R HFN) in
a well defined manner by conditions applied with other type of fuzzy numbers and
studied in the case of permanent in both square and non-square domain of fuzzy
matrices. In Section 2, we introduce L-R hexagonal fuzzy number to motivate by using of
this distinct fuzzy number in real life situation. In Section 3, we have defined new L-R
hexagonal fuzzy matrix (L-R HFM) and its operations. In Section 4, the definition
determinant and permanent with crisp matrix and followed by the example to justify the
difference of both the matrices and also have been found out a new results to compare
with two matrices have been established. In Section 5, we define the permanent of square
L-R hexagonal fuzzy number using in different form of partial derivatives. In Section 6,
we define the permanent of non square L-R HFM and the notion of non-square constant
matrix. We have also presented some of their standard properties and their proofs. In
Section 7, conclusion is also included.
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2. Hexagonal Fuzzy Number [11]

Sometimes it may happen that some data or numbers cannot be specified precisely or
accurately due to the error of the measuring technique or instruments etc. In general, the
human life span can be classified by different stages. One such interesting classification

is given as follows:
* Young (around (0-20))
* Early Adulthood (around (21-29))
* Middle Adulthood (around (30-40))
* Later Adulthood (around (41-60))
* Old (around (60+))

Such problems would be solved with the aid of fuzzy theory. The problem of the study of
human beings whose economic and energy status are maximum, with their human life
span is purely fuzzy in nature. It can be clearly noted that human beings to middle
adulthood be more suit for the above said problem. This situation is clearly in nature and
it can be represented by a fuzzy number called Hexagonal Fuzzy Number which is the
generalization of trapezoidal fuzzy number. The advantage of this number is more than
any number like Trapezoidal or Triangular. The hexagonal fuzzy number is more opt
than any fuzzy numbers because of this number features do satisfies for human life span

problem.

Throughout this paper, we study with the aid of L-R hexagonal fuzzy number in left
and right spreads. The mathematical definition of L-R hexagonal fuzzy number is given
below.

Definition 2.1. (L-R Hexagonal Fuzzy Number) [10]
An L-R hexagonal fuzzy number denoted by A g = (m, n, ay, dy, By, By),p is a

fuzzy number, where (m, n, ay, ay, By, By);p are real numbers satisfying m < n,

a; = d, and B; = B, and its membership function [ A (x) is given by

Earthline J. Math. Sci. Vol. 2 No. 1 (2019), 39-67
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ApLR

n—x)_
By
n—Xx

B + B2 ;

—w<x<m-(a; +0,)

m—(O(1+O(2)Sx<m—O(1

m-—0psx<m
ms<x<n

n<x<n+f

n+By<x<n+(B +B,)

x2n+ (B +By)

Here the points of m and n, with membership value of 1, is called the flat region of mean

value and 0oy, 0,, [, B, are the four distinct left and right spreads of ;‘hLR’

respectively.

An L-R hexagonal fuzzy number is said to be symmetric, if the sum of both its

spreads are equal, ie., if o +a, =B, +B, and it is denoted by Ay p =

(m, n, dy, Gz)LR.

2.1. Arithmetic operations on L-R hexagonal fuzzy numbers (HFNs)

Here we introduce the definition of arithmetic operations between two L-R

hexagonal fuzzy numbers (L-R HFNs) are given below.

Let Ayg = (m, n, 0y, 0z, By, B2) g and Byg = (p. ¢ Wi Mo, Vi, V2) 5 be two

L-R hexagonal fuzzy numbers. Then

(i) Addition:

Apr (#) Bypg = (m+ pon+q, oy +py, 0o +Ho, By + Yy, By + o)z

(ii) Subtraction:

AhLR (=) Bypg =(m=p,n—q, oy +py, 0y + 1y, By + v, By + Y2) k-

(iii) Multiplication:

Anr (%) By :(

6

m

6

n a a
Op. —Op. —1+0p. —2 0y, &01;, &Obj ’
LR

6 6 6 6

where 0, = (3p +3q —H; —Ha + VY *Ya).
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(iv) Division:

~ Ny _[6m 6n 60; 60, 63; 603,
Aprg (5) Byg = —, —, ’ g, ’
O, O, Op Op Op Op)ip

if 0, # 0, where 0, = (3p +3g — [y —Hy +V; +V3).
(v) Scalar Multiplication:

If £ # 0 is scalar, then kAhLR is defined as

km, kn, koy, ko, kB, k if k=20
1 2 1 2

T
hLR {(kn, km, —koty, —kat, —kBy, —=kB,) if k < 0.

