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Abstract

Let H be the collection of all locally univalent analytic functions f defined on the unit disk D with the
normalization f(0) = f'(0) — 1 =0, and S C H be the class of all univalent functions. For f,g € H
and r € C, the Hornich operators are defined as

ro /(e /{f Jyrde and £ g(z /f

We study geometric properties of some subclasses of S in the sense of the Hornich space (H,®,®). In
fact, we prove that the classes of strongly convex functions of order 3, Noshiro-Warschawski functions,
and strongly Ozaki close-to-convex functions are all convex in (H, ®, @), which generalize some known
results. Meanwhile, for M, N € S, let T[M,N] := {(r,s) € C2:r© f®s®g € N, for Vf,g € M}.
We give the precise descriptions of T[M, N] for some M, N € S.

1 Introduction

In this paper, we let H be the class of all locally univalent analytic functions f defined on the unit disk
D = {z: |z| < 1} normalized by f(0) = f/(0) — 1 =0, and S C H be the class of all univalent functions.
In [9], for f,g € H and r € C, Hornich introduced the Hornich operations on H as follows,

ro f(z /{f £)}dé and f@g(z /f £)d¢, (1.1)

where the branch of (f)* = exp (alog f’) is taken so that (f')* (0) = 1. With the operations ® and @,

the set H become a vector space which is now called Hornich space (H,®, ®).

If we denote the pre-Schwarzian derivative Ty = f”/f’ for f € H, then it is interesting that, for any
frgeHand r € C,
Tf@g = Tf + Tgv Tr@f = rTf‘ (1'2)
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Which means that pre-Schwarzian derivative is a linear operation on (H,®, ®).

As we know, it is of great interesting to describe the geometric shape of S or its subspaces, such
as universal Teichmiiller space ( [1,34]), under pre-Schwarzian derivative. Since the property (1.2), the
shape problem of subclass of & under pre-Schwarzian derivative is equivalent to the geometry of the
corresponding subspace in (H, ®, ®). Following this idea, many mathematicians are dedicated to research
in this area. For example, as early as the 1960s and 1970s, Pfaltzgraff [27] showed that r©S C Sif |r| < %
and Roster [31] proved that 7 ® S is not included in & when |r| > 1/3. The exact value r which makes

r ®S C S hold is still unknown. For more study on this topic, we refer to [2,3,5, 13, 14, 17,2325 28].

In this paper, we will continue to study the geometric properties related to Hornich space (H,®, ®).
The first objective is to extend some known geometric properties to subspaces of S in (H,®,®). In the

following, we will introduce some subspaces of S and list our results.

We say a function f € S is convex if its image f(ID) is a convex domain in C, and let K be the collection

of all convex functions. It is well known that f € IC if and only if

2f"(2)

f'(z)
For 0 < 8 < 1, we let SK(3) be the strongly convex functions of order § which consisting of all function
f € S satisfying

Re{l + } >0,z €D.

2f"(2),| _ 7B
1 — D.
arg{l + f’(z)} <€
In addition, using subordination, Janowski [ 1] extended I to the class K(A, B) which consists of all

f € S satisfying

2f"(2) . 1+ Az
1(2) 1+ Bz’
where —1 < B < A < 1. As we know, SK(8) and K(A, B) are generalizations of K, which were studied

by many mathematicians [12,21,30,36,37].

1+

z €D,

In 1974, Kim [11] et al. study the geometric properties of K and proved that K is convex in (H,®, ®).
Since SKC(B) and K (A, B) are generalizations of IC, we consider the convexity problem of them in (#, ®, ®)

and prove the following theorem.

Theorem 1.1. Both the subclasses SKC(B) and (A, B) are convez in (H,®,®).

A function f € S is called starlike respect to 0 if f(DD) is a starlike domain respect to 0 in C, and we
let &* denote the class of all starlike function. It is well known that f € §* if and only if

2f'(2)

Rl

} >0,z €D.
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In 1973, for 0 < o < 1, Janowski [11] introduced §*(«) the starlike functions of order o which is the
collection of all function f € & such that

/!
Re 2f2) >,z €D.
f(2)
The growth theorem and other characteristics of S*(«) were studied by many mathematicians [35]. By a
counterexample, Sugawa [13] have shown that §* is not convex in (H, ®, ®). Later, in 2007, Lamprecht [17]

proved that S* is starlike respect to identity in (H,®,®). We consider the geometric property of S*(«)
in (H,®,®), and prove the following theorem.

