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Abstract

Let H be the collection of all locally univalent analytic functions f defined on the unit disk D with the

normalization f(0) = f ′(0) − 1 = 0, and S ⊆ H be the class of all univalent functions. For f, g ∈ H
and r ∈ C, the Hornich operators are defined as

r � f(z) :=

∫ z

0

{f ′(ξ)}rdξ and f ⊕ g(z) :=

∫ z

0

f ′(ξ)g′(ξ)dξ.

We study geometric properties of some subclasses of S in the sense of the Hornich space (H,�,⊕). In

fact, we prove that the classes of strongly convex functions of order β, Noshiro-Warschawski functions,

and strongly Ozaki close-to-convex functions are all convex in (H,�,⊕), which generalize some known

results. Meanwhile, for M,N ∈ S, let T [M,N ] := {(r, s) ∈ C2 : r � f ⊕ s � g ∈ N, for ∀f, g ∈ M}.
We give the precise descriptions of T [M,N ] for some M,N ∈ S.

1 Introduction

In this paper, we let H be the class of all locally univalent analytic functions f defined on the unit disk

D = {z : |z| < 1} normalized by f(0) = f ′(0)− 1 = 0, and S ⊆ H be the class of all univalent functions.

In [9], for f, g ∈ H and r ∈ C, Hornich introduced the Hornich operations on H as follows,

r � f(z) :=

∫ z

0
{f ′(ξ)}rdξ and f ⊕ g(z) :=

∫ z

0
f ′(ξ)g′(ξ)dξ, (1.1)

where the branch of (f ′)α = exp (α log f ′) is taken so that (f ′)α (0) = 1. With the operations � and ⊕,

the set H become a vector space which is now called Hornich space (H,�,⊕).

If we denote the pre-Schwarzian derivative Tf = f ′′/f ′ for f ∈ H, then it is interesting that, for any

f, g ∈ H and r ∈ C,

Tf⊕g = Tf + Tg, Tr�f = rTf . (1.2)
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Which means that pre-Schwarzian derivative is a linear operation on (H,�,⊕).

As we know, it is of great interesting to describe the geometric shape of S or its subspaces, such

as universal Teichmüller space ( [4, 34]), under pre-Schwarzian derivative. Since the property (1.2), the

shape problem of subclass of S under pre-Schwarzian derivative is equivalent to the geometry of the

corresponding subspace in (H,�,⊕). Following this idea, many mathematicians are dedicated to research

in this area. For example, as early as the 1960s and 1970s, Pfaltzgraff [27] showed that r�S ⊂ S if |r| < 1
4

and Roster [31] proved that r � S is not included in S when |r| > 1/3. The exact value r which makes

r � S ⊂ S hold is still unknown. For more study on this topic, we refer to [2, 3, 5, 13,14,17,23,25,28].

In this paper, we will continue to study the geometric properties related to Hornich space (H,�,⊕).

The first objective is to extend some known geometric properties to subspaces of S in (H,�,⊕). In the

following, we will introduce some subspaces of S and list our results.

We say a function f ∈ S is convex if its image f(D) is a convex domain in C, and let K be the collection

of all convex functions. It is well known that f ∈ K if and only if

Re{1 +
zf ′′(z)

f ′(z)
} > 0, z ∈ D.

For 0 < β < 1, we let SK(β) be the strongly convex functions of order β which consisting of all function

f ∈ S satisfying ∣∣∣∣arg{1 +
zf ′′(z)

f ′(z)
}
∣∣∣∣ < πβ

2
, z ∈ D.

In addition, using subordination, Janowski [11] extended K to the class K(A,B) which consists of all

f ∈ S satisfying

1 +
zf ′′(z)

f ′(z)
≺ 1 +Az

1 +Bz
, z ∈ D,

where −1 ≤ B < A ≤ 1. As we know, SK(β) and K(A,B) are generalizations of K, which were studied

by many mathematicians [12,21,30,36,37].

In 1974, Kim [14] et al. study the geometric properties of K and proved that K is convex in (H,�,⊕).

Since SK(β) and K(A,B) are generalizations of K, we consider the convexity problem of them in (H,�,⊕)

and prove the following theorem.

Theorem 1.1. Both the subclasses SK(β) and K(A,B) are convex in (H,�,⊕).