Definition 2.2. (Ranking Function)

We define a ranking function R: F(R) - R which maps each fuzzy numbers to
real line F(R) represented the set of all hexagonal fuzzy numbers. If R be any linear

ranking functions, then

3m+3”‘0‘1‘0‘2+31+32)

R(AhLR) = ( 6

Definition 2.3. (Zero L-R Hexagonal Fuzzy Number)

If Ayr =(0,0,0,00,0), then Ay p is said to be zero L-R hexagonal fuzzy
number. It is denoted by 0 p.

Definition 2.4. (Zero-Equivalent L-R Hexagonal Fuzzy Number)

An L-R hexagonal fuzzy number AhLR is said to be zero-equivalent L-R hexagonal

fuzzy number it R(A,;g) = 0. It is denoted by 0, .

Definition 2.5. (Unit L-R Hexagonal Fuzzy Number)

If Ayr=(1,1,0,0,0,0), then A, p is said to be unit L-R hexagonal fuzzy
number. It is denoted by 1, p.

Definition 2.6. (Unit-Equivalent L-R Hexagonal Fuzzy Number)

An L-R hexagonal fuzzy number AhLR is said to be unit-equivalent L-R hexagonal

fuzzy number if R(Ay;g) = 1. It is denoted by 1; .
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3. L-R Hexagonal Fuzzy Matrices (L-R HFMs)

In this section, we propose new definitions of L-R hexagonal fuzzy number matrix
and its corresponding matrix operations.

Definition 3.1. An L-R hexagonal fuzzy matrix of order m xn is defined as
Arr = @nrRij)pxns Where  (Gypgy) = (myg. nyj, Qi Qg Bryja Boy) g is the ij-th
element of A; g, then m;; and ny; are the mean value of djrp; and Oy, O, Byyjs Boyj

are the left and right spreads of a,;g;;, respectively.

3.1. Operations on hexagonal fuzzy matrices (HF Ms)

Let A= (@nLRij ) mxn and B= (EhLRij)mxn be two L-R HFMs of same order. Then

we have the following:
1. Apg +Brg = (@niry + EhLRij)’
2. Arg = Brr = (@niry = buiry)-
3. For Ag = (@nLrij)pxn and B = (l;hLRij)nxka then AB = (ChLrij) x> Where

~ _ n o~ ~ . _ . _
(ChLRij)ka = szlahLRipthRpj’ 1= 1, 2, ey M and J = 1, 2, ceey k,

AT N [~
4. Arg or Arg = (Gnrgji),
S. /O‘A\LR = (kgthRij)’ where k is scalar.

We now define some special types of L-R HFMs corresponding to special classical

matrices.

Definition 3.2. (Zero L-R Hexagonal Fuzzy Matrix)

An L-R hexagonal fuzzy matrix (L-R HFM) is said to be a zero L-R HFM if all its
entries are 0;p and it is denoted by OLR-

Definition 3.3. (Unit L-R Hexagonal Fuzzy Matrix)

The square L-R HFM is said to be a unit L-R HFM if the diagonal elements are 1;p
and the rest of elements are O;p, ie., if @y =(1,1,0,0,0,0),, and Gyrp; =

(0,0,0,0,0,0),, i # j forall i, j. Itis denoted by 1.

http://www.earthlinepublishers.com
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Definition 3.4. A square L-R HFM A;p = (@prrij) is said to be symmerric if
ALR = A,LR’ i.e., if (5hLle) = (5hLR]l) for all I8 ]
Definition 3.5. A square L-R HFM ALR = (5/’1LR!]) = OLR’ i.e., if (ZihLRl]) =

—(@pryj) forall i, j and (dprp;;) = Opg-
4. A Comparison between Permanent and Determinant of Matrices

In this section, we have to compare both the permanent and determinant of matrices

using crisp matrix and find out the new results are justified.
Definition 4.1. (Determinant)

axn D€ a crisp matrix of order n x n. Then the determinant of A is

Let A= (aij)
denoted by det(A) or | A| and defined as

n

|A| = Z sgnol_l a;o(i),

ols,, =1
where s, denotes the symmetric group of all permutations of the indices {1, 2, ..., n}

and sgn 0 is +1 for even permutations and —1 for odd permutations.

Definition 4.2. (Permanent)

If A =(a;),x, isa crisp matrix of order n X n, then the permanent of A is denoted

nxn
by per(A) and defined as

a;0(i),

per(A) = Z

n
ols, i=1

where s, denotes the symmetric group of order n.