Theorem 1.2. For Vo € [0.156,1), S*(a) is not convex in (H,®, D).

A function f € S is a close-to-convex function if and only if there exists a function g € K such that

Re{

/
z
g'(2)

Let C be the class of all close-to-convex functions. Allu et al. [19] generalized the concept of close-to-convex
functions to the class of strongly Ozaki close-to-convex functions F (A, a), by introducing two parameters

A and «, where a € (0,1] and X € [, 1]. A function f € S is a strongly Ozaki close-to-convex function if

2X —1 2 z2f"(2) am
arg[2>\+1+2>\+1<1+ ) >”<2,z€]D). (1.3)

Later, F(\, ) was studied by Sevtap et al. [3,35].

Since Kim et al. [I4] gave the convexity of C in (H,®,®), we consider the geometric property of

F(A, a) and derive the following theorem.

Theorem 1.3. For a € (0,1] and A € [§,1], F(X, ) is convez in (H,®, B).

A function f € H is called a Noshiro-Warschawski function if f satisfies
Re f'(z) > 0,Vz € D,

and we denoted by R the class of Noshiro-Warschawski functions. Hotta et al. [10] proved that class R

is starlike in (H,®, ®). In this paper, We show stronger geometric properties of R as follows.
Theorem 1.4. Let R be the class of Noshiro-Warschawski functions, then R is convex in (H,®, D).

To state the second objective of this paper, let us introduce some notations. For f, g € H and r,s € C,

we define

L) =rof= [T(1©) d and
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Irs(2) = (ro f)@ (s ©g)(2) —/OZ (f'(©)" (4(©)" de (1.4)

For M and N be two non-empty subclasses of H, we denote
T[M,N]:={(r,s) € C*:Vf, ge M,I,, € N}. (1.5)

By the definition of T[M, N], it is not difficult to find that, for any a,b € C,
Tla® M,b® N| = QT[M,N}, (1.6)
a
where a @ M = {f =a®g:g€ M} and 2T[M, N] = {(2r, 2s), (r,s) € T[M, N]}.

For M,N C &, it is interesting to describe the shape of T [M,N]. For example, Kim
[15] et al. proved that T[K,C] = {(r,s)eC?:—3<rs<3 -1<r+s<3} and T[C,C] =
{(r, s) € C2?. —% <r-3s<1, —% <r+3s<1 } For more results related to thls topic, we refer to
[1,2,6,10,13,16,20,25,26,33]. In this paper, we will continue to describe T'[M, N] precisely for some
subspace M, N € S.

F(A) := F(A, 1) is called the connection of Ozaki close-to-convex functions, and K(«) := K(1—2a, —1)

with 0 < a < 1 is known as the class of a-convex functions. By definition, a function f € § is a Ozaki

2f"(= ))
Re(1+ >—— A\
( f'(2)
F(A) and K(a) were studied by Ponnusamy et al. [29,37]. For F()), K(a) and R, we give the description
of T[M, N] and get the following three theorems.

close-to-convex function if and only if

Theorem 1.5. For VA € [1/2,1],
1. T[F(\),K] = {(T,S)EC2 r,s>0, 0<r+s< 1+2)\}

2. TIF(N),Cl = {("”’ $)EC: —ly <rs< o ST s < 1+2,\}
Theorem 1.6. T[K(a),K(a)] = {(r,s) e R*:r,s > 0,0 <7 +s < 1}.
Theorem 1.7. T[R,R] = {(r,s) e R?: -1 <r,s<1,-1<r+s<1}.

2 Convexity of some subclasses in the Hornich space

We will give the proofs of Theorems 1.1-1.4 in this section. As a preparation for proving our main theorem,

we need to introduce some results as lemmas.

By definition, it is not difficult to derive the following result about I, s in equation (1.4).
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Lemma 2.1. ForVf, g€ S and Vr,s € C,

s 2f"(2) 9"(2)
1+ 7. =r(l+ ) )+s(1+ 702 )+ (1 —7r—s). (2.1)
Proof of Lemma 2.1. For Vf, g € H and s,r € C, we have
Il rzf"(z)  sz29"(2)
S T [ E RIE)
_ 2f"(2) 29" ()
=r(l+ ) )+ s(1+ 70 )+ (1—r—ys)
O

By Lemma 2.1, we give the proof of Theorem 1.1.