A function f ∈ S is called starlike respect to 0 if f(D) is a starlike domain respect to 0 in C, and we

let S∗ denote the class of all starlike function. It is well known that f ∈ S∗ if and only if

Re{zf
′(z)

f(z)
} > 0, z ∈ D.
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In 1973, for 0 < α < 1, Janowski [11] introduced S∗(α) the starlike functions of order α which is the

collection of all function f ∈ S such that

Re
zf ′ (z)

f(z)
> α, z ∈ D.

The growth theorem and other characteristics of S∗(α) were studied by many mathematicians [35]. By a

counterexample, Sugawa [13] have shown that S∗ is not convex in (H,�,⊕). Later, in 2007, Lamprecht [17]

proved that S∗ is starlike respect to identity in (H,�,⊕). We consider the geometric property of S∗(α)

in (H,�,⊕), and prove the following theorem.

Theorem 1.2. For ∀α ∈ [0.156, 1), S∗(α) is not convex in (H,�,⊕).

A function f ∈ S is a close-to-convex function if and only if there exists a function g ∈ K such that

Re{f
′(z)

g′(z)
} > 0.

Let C be the class of all close-to-convex functions. Allu et al. [19] generalized the concept of close-to-convex

functions to the class of strongly Ozaki close-to-convex functions F(λ, α), by introducing two parameters

λ and α, where α ∈ (0, 1] and λ ∈ [12 , 1]. A function f ∈ S is a strongly Ozaki close-to-convex function if∣∣∣∣arg

[
2λ− 1

2λ+ 1
+

2

2λ+ 1

(
1 +

zf ′′(z)

f ′(z)

)]∣∣∣∣ < απ

2
, z ∈ D. (1.3)

Later, F(λ, α) was studied by Sevtap et al. [8, 35].

Since Kim et al. [14] gave the convexity of C in (H,�,⊕), we consider the geometric property of

F(λ, α) and derive the following theorem.

Theorem 1.3. For α ∈ (0, 1] and λ ∈ [12 , 1], F(λ, α) is convex in (H,�,⊕).

A function f ∈ H is called a Noshiro-Warschawski function if f satisfies

Re f ′(z) > 0,∀z ∈ D,

and we denoted by R the class of Noshiro-Warschawski functions. Hotta et al. [10] proved that class R
is starlike in (H,�,⊕). In this paper, We show stronger geometric properties of R as follows.

Theorem 1.4. Let R be the class of Noshiro-Warschawski functions, then R is convex in (H,�,⊕).

To state the second objective of this paper, let us introduce some notations. For f, g ∈ H and r, s ∈ C,

we define

Ir(z) := r � f =

∫ z

0

(
f ′(ξ)

)r
dξ and
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Ir,s(z) := (r � f)⊕ (s� g)(z) =

∫ z

0

(
f ′(ξ)

)r (
g′(ξ)

)s
dξ. (1.4)

For M and N be two non-empty subclasses of H, we denote

T [M,N ] :=
{

(r, s) ∈ C2 : ∀f, g ∈M, Ir,s ∈ N
}
. (1.5)

By the definition of T [M,N ], it is not difficult to find that, for any a, b ∈ C,

T [a�M, b�N ] =
b

a
T [M,N ], (1.6)

where a�M = {f = a� g : g ∈M} and b
aT [M,N ] = {( bar,

b
as), (r, s) ∈ T [M,N ]}.

For M,N ⊂ S, it is interesting to describe the shape of T [M,N ]. For example, Kim

[15] et al. proved that T [K, C] =
{

(r, s) ∈ C2 : −1
2 ≤ r, s ≤

3
2 ,−

1
2 ≤ r + s ≤ 3

2

}
, and T [C, C] ={

(r, s) ∈ C2 : −1
3 ≤ r − 3s ≤ 1,−1

3 ≤ r + 3s ≤ 1
}
. For more results related to this topic, we refer to

[1, 2, 6, 10, 13, 16, 20, 25, 26, 33]. In this paper, we will continue to describe T [M,N ] precisely for some

subspace M,N ∈ S.

F(λ) := F(λ, 1) is called the connection of Ozaki close-to-convex functions, and K(α) := K(1−2α,−1)

with 0 ≤ α < 1 is known as the class of α-convex functions. By definition, a function f ∈ S is a Ozaki

close-to-convex function if and only if

Re

(
1 +

zf ′′(z)

f ′(z)

)
>

1

2
− λ.

F(λ) and K(α) were studied by Ponnusamy et al. [29,37]. For F(λ), K(α) and R, we give the description

of T [M,N ] and get the following three theorems.