The definition of permanent [4] is similar to the definition of determinant except the
sign of each term in summation. The number of terms over summation are both cases but
the sign associated in each term are all positive in case of permanent. The permanent
cannot compete with determinant, in terms of the depth of theory and breadth of
applications, but it is safe to say that the permanent also exhibits both these characteristic

in ample measure, a fact that has not receive enough attention.
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a d g

Here three ways to calculate per(A) for general 3 x 3 matrix for A=|b e h |

c f i
The classical formula using all the permutation in Sy is
Per(A) = aei + bfg + cdh + afh + bdi + ceg
Ryser’s [7] method gives
Per(A)=(a+b+c)(d+e+ f)(g+h+i)—(a+bUd +e)(g +h)
—(a+c)(d+ f)(g+i)=(b+c)(e+ f)(h+i)+adg +bef +cfi.
Glynn [3] method gives
22Per(A):(a+b+c)(d+e+f)(g+h+i)—(a—b+c)(d—e+f)(g—h+i)
~(a+b-c)d+e-f)(g+th-i)+(a-b-c)d-e-f)(g~h~i).

Compare with all the three formulas, we take the first formula to apply all problems

throughout this paper and following an example is,

Let us consider an example to illustrate both the determinant and permanent of crisp

matrix.

—_ DN

1 4
Example 4.3. Let A =|3 7 |. Then
2 6

|A|=156-17.1-23.6+227+43.1-452
|A|=-13
and
per(A) =156 +1.7.1+236+227+43.1+452
per(A) =153.
4.1. Special properties of permanent

Properties of permanent are also presented below.

http://www.earthlinepublishers.com
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1. For a crisp matrix A = (a,-j )nx" is the positive square matrix of order n, then
per(A) = det(A).
2. For a crisp matrix A = —=(a;;),x, then
« If A=—(a;),x, is even square matrix of order n, then per(A) 2 det(A).
* If B =—(b;),x, is odd square matrix of order n, then per(B) < det(B).

3. If any one of the row (or) column of a crisp matrix A = (a;;),, of order n is

negative, then the permanent of a matrix is negative.
4. If any one of the row (or) column of a crisp matrix A = (a;;),x, of order n is

negative, then per(A) < det(A).

Verifications:

The above said special properties of permanent have been verified by the counter

examples.

1 2
Example 4.4. Let A = [3 4}. Then

per(A) =10, 4.1
det(A) = 2. 4.2)
From (4.1) and (4.2),
per(A) > det(A).
In particular, per(A) = det(A) whenever zero matrix and triangular matrix perform.
Therefore, per(A) = det(A).

-1 -2
Example 4.5. (i) Let A = { } . Then
—3 —dh

per(A) =10, 4.3)

det(A) = -2. (4.4)

Earthline J. Math. Sci. Vol. 2 No. 1 (2019), 39-67
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From (4.3) and (4.4),
per(A) > det(A).

In particular, matrix will become zero matrix and triangular matrix, then
per(A) = det(A).

Therefore, per(A) = det(A).

-1 -2 -1
(ii)Let B=| 0 -3 -2 . Then
=5 =3 -2]54
per(A) = =47, 4.5)
det(A) = -5. 4.6)

From (4.5) and (4.6),
per(A) < det(A).

In particular, matrix will become zero matrix and triangular matrix, then
per(B) = det(B).

Therefore, per(B) < det(B).

-1 -2 -1
Example4.6.Let A=| 0 3 2 |. Then
5 3 2

per(A) =-132+-132+-202+-252+-1.03+-1.53.
per(A)=-6-6+0-20+0-15.
per(A) = —47.

Therefore, the permanent of a matrix is negative.

-1 -2 -1
Example4.7.Let A=| 0 3 2 |. Then
5 3 2

http://www.earthlinepublishers.com
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per(A) = -47, “4.7)
det(A) = -5. (4.8)

From (4.7) and (4.8),
per(A) < det(A).

In particular, matrix will become zero matrix and triangular matrix, then

per(A) = det(A).
Therefore, per(A) < det(A).
5. Permanent of Square L-R Hexagonal Fuzzy Matrices

In this section, we investigate the permanent of L-R hexagonal fuzzy matrix
involving partial derivatives of homogeneous polynomial of degree n and characteristic p

over a fuzzy field F.

5.1. Permanent with partial derivatives

Let ALR be an n x n L-R hexagonal fuzzy matrix defined as
~ _ n ~
AnLr = |_|l.:1 AiLR>
n n ~ .
where AZLR = ijl (ahlj Wh])LR’ 1= 1, 2, ey N

Since ALR is an homogeneous polynomial L-R hexagonal fuzzy number of degree n

in (X, .-r Xp,), We can write
~a ~q ~a
i - (7 ) Yhiri Fhik2 | Thika 51
hLR = Xnhoy---a, /LR ; ;o - (5.1
o aq! as! a,,!
1 n

where the summation is over all sequence (0 :--a,) of non-negative integer satisfying

a; +---+0a, =n. The coefficient (Ychal,,,un ) g 18 equal to the partial derivatives form,
i.e.,
n
0" Aprr
athle athRj,,