Proof of Theorem 1.1. We divide the proof of Theorem 1.1 into two parts.
Part (i): SK(5) is convex

For V5 € (0,1), Vf, g € SK(B) and Vr € [0,1], it follows from the equation (2.1) that

e N T L/ N E M
arg{1 + I7/~,1—7’} = larg{r(1 + o) Y+ (1 —r)(1+ 702) )}H < 5

This shows that I, 1_,(z) € SK(5), i.e. the class SK(3) is convex.
Part (ii): K(A, B) is convex in (H,®, ®).

For VA, B satisfying —1 < A < B <1, Vr € [0,1] and Vf, g € SK(A, B), by the equation (2.1) we

have

21;714(2’) B z2f"(2) B 29" (2) 1+ Az
e T ey I S = e

from which (A, B) is convex.

O]

To prove Theorem 1.2, we need to introduce some results on the Hankel determinant. As a

generalization of coefficient estimates, the Hankel determinant was introduced by Noonan and Thomas [22]

in 1976 and was studied by Noor et al. [7,18,24]. Here we only consider the second Hankel determinant
Hy(2) of f € S, defined by H2(2) := |agas — 3| for f(z) = 2+ 300, a,2". In 2022, by Hy(2), Thomas
et al. [32] provided a necessary condition for f € S*(«) as follows.

Earthline J. Math. Sci. Vol. 15 No. 2 (2025), 105-116
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Lemma A. Let f(z) = 24+ o0 yapz" and o > 0. If f € 8*(a),then H2(2) < 3(1—a)?(3—2a)(2a—1)|.

We prove Theorem 1.2 by a counterexample.

Proof of Theorem 1.2. For Ya € [0,1), we define two functions fi and fo by fi(z) = vz/(1 —y2)?~2
and fo(2) = 32/(1 — 72)>72%, where v = ¢'™/%. Notice that f; and f, both are rotations of the function
z/(1 — 2)2722, Therefore, f1, fo € S*(a). Let G be the midpoint of f; and fo, we have

G(2) =050 fi(2) 0.5 fa2)
- [1rortsora

/ 1+ (1—2a)7¢ 1+(1—2a)7§d€
(1=} (=730
:/Z L+v2(1-20) ¢+ (1-20)*¢?

dc.

With the help of Matlab, we calculate the values of the second Hankel determinant H2(2) of G(z) and
(1 — a)?(3 — 2a)(2c — 1)|, denoted by H¢ and Hg- (o) respectively, and give the following graph.

1 T T T T

The value of Hg
The value of Hg-(q)

o o o
EN o o

The value of results

o
o

0 Il Il T
0 0.2 0.4 0.6 0.8 1

The value of parameter a

Figure 1: Comparison of Hg and Hgx(q)-
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As shown in Figure 1, by Lemma A, we can see that for Vo € [0.156, 1), Hg > 3 (1—a)?|(3—2a)(2a—1)|,
which implies $*(«) is not convex in (H,®, ®). O

Next, we turn our attention from the proof of Theorem 1.2 to the proof of Theorem 1.3, where we will

discuss the convexity of F(A, ).

Proof of Theorem 1.3. For a € (0,1], A € [%, 1] and Vr € [0,1], let f and g be two functions belonged to
the class F(\, ), we have

L[ 2 (A ()
M T T aat1 T, ()
2)

B 22 -1 2 z2f"( 29" (2)
=218 | 53y + 1 (r(1+ ) )+ (1—7r)(1+ 702 )) ‘
B 22 —1 2 z2f"(z2) 2X —1 2 zg"(2)
=l o e VTGt T ))]’
am
<?,
which implies that F(\, «) is convex in (H, ®, ®). O

Since the proof of Theorem 1.4 is parallel to those of Theorems 1.1 and 1.3, we only give the outline

of the proof here.

Proof of Theorem 1.4. For Vf,g € R and Vr € [0, 1], we have
Rel;; ,(z) = rRef"+ (1 —r)Reg’ >0,

which implies R is convex in (H,®, ®). O

3 Precise description of T[M, N|

In this section, by some lemmas, we will give the proofs of Theorems 1.5-1.7.

To begin our proofs, we first characterize the structure of the class F(A), which can be expressed in

the following form.

Lemma 3.1. For \ € [1/2,1], then F(\) = B2 0 K.

Earthline J. Math. Sci. Vol. 15 No. 2 (2025), 105-116
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Proof of Lemma 3.1. For VA € [1/2,1] and Vf € F(X), let g(z) = H% ® f(2). Tt is not difficult to derive
g(z) € K, which implies F(\) C % ® K. On the other hand, letting f(z) = % ®g(z) for each function

g(z) € K, we have f(2) € F()\), which means F(\) 2 122 o K. O
By Lemma 3.1, we give the proof of Theorem 1.5 as follow.