Theorem 1.5. For ∀λ ∈ [1/2, 1],

1. T [F(λ),K] =
{

(r, s) ∈ C2 : r, s ≥ 0, 0 ≤ r + s ≤ 2
1+2λ

}
;

2. T [F(λ), C] =
{

(r, s) ∈ C2 : − 1
1+2λ ≤ r, s ≤

3
1+2λ ,−

1
1+2λ ≤ r + s ≤ 3

1+2λ

}
.

Theorem 1.6. T [K(α),K(α)] = {(r, s) ∈ R2 : r, s ≥ 0, 0 ≤ r + s ≤ 1}.

Theorem 1.7. T [R,R] = {(r, s) ∈ R2 : −1 ≤ r, s ≤ 1,−1 ≤ r + s ≤ 1}.

2 Convexity of some subclasses in the Hornich space

We will give the proofs of Theorems 1.1-1.4 in this section. As a preparation for proving our main theorem,

we need to introduce some results as lemmas.

By definition, it is not difficult to derive the following result about Ir,s in equation (1.4).
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Lemma 2.1. For ∀f, g ∈ S and ∀r, s ∈ C,

1 +
zI ′′r,s
I ′r,s

= r(1 +
zf ′′(z)

f ′(z)
) + s(1 +

zg′′(z)

g′(z)
) + (1− r − s). (2.1)

Proof of Lemma 2.1. For ∀f, g ∈ H and s, r ∈ C, we have

1 +
zI ′′r,s
I ′r,s

= 1 +
rzf ′′(z)

f ′(z)
+
szg′′(z)

g′(z)

= r(1 +
zf ′′(z)

f ′(z)
) + s(1 +

zg′′(z)

g′(z)
) + (1− r − s).

By Lemma 2.1, we give the proof of Theorem 1.1.

Proof of Theorem 1.1. We divide the proof of Theorem 1.1 into two parts.

Part (i): SK(β) is convex

For ∀β ∈ (0, 1), ∀f, g ∈ SK(β) and ∀r ∈ [0, 1], it follows from the equation (2.1) that∣∣∣∣∣arg{1 +
zI ′′r,1−r
I ′r,1−r

}

∣∣∣∣∣ =

∣∣∣∣arg{r(1 +
zf ′′(z)

f ′(z)
) + (1− r)(1 +

zg′′(z)

g′(z)
)}
∣∣∣∣ < πβ

2
.

This shows that Ir,1−r(z) ∈ SK(β), i.e. the class SK(β) is convex.

Part (ii): K(A,B) is convex in (H,�,⊕).

For ∀A,B satisfying −1 ≤ A < B ≤ 1, ∀r ∈ [0, 1] and ∀f, g ∈ SK(A,B), by the equation (2.1) we

have

1 +
zI
′
r,1−r(z)

I
′′
r,1−r(z)

= r{1 +
zf ′′(z)

f ′(z)
}+ (1− r){1 +

zg′′(z)

g′(z)
} ≺ 1 +Az

1 +Bz
,

from which K(A,B) is convex.

To prove Theorem 1.2, we need to introduce some results on the Hankel determinant. As a

generalization of coefficient estimates, the Hankel determinant was introduced by Noonan and Thomas [22]

in 1976 and was studied by Noor et al. [7, 18, 24]. Here we only consider the second Hankel determinant

H2(2) of f ∈ S, defined by H2(2) := |a2a4 − a23| for f(z) = z +
∑∞

n=2 anz
n. In 2022, by H2(2), Thomas

et al. [32] provided a necessary condition for f ∈ S∗(α) as follows.

Earthline J. Math. Sci. Vol. 15 No. 2 (2025), 105-116



110 Xiaobin Wu

Lemma A. Let f(z) = z+
∑∞

n=2 anz
n and α ≥ 0. If f ∈ S∗(α), then H2(2) ≤ 1

3(1−α)2|(3−2α)(2α−1)|.

We prove Theorem 1.2 by a counterexample.

Proof of Theorem 1.2. For ∀α ∈ [0, 1), we define two functions f1 and f2 by f1(z) = γz/(1− γz)2−2α

and f2(z) = γ̄z/(1− γ̄z)2−2α, where γ = eiπ/4. Notice that f1 and f2 both are rotations of the function

z/(1− z)2−2α. Therefore, f1, f2 ∈ S∗(α). Let G be the midpoint of f1 and f2, we have

G(z) = 0.5� f1(z)⊕ 0.5� f2(z)

=

∫ z

0
[f
′
1(ζ)]0.5[f

′
2(ζ)]0.5dζ

=

∫ z

0

√
1 + (1− 2α)γζ

(1− γζ)3−2α

√
1 + (1− 2α)γζ

(1− γζ)3−2α
dζ

=

∫ z

0

√√√√1 +
√

2 (1− 2α) ζ + (1− 2α)2 ζ2(
1−
√

2ζ + ζ2
)3−2α dζ.