5 (j19 j2’ (L) .]n) = (§hdl-"an)LR‘

Earthline J. Math. Sci. Vol. 2 No. 1 (2019), 39-67
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Then the derivative is

n o= aptay +---+a 7
0" DAy r _0 " DAprr
— ~ ~ ~Q
OXpLRj, "~ OXpLR), ax:LlRl =+ 0X) /o
Op+0o+-+0 P 22 xom
I n (~ ) XhLR1 thLRZ thRn
Xha PRt | ’
a 0% 1 n /LR oq! an! a,l
thRl thRn ! 2’ "
oy ~0p a, ~a,
= Gra )y o =Ry || 1O Khien
= Xhay-a, JLR ~a ~a
o;! 1 a! n
10X,k 10Xk
~ 0(1 a;!
- (3 i i

0" DAprp
athle "'athRjn

= ()Chal...an )LR
no
A -
Now, we compute w, ji = (Shai)LR 0i=12,..,n
XhLRj;
Now the result is
i = (ShG,-)LR = (Shal)LR 0i = 1, 2, ey N

Since A;;g is a linear function of xllaLRj,-S’ then we have

9
% =0 (5.2)
0Xprric [OXpLRK

for any k and [ are defined by differentiation

0" Apr  _ 0" DAjrr
OXprRjy " O%LRj,  OXnLR1> OXpLR2> -» OXpLRA

_ Z Ay Ro(1) DaghLRo(2) Ay Ro(n)

oo, O%nri  OXprRo OXpLRn

http://www.earthlinepublishers.com
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51
_ Z = 0AnrRo(i)
o, =1 ONinLR
n
= Z rl (Ziho(i)i)LR’
ols, =1
0Ap1 Roli .
where }LL—RO(I) = (dno(j)j)r = per(Arg). Therefore,
XihLR
I
0 Hir - per(Arg). (5.3)

athle "'athRjn

Let now (ji, jos o jn)z(ghﬂl'“an)LR' Again by differentiation and recalling

equation (5.2), we have

0" Ay p _ Z rn A1 Roli)

OXhLRjy * OXpLR), o =t ONHLRj;

= Z r (@noti)j; )i

ols, i=

0" DAyrp

athle - athRjn

per(ALR (ay---ay)).

5.2. Permanent of L-R hexagonal fuzzy number from partial derivatives

Definition 5.1. Let A;p = (@p;j) g be an nxn L-R HEM over a fuzzy field F of

characteristic p. Then it is defined as

. " pm2
per(Ag) = (- 1)”[ ] det(Arg)" "

Oaprr11 " OdpLRan

Theorem 5.2. Let Ajp = (@p;)ig be an nxn L-R HFM over a fuzzy field of

characteristic p. Then

Earthline J. Math. Sci. Vol. 2 No. 1 (2019), 39-67
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a n
0aprRr11 " OdpLRan

p-2
J det(ALR)p_l.

per(Arg) = (- l)n[

Proof. The polynomial f : det(A; )P~ is homogeneous of degree n(p —1) in the

n? variables (ZihLRij). To obtain a non-zero monomial in these variables from the

operator

( o Jl"z n 0P
OapLR11 0L Rn J= o)

that acts upon f. Now, we consider the monomial in f are of the form
A n _
— ~p=2
ZIR = rl o= AnLrii K>

where k is a homogeneous polynomial of degree n. Since det(ALR) is the sum of the

products of the form

no.
rl ;=1 “hLRiq(i)-

It is clear that k must be a similar form corresponding to the unique permutation g U s,,.
Let ¢ have r even cycle of size a;---a,(a; = 2), s odd cycle of size by ---b,(b; = 3) and
c cycle of size is fixed point of one. Then we note that n = s + ¢(mod 2), since the even

cycles can be neglected when we calculate the length of permutation mod 2. Also, g is an
even permutation if and only if r is even. When k is produced by the above partial

differentiation from Z;p, there is a factor of ((p —2))" " (p -1))° =(-1)° in

general function of p. This is because a cycle of size one in g corresponds to an Eiﬁ;ﬁi in
Z;g and differentiates p—2 times to (p —1)!d@y ;. otherwise ﬁf&éi Chpr Rk
differentiates to (p —2)!@u gy and (p —2)!=1 while (p —1)!= -1(mod p). Next,
each function from {1, 2, .., r +s} = {I, 2, .., p —1} corresponds to a way that Z;p

can appear as a polynomial in the product of det(A;p), (p —1) times. This is because

the non-diagonal a,LRij's of k in each non-trivial cycle must be assigned to one of the

http://www.earthlinepublishers.com
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p — 1 permutation of the A; R's. The number of these function is (p —1)"*! = (= 1)"**

in general function of p. In addition each of these ways of producing k gives the same

sign as ¢, since the p —1 permutations from the determinants have a product that is ¢

and so the signs multiply to give sgn(g) = (—=1)".