Proof of Theorem 1.5. We divide this proof into two parts.
Part (i): T[F(\),K] = {(r,s) €C?:r,5>0,0<r+s< 1+2)\}
It was shown in [15] that

TIK,K]={(r,s) €C%:r,5>0,0<7+s<1},

1 3 1 3
— 2. < s<S, =<y < = 1
TIK,C] = {(r,s) € C*: 5 ShsS 5Ty ST _2} (3.1)
By equation (1.6) and Lemma 3.1, we have
TIFON, K] = ——TIK. K
T 120 Y
2
:m{(r,s)G(CQ:T,SZO,OST+SS1}
2
= 2. > < <
{(r,s)e(C T,S_O,O_?"+S_1+2)\},

which completes the proof of the part (i) in Theorem 1.5.
Part (ii): T[F(\),C] = {(r.s) € C s~y s < pg, — iy <r 45 < 15 |-

By the equation (3.1), similar to the part (ii), we have

2
T[F(N),C] = l +2)\T[IC,C]
— 1—i—22)\{(T78)€C2 —%gr,sgg,—%§r+s<g}
- {(T’S) eC: _1+12A =nss 1f2>\’_1+12>\ srEes 1:)2)\}’
which completes the proof of the Part (i) in Theorem 1.5. O

Next, we give the proof of Theorem 1.6.

Proof of Theorem 1.6. The proof is divided into two steps.

http://www. earthlinepublishers.com
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Step (i): We prove T[K(a), ()] 2 {(r,s) : r,s > 0,0 < r+s < 1} firstly. Given a € [0,1), for
f, g € K(a), it follows from the equation (2.1) that

M) )
e RS  T

when r,s >0, 0 <r—+s<1.

29" (2)
q'(z)

1+ p+s{l+ }>a

Step (ii): We prove T[K(a),K(a)] C {(r,s) : s > 0,0 < r + s < 1} by showing that for each
(ro,s0) ¢ {(r,s) :1,s >0,0<r+s <1}, (rg,s0) ¢ TIK(a), K(a)].

If rg < 0, let f = (2a — 1)(1 + 2)?*~! and g(z) = z, then
(2) zf"(z) 1+ [1+7r0(2a —2)]z
14 Zrosol®) v =1+ = : (3.2)
7,0 (%) ) T2

When z — —1, the real part of equation (3.2) is less than «. Similarly, if sg < 0, just choose g =
(2a —1)(1 + 2)?* ! and f(2) =

Ifrg+s0>1,let f=g=(2a —1)(1+ 2)2*"!, we have

A ry,50(2) _ 14 [L+ (ro + 50) (20 = 2)]=.

1+ =
I,T0730 (Z) 1 + z

(3.3)

When z — 1, the real part of the equation (3.3) is less than «. These complete the proof of the Step
(ii). O

Finally, we introduce the proof of Theorem 1.7.

Proof of Theorem 1.7. We also divide the proof into two steps.
Step (i): We prove T[R,R] 2 {(r,5) € R?: 7,5 >0,0 <7 +s < 1}.

For Vr,s € {(r,s) € R%?:7,5>0,0 <7+ s <1} and Vf, g € R, we have

T
g I1,(2) = raxs(f/(2)) + s ongly/(2)) € (~2. 7).
This show that I ,(2) € R.

Step (ii): We prove T[R,R] C {(r,s) € R? : r,s > 0,0 < r + s < 1} by showing that for each
(r0,80) & {(r,8) €ER2: 7,5 > 0,0 <r+s <1}, (10, 80) ¢ TIK(a), K(a)].

For Vro ¢ [—1,1], let f'(2) = {(1 + 2)(1 — 2)}*/™ and ¢'(z) = 1, I’ (z) maps the unit disk D onto

70,50

the complex plane minus the negative real axis, which implies I, ¢ R. Because of the symmetry of 7

ro S0
and sg, the case of sg ¢ [—1,1] is obvious. If 7o and sq satisfy rg, s € [—1,1], ro + so ¢ [—1,1], just let

f'(z) = ¢'(2) = {(1 + 2)(1 — 2)}*/(r0+50) | These complete the proof of the Step (ii). O

Earthline J. Math. Sci. Vol. 15 No. 2 (2025), 105-116
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