With the help of Matlab, we calculate the values of the second Hankel determinant H2(2) of G(z) and
1
3(1− α)2|(3− 2α)(2α− 1)|, denoted by HG and HS∗(α) respectively, and give the following graph.
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Figure 1: Comparison of HG and HS∗(α).
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As shown in Figure 1, by Lemma A, we can see that for ∀α ∈ [0.156, 1), HG ≥ 1
3(1−α)2|(3−2α)(2α−1)|,

which implies S∗(α) is not convex in (H,�,⊕).

Next, we turn our attention from the proof of Theorem 1.2 to the proof of Theorem 1.3, where we will

discuss the convexity of F(λ, α).

Proof of Theorem 1.3. For α ∈ (0, 1], λ ∈ [12 , 1] and ∀r ∈ [0, 1], let f and g be two functions belonged to

the class F(λ, α), we have∣∣∣∣∣arg

[
2λ− 1

2λ+ 1
+

2

2λ+ 1

(
1 +

zI ′′r,1−r(z)

I ′r,1−r(z)

)]]∣∣∣∣∣
=

∣∣∣∣∣arg

[
2λ− 1

2λ+ 1
+

2

2λ+ 1

(
r(1 +

zf ′′(z)

f ′(z)
) + (1− r)(1 +

zg′′(z)

g′(z)
)

)]∣∣∣∣∣
=

∣∣∣∣arg[r(
2λ− 1

2λ+ 1
+

2

2λ+ 1
(1 +

zf ′′(z)

f ′(z)
)) + (1− r)(2λ− 1

2λ+ 1
+

2

2λ+ 1
(1 +

zg′′(z)

g′(z)
))]

∣∣∣∣
<
απ

2
,

which implies that F(λ, α) is convex in (H,�,⊕).

Since the proof of Theorem 1.4 is parallel to those of Theorems 1.1 and 1.3, we only give the outline

of the proof here.

Proof of Theorem 1.4. For ∀f, g ∈ R and ∀r ∈ [0, 1], we have

ReI ′r,1−r(z) = rRef ′ + (1− r)Reg′ > 0,

which implies R is convex in (H,�,⊕).

3 Precise description of T [M,N ]

In this section, by some lemmas, we will give the proofs of Theorems 1.5-1.7.

To begin our proofs, we first characterize the structure of the class F(λ), which can be expressed in

the following form.

Lemma 3.1. For λ ∈ [1/2, 1], then F(λ) = 1+2λ
2 �K.

Earthline J. Math. Sci. Vol. 15 No. 2 (2025), 105-116
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Proof of Lemma 3.1. For ∀λ ∈ [1/2, 1] and ∀f ∈ F(λ), let g(z) = 2
1+2λ � f(z). It is not difficult to derive

g(z) ∈ K, which implies F(λ) ⊆ 1+2λ
2 �K. On the other hand, letting f(z) = 1+2λ

2 �g(z) for each function

g(z) ∈ K, we have f(z) ∈ F(λ), which means F(λ) ⊇ 1+2λ
2 �K.

By Lemma 3.1, we give the proof of Theorem 1.5 as follow.

Proof of Theorem 1.5. We divide this proof into two parts.

Part (i): T [F(λ),K] =
{

(r, s) ∈ C2 : r, s ≥ 0, 0 ≤ r + s ≤ 2
1+2λ

}
.

It was shown in [15] that

T [K,K] = {(r, s) ∈ C2 : r, s ≥ 0, 0 ≤ r + s ≤ 1},

T [K, C] =
{

(r, s) ∈ C2 : −1

2
≤ r, s ≤ 3

2
,−1

2
≤ r + s ≤ 3

2

}
. (3.1)

By equation (1.6) and Lemma 3.1, we have

T [F(λ),K] =
2

1 + 2λ
T [K,K]

=
2

1 + 2λ

{
(r, s) ∈ C2 : r, s ≥ 0, 0 ≤ r + s ≤ 1

}
=

{
(r, s) ∈ C2 : r, s ≥ 0, 0 ≤ r + s ≤ 2

1 + 2λ

}
,

which completes the proof of the part (i) in Theorem 1.5.