Hence the total coefficient of k in the partial derivative of ALR and hence of
det(A )P is (=1) O=1)° O=1)"* = (-1)**¢ = (= 1)"(mod p). Thus the formula

in the theorem is true.

Corollary 5.3. Let /A\LR = (5hij)LR be an nxn L-R HFM over a fuzzy field F
characteristic three. Then
P
0dprR11 " OdpLRan

per(Arg) = (- l)n[

Jdet(ALR)Z.

Example 5.4. Let A, p = (‘thR buir j Then
Cher  dnLr

« a b,
per(Arg) = (~hLR ~hLRj
R dpir

- ~ 2
Pl o )
Oaprr [0dy g cnrr dnr

92 J R ~
= | ———=—|(@uLr Qlprr = bprg (prg)
(aahLR [0d ) r

= ( 5 J[Z(ﬁhm Wyrr = barr Fnrr) Tprr]
apLR

= 2dyr Qg = bprg Toprr) + 2dp8 g
= Gy p Wy r + by g Eypp(mod3) (by Theorem 5.2)

per(ArR) = dyg Tppg + bypg CEprg-

Earthline J. Math. Sci. Vol. 2 No. 1 (2019), 39-67
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Theorem 5.5. Let AALR = (ahij)LR be an nxn L-R HFM over a fuzzy field F

characteristic three. Then

per(Arg) = (- 1)n_lzx 02} det(Ap g, ) det(Age),

.....

where ALRX is the principal submatrix of ALR induced by the rows and columns of ALR

indexed by x and x is the complement of x in {1, 2, ..., n}.

Proof. For i, j, k O{1, 2, ..., n} defined ALR where i, j, k is said to be principal

submartix of ALR induced by removing the rows and columns indexed by i, j, k.

From the corollary,

per(ine) = (-1 |‘|

det ALR )
hLRzz

_(_n n 0 0 A
=0 N+ = det(Azg)
i=p OdprRii ) 0dprR

n
g . .
=(-p" % 20 Ar | OALR: )
=5 OAnLRii
n
g 9 . .
=(-1)" = = (ALr | O ALR )
_3 0dprRii ) OdpLRr2)
_ a0 A A A A
=(-1) % | Ago | DALR1 |+ ALg | O AL 2 |
_3 0dyRii
_ a0 0 - - - -
=(-1) |_| = = (ALra | DALR1 |+ Ag | D ALRL 2 )
_Yoayp; ) 0dp 33

n 0 A A A A
=(-1)" Hi:4%J|ALR2,3|E]]ALR1|+|ALR1,3|E]]ALR2|

+|ALR1,2| E]]ALR3| +|ALR| E]]ALRl,Z,Sl
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per(Arg) = (=1)"2 0{1,2,..., m} | Arry | OALRx |-
Hence the proof.
6. Permanent of Non-Square L-R Hexagonal Fuzzy Matrices

In this section, we introduce the notion of permanent of L-R HFM to define the order
m x n. Also, we define the notion of constant L-R HFM in the same order and its

relevant properties are discussed.

Definition 6.1. Let A;p = (@nLRij)pxn be a non-square L-R HFM of order m X n

mXn

where @ ;i = (myj, nyj, Qy;, Qo By Bojj) g be an L-R hexagonal fuzzy number.

Then the permanent of Ay is denoted by per(A; ) and is defined by

m
per(ALR) = Z |_| 5hLRl'q(l') for m<n
qUs i=1

[where s is the set of all one-to-one mapping
from {1, 2, ..., m} to {1, 2, ..., n} ]

m

=2 |_| anLrq(j); for m>n
qUs j=1

[where s is the set of all one-to-one mapping
from {1, 2, ..., n} to {L, 2, ..., m}]

Two expressions are written for the permanent of matrix, because for m > n, there
are one-to-one mapping {1, 2, ..., n} to {l, 2, .., m}. In this case, no one-to-one is
possible from {1, 2, ..., m} to {1, 2, ..., n}. But for m < n the one-to-one mapping are
possible from {1, 2, ..., m} to {1, 2, ..., n}.

6.1. Properties of non-square permanent of HF Ms

Property 6.2. Fundamental Properties of Permanent of Non-Square L-R HFMs

For any two non-square L-R HFMs ALR and B g of order m X n, then
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() per(Arg + Brg) = per(Ag) + per(Byg).

(i) per(Arg = Brr) < per(Arg) = per(Brg).

(i) per(ApgBig) = per(Arg) Cper(Blg).

Proof. The proof of (i), (ii), and (iii) are obvious from the fundamental theorem.