Part (ii): T [F(λ), C] =
{

(r, s) ∈ C2 : − 1
1+2λ ≤ r, s ≤

3
1+2λ ,−

1
1+2λ ≤ r + s ≤ 3

1+2λ

}
.

By the equation (3.1), similar to the part (ii), we have

T [F(λ), C] =
2

1 + 2λ
T [K, C]

=
2

1 + 2λ

{
(r, s) ∈ C2 : −1

2
≤ r, s ≤ 3

2
,−1

2
≤ r + s ≤ 3

2

}
=

{
(r, s) ∈ C2 : − 1

1 + 2λ
≤ r, s ≤ 3

1 + 2λ
,− 1

1 + 2λ
≤ r + s ≤ 3

1 + 2λ

}
.

which completes the proof of the Part (ii) in Theorem 1.5.

Next, we give the proof of Theorem 1.6.

Proof of Theorem 1.6. The proof is divided into two steps.
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Step (i): We prove T [K(α),K(α)] ⊇ {(r, s) : r, s ≥ 0, 0 ≤ r + s ≤ 1} firstly. Given α ∈ [0, 1), for

f, g ∈ K(α), it follows from the equation (2.1) that

1 +
zI ′′r,s(z)

I ′r,s(z)
= (1− r − s) + r{1 +

zf ′′(z)

f ′(z)
}+ s{1 +

zg′′(z)

g′(z)
} > α

when r, s ≥ 0, 0 ≤ r + s ≤ 1.

Step (ii): We prove T [K(α),K(α)] ⊆ {(r, s) : r, s ≥ 0, 0 ≤ r + s ≤ 1} by showing that for each

(r0, s0) /∈ {(r, s) : r, s ≥ 0, 0 ≤ r + s ≤ 1}, (r0, s0) /∈ T [K(α),K(α)].

If r0 < 0, let f = (2α− 1)(1 + z)2α−1 and g(z) = z, then

1 +
zI ′′r0,s0(z)

I ′r0,s0(z)
= 1 + r0

zf ′′(z)

f ′(z)
=

1 + [1 + r0(2α− 2)]z

1 + z
. (3.2)

When z → −1, the real part of equation (3.2) is less than α. Similarly, if s0 < 0, just choose g =

(2α− 1)(1 + z)2α−1 and f(z) = z.

If r0 + s0 > 1, let f = g = (2α− 1)(1 + z)2α−1, we have

1 +
zI ′′r0,s0(z)

I ′r0,s0(z)
=

1 + [1 + (r0 + s0)(2α− 2)]z

1 + z
. (3.3)

When z → 1, the real part of the equation (3.3) is less than α. These complete the proof of the Step

(ii).

Finally, we introduce the proof of Theorem 1.7.

Proof of Theorem 1.7. We also divide the proof into two steps.

Step (i): We prove T [R,R] ⊇ {(r, s) ∈ R2 : r, s ≥ 0, 0 ≤ r + s ≤ 1}.

For ∀r, s ∈ {(r, s) ∈ R2 : r, s ≥ 0, 0 ≤ r + s ≤ 1} and ∀f, g ∈ R, we have

arg I ′r,s(z) = r arg{f ′(z)}+ s arg{g′(z)} ∈ (−π
2
,
π

2
).

This show that I ′r,s(z) ∈ R.

Step (ii): We prove T [R,R] ⊆ {(r, s) ∈ R2 : r, s ≥ 0, 0 ≤ r + s ≤ 1} by showing that for each

(r0, s0) /∈ {(r, s) ∈ R2 : r, s ≥ 0, 0 ≤ r + s ≤ 1}, (r0, s0) /∈ T [K(α),K(α)].

For ∀r0 /∈ [−1, 1], let f ′(z) = {(1 + z)(1 − z)}2/r0 and g′(z) = 1, I ′r0,s0(z) maps the unit disk D onto

the complex plane minus the negative real axis, which implies I ′r0,s0 /∈ R. Because of the symmetry of r0

and s0, the case of s0 /∈ [−1, 1] is obvious. If r0 and s0 satisfy r0, s0 ∈ [−1, 1], r0 + s0 /∈ [−1, 1], just let

f ′(z) = g′(z) = {(1 + z)(1− z)}2/(r0+s0). These complete the proof of the Step (ii).
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