Property 6.3. For any two non-square L-R HFMs /A\LR and B 1R Of same order such
that AALR < éLR = per(;\LR) < per(éLR).

Proof. Let A;p = (@nLRij ) mxn and B = (@nLRij)mxn be two non-square L-R
HFMs, where djg; = (my, ny, Qy;, Qo By Boji) g and l;hLRij = (py» 4> Mi»
Moii» Viij» Y2i) g Then, Arp < Bg = dprRij < EhLRij = (myj, myj, Oy, Ao Bryjs
Boij)rr < (Pijs qijs Wagjs Mog» Viijs Yii ) k-

When m < n,

m

per(Arg) = Z |_| AnLRiq(i)
40s i=1

= Z r (mig(i)> Mig(i)> Qiigi)> % 2igli)> Puigli)> Baig(i))Lr

q0s i=

s Z r (Piq(i)’ Qig(i)> H1ig(i)> M2ig(i)> Yiig(i)» V2iq(i))LR

qUs i=

s Z r EhLRiq(i)

qUs i=

< per (ELR ),

ie., per(ALR) < per(éLR).
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When m > n,

per(A Z
qUS

AhLRq(j

||:§

(mg(j) i Pq(i)i» Ng(i)i» A29(i)i Big(i)i» B2g(i) i) LR

—:

<
O
)
~
1l
—

(Pa(j)i 94(5)i> M1g(j)i» M2q(i)i Vig(s)i» Y2q(i)i )Lk

Q
ol
&

~

I
LN

—=

hLRq(j)J

—:

=
|
1l

s Jj
< per(By),
ie., per(Arg) < per(Big).
Hence A;p < Bjp = per(Arg) < per(Byg).

Property 6.4. If any two rows (or columns) of a non-square L-R HFM ALR are

interchanged, then the permanent value remains unchanged.

Proof. Let A;p = (@ncri) be a non-square L-R HFM of order mxn and

mXn
ELR = (EhLRij)mxn be the non-square L-R HFM obtain from ALR by interchanging the
rth and sth rows (r <s) of A;g. Then, EhLRij = g, i £ 7, j# s and EhLRrj =

AprRrsj A0d bpprei = AppRyj-

When m < n,

m
per(Brg) = ZI_I hLRiq(i)

qUs i=1

Z by, hLR1g(1) IjjhLRZq( 2) "'thqu(r) "'thqu(s) "'thqu(m)
q0S
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= Z ahLqu(l) l:HhLqu(Z) "'5hLqu(s) "'ahLqu(r) "'ahLqu(m)
q0S

Z[mlq  Mig(1)> Oiig(1)s O219(1)> Biig(1)s B21g(1))

q0s
"(msq(s)l’ Nq(s)> Asq(s)> X2sq(s) Blsq Bqu(s))
. (mrq(r)’ Ny (r) aqu( aqu Bqu Bqu(r))
"(mmq(m)’ Nng(m)» almq( ) G2mq Blmq Bqu(m))]
m
= |_| AnLRig(i)
q0s i=1
= per(ALR)
For m > n, the proof is similar as before.
Hence, per(B.g) = per(Arg).

Property 6.5. Let ALR be a non-square L-R HFM of order mXn. If a row is

multiplied by scalar k, then the permanent value is k per(;\LR).

Proof. Let A;p = (@nrrij) be non-square L-R HFM of order mxn and

mXn

ELR = (EhLRij)mxn be another non-square L-R HFM obtained by multiplying & to a row

of ALR

Case (i): If k = 0, then the result is obviously true, since per(A;g) = 0;z, when

A g has a zero row

Case (ii): Let Brg = (bprrij) s Where burgii = (P> qijs Wi Maijs Yiij» Y2ii )iz 18

obtained from L-R HFM A, p = (@rr;;) by multiplying its rth row by scalar k # 0.

Obviously (p;j» gij» Higjs Haijs Yii» Yoii ) ig = (myjs mijs Qs 05, Brys Bogj) e for
all i # 0.
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When k > 0, we have
(Pij> dij> Migj> Maij> Viij» Yaii)pr = (kmyjs kg, kOi, kO, kByj, kBoi) g
When k£ < 0, we have
(Pij> 4> Miij» Maij> Viij» Yaij )pr = (kngjs kg, KOs, ks, kBojis kBij) g
Then by the definition:

When m < n, then

m

per (éLR) = Z |_| (’;hLRiq(i))

qUs i=1

m
= Z I_I burr1g(1) WPnLR29(2) ** DnLRmg(m)
qUs i=1

Z[ P1g(1)> 914(1)> M114(1)> M214(1)> Y114(1)> y21q(1))LR
qUs

"(prq(r)’ qu(r)’ uqu(r)’ |‘12rq(r)’ yqu(r)’ y2rq(r))LR
"(pmq(m)’ mg(m)> Kimg(m)> H2mg(m)> Yimg(m) y2mq(m))LR]

When k£ > 0,

per(Brg) = Z[ Pig(1)s q1q(1)> H11g(1)> H219(1)> Vi1g(1)> Y219(1)) LR
qUs

"(prq(r)’ rq(r) p‘qu(r)’ p—2rq(r)’ yqu(r)’ y2rq(r))LR

(Pmg(m)> Dmg(m)> Wimg(m)> H2mg(m)> Yimg(m)> Yamg(m)) &)

= kZ[ mig(1)> Mg(1)> A1g(1)> A214(1)s Brig(1)- BZlq(l))LR
qUs

"'(mrq(r)’ Ny (r) aqu( ) a2rq Bqu Bqu(r))LR

"(mmq(m)’ Tng(m)> Xmg(m)> X 2mg(m Blmq Bqu(m))LR]
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m
=k Z I_I (@nLrigli))
qUs i=1
= kper(ALR )
When k <0,

per(Brg) = Z[ P1g(1)s D1g(1)> K11g(1)> K214(1)> Yi1g(1)> Y214(1)) R
qUs

"'(prq(r)’ 9rq(r)> M1rg(r)> M2rg(r)s Yirg(r)s y2rq(r))LR

= (Pg(m)> Gmg(m)> Mimg(m)> Wamg(m)» Yimg(m)» Y2ma(m)) L]

= Z[(mlq  Mig(1)s O11g(1)s 9214()> Biig(t)> B21g(1)) g
qUs

"'(knrq(r)’ kityg (r)s KO 21g(r)> KO 1rg(r) kBqu kBqu(r))LR
"'(mmq(m)’ Mng(m)> almq( )E aqu Blmq Bqu(m))LR]

= kZ[ Mig(1)> Mg(1)> A119(1)> A214(1)> Pi1g(1)s B21g(1)) 1R
qUs

"'(mrq(r)’ Rrg(r)s Qrg(r)s D2rg(r) Bqu Bqu(r))LR

"'(mmq(m)’ Mng(m)> almq( )E aqu Blmq Bqu(m))LR]

= kz 4O |_|:n:1 (@nLrig(i))
= kper(ALR).
ie., per(ALR) = kper(ALR).
For m > n, the proof is similar as before.
Hence per(A;g) = kper(ALg).
Property 6.6. For any non-square hexagonal fuzzy matrix (HFM) ALR = (5hLRij)

of order m X n, Per(ALR) = per(AZR).
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Proof. Let Arp = (ahLRij)an and ZihLRij = (mlj, i O(ll-j, aZij’ Blij’ BZij)LR

When m < n,

per (ALR) = ZqDS |_|Zn:1 (ZihLRiq(i))-

AT oA o ~ o~
Let ALR = BLR = (thRij)mn’ n=z=m. Then, thRij = ahLRij’

Per(AZR) = Per(éLR)

m

= Z |_| bhira()

q0S j=1

m
Z |_| AnLRq(j)

q0S j=I

For m > n,

Per(AZR) = Per(éLR)

= Zlﬁ (l;hLRiq(i))

q0s i=

n

= Z |_ (EihLRq(i)i)

qUs i=

ﬂ (@nrrig(i))
qUs j=
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= per(Arg)
per(Afg) = per(Arg).
Hence per(Alz) = per(ALg). 0

6.2. Non-square constant L-R HFM

In this section, we have to define the notion of non-square constant L-R HFM. Some

important properties are proved by the permanent notion with suitable examples.

Definition 6.7. Non-Square R-Constant L-R HFM

AnL-R HFM A;p = (@prr;) of order m x n is called a non-square R-constant L-R
HFM if all its rows are equal to each other. That is, djrp; = dprg, for all

iLhr=1,2,..mand j=12, .. n
Definition 6.8. Non-Square C-Constant L-R HFM

AnL-R HFM A;p = (@prri) of order m x n is called a non-square C-constant L-R
HFM if all its columns are equal to each other. That is, djrp; = dprg; for all

i=1,2,.,mandr, j=1,2,.. n
Definition 6.9. Non-Square Constant L-R HFM

An L-R HFM A = (@pgi) of order mxn is called a non-square constant L-R

HFM if it is either non-square R-Constant L-R HFM or non-square C-Constant L-R
HFM.

For Example: Let

Ao (021122 (682222 (51LLLI)
Rl 211L11) (6,82222) 3,5 1L111)

be non-square R-constant LR HFM and let
1,2,1,1,2,2) (1,2,1,1,2,2)
Big=(6,8227272) (6822°22)
(3,51, 1,1,1) (3,51,1,1,1)

be non-square C-constant L-R HFM.
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6.3. Properties of non-square constant L-R HFM

Property 6.10. Let ALR and f)’LR be two non-square constant L-R HFMs of same

order. Then
ArR *+ Bigr = Big + Apg = per(Apg + Brg) = per(Brg + Arg).
Proof. Let ALR = (Zi]’lLle)an and BLR = (thRl])an’ where ahLRl] = (ml], "ij’

Qs Oois Brijs Boij) g and byrrii = (P qij» Myji» Majjs Yij» Yoii) g @re two non-
ij» A 2ij» Plij» P2ij ij ij» 9ij > Mij» H2ii» Yiij» Y2ij

square constant L-R HFMs of order m X n. Then djp;; = dprg,; and bypgii = bpppyj-
Let Crg = (Chrrij) = (@nerij + buiri) = @nikep + brrryi) = Chrryj» for all i, r =
,2,..,mand j=1,2,.. n

Let Drg = (dprri) = Greri *+ @niri) = Griry + @niry) = dprge» forall i, r =
,2,..,mand j=1,2,.. n
When m < n,
per(Apg + Byg) = per(Crg)
m

= Z I_l 5hLRiq(i)

qUs i=1

= Z (Chrriq()) UChr2g(2)) " (ChLRmg(m))
qds

= Z(EihLqu(l) + byrrig(t)) Lanrrag(2) + brrr2g(2)
qus

(5hLqu(m) + EhLqu(m))

= Z (EihLqu(r) + EhLqu(r)) |:(Zl‘hLqu(r) + EhLqu(r))
qus

e (5hLqu(r) + EhLqu(r) )
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= Z (EhLqu(r) + ahLqu(r)) |:(l;hLqu(r) + ahLqu(r))
qus

o (EhLqu(r) + ZihLqu(r))

- Z |_ (ghLqu(r) + &hLqu(r))

= Z H JhLRiq(i)

qus r=

= per(Dyg)
= per(Brg + Arg),
ie., per(Apg + Brg) = per(Brg + Arg).
For m > n, the proof is similar as before.
Hence per(A;g + Bir) = per(Big + Arg).

Property 6.11. Let ALR and f)’LR be two non-square constant L-R HFMs of same

order. Then
A BT, = B, GAT, = per(Ayp GBTe) = per(Bye CAT)
LR LR LR LR = Per\Arr LR per\brg LR/
A _ o~ ~ _(~ AT _ A —
Proof. Let ALR = (ahLRij)an and ALR = (ahLRij)an' Then ALR = CLR =

(ChLRij )mxn and By =Dy = (JhLRij)me That is, all the non-square constant L-R
HFMs are

ﬁhLRl-j = ahLR}j; thRij = thR’j for all i, r = l, 2, e M and ] = l, 2, ey N,

EhLRij = EhLRir; dhLRij = dhLRir forall i = 1,2, ..m and r, ] =1, 2, veey N

Let

~
Arr BBrr = X[R = XnLRij
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n

= ZahLRip L Rpj
p=l
n

= ZahLRrp thRpr’ Lr,p, j=12 ..,n
p=l

s
Bir DALR = YR = YnLRij

n
= thLRip (hLRpj
r=l

n
= thLRrp Whrrprs &7 P j =12, 0.
=1

=

Let

C
Arg BBig = X1g = (Fnrrij)

—_ n ~ 7

= Z =l (@nrip Whrrp;)

n ~ 7 . .

= szl (@ncrir Wipireg)> 1 s J =12, s n
.
Brg DALg =Yg = (Fnreij)

n ~
= Z =l (burrip CEnLrp;)

n 7 . .
= szl (Bhrrir EEhLRrj)’ i,r,p,j=12,.,n

When m < n,

per(ALR Dé{R) = Per()?ue)

m

= Z I_l XnLRig(i)

qUs i=1
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m n -
= Z |_| ZahLRip L Ry

qUs i=1 p=1

m n
= anrrrp Whrrpr
P p
1

qUs i=1 p=

m n
= Z r ZEhLRrp |:EhLRpr

qUs i=1 p=1
m

= Z r YhLRig(i)

qUs i=

= per (?LR)
- A AT
= per(Brg DALR).
~ A AT \ — A AT
i.e., per(Arg DBrg) = per(Brg DALR).
For m > n, the proof is similar as before.

Hence per(/A\LR @ZR) = per(lg’LR DAZR)

7. Conclusion

In this work, it is a notion which is ambiguously related to a determinant so, we
follow closely the approach and introduce for the determinant. We have also studied the
notion called the permanent of both square and non-square L-R HFM, which contains
some of the theorems and standard properties which are verified. The fuzzy permanent

matrices can be developed using eigenvalue properties in future.
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