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Abstract 

In this paper, variational iteration algorithm-I with an auxiliary parameter is implemented 

to investigate Fokker-Planck equations. To show the accuracy and reliability of the 

technique comparisons are made between the variational iteration algorithm-I with an 

auxiliary parameter and classic variational iteration algorithm-I. The comparison shows 

that variational iteration algorithm-I with an auxiliary parameter is more powerful and 

suitable method for solving Fokker-Planck equations. Furthermore, the proposed 

algorithm can successfully be applied to a large class of nonlinear and linear problems. 

1. Introduction 

The aim of this work is to apply the variational iteration algorithm-I [1] with an 

auxiliary parameter for the analytical treatment of the Fokker-Planck equation. The 

method is able to provide analytical results for nonlinear and linear problems, in a direct 

way very conveniently. One of the main characteristics of this method is that 

approximate solution of great accuracy can be obtained by only a few iterations. This 

method has a simple procedure, acceptable results and above all, this method can 

successfully be applied to a large class of linear and nonlinear problems [2]-[6]. 
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2. Variational Iteration Algorithm-I 

Consider a general differential equation 

 ( )[ ] ( )[ ] ( ),xcxuNxuL =+   (1) 

the terms ( )[ ]xuL  and ( )[ ]xuN  represent the linear and nonlinear term respectively, 

while ( )xc  is the inhomogeneous source term. Constructing a correction function for Eq. 

(1) as, 

 ( ) ( ) ( ) [ ( ){ }∫ ηηλ+=+
x

kkk uLxuxu
0

1 { ( )�} ( )] ,kN u c d+ η − η η   (2) 

where λ  is a parameter, which is not known and called the Lagrange multiplier [7]. 

Taking the variation δ  on the one side as well as the other side of Eq. (2) with 

respect to ( ),xuk  

 ( ) ( ) ( ) [ ( ){ }∫ ηηλδ+δ=δ +
x

kkk uLxuxu
0

1 { ( )�} ( )] ,kN u c d+ η − η η  (3) 

where ( )�ku η  is considered as a restricted term which means ( )� 0.kuδ η =  

Using optimality conditions, the value of Lagrange multiplier ( )ηλ  can be identified. 

An exact solution obtains when .∞→k  

 ( ) ( ).lim xuxu k
k ∞→

=  (4) 

In short, the formula for equation (1) is, 

 

( )

( ) ( ) ( )[ ( ){ } { ( )} ( )]









=

ηη−η+ηηλ+= ∫+

....,3,2,1,0

ion,approximat initial eappropriatan  is

0
1

0

k

dcuNuLxuxu

xu
x

kkkk  (5) 

This technique is called VIA-I, which is a further development of the general Lagrange 

multiplier technique for solving nonlinear problems by Inokuti et al. [7]. Now this 

method [8]-[10] has been developed [11-12] to solve a lot of problems arise in various 

fields of sciences. 
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3. Insertion of an Auxiliary Parameter in Variational Iteration Algorithm-I 

In VIA-I, an auxiliary parameter h can be inserted. The optimal choice of unknown h 

improves the correctness, precision and effectiveness of the technique. After inserting h, 

equation (5) will become 

 

( )

( ) ( ) ( )[ ( ){ } { ( )} ( )]
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,,,,,,
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ion,approximatinitialeappropriatanis

0
1

0
0001

0

k

dhchuNhuLhhxuhxu

dcuNuLhxuhxu

xu

x

kkkk

x

 (6) 

This technique is known as VIA-I with AP. Actually, this technique is simple, has a 

lesser size of calculation, not difficult to analyze and have the ability to approximate the 

solution precisely in solution domain of wide range. 

4. The Fokker-Planck Equation [2] 

In this section, the general form of Fokker-Planck equation which is also called 

forward Kolmogorov equation is 

 ( ) ( ) ( ),,
2

2

txuxB
x

xA
tt

u



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

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
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∂
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 (7) 

with conditions: 

( ) ( ) .,0, R∈= xxfxu  

It is the equation for the motion of concentration field ( )., txu  The backward 

Kolmogorov equation can be written in the following form 

 ( ) ( ) ( ).,,,
2

2

txutxB
x

txA
tt

u










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 (8) 

Let the initial conditions,  

( ) ( ) R∈= xxfxu ,0,  

and 

( ) ( ),1, +−= xtxA  
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( ) .,
2 t
extxB =  

Then equation (8) becomes 

 ( ) ( ).,12

2
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First, we solve this example by VIA-I. 

Constructing the correction function for equation (9) as, 

( ) ( )txutxu kk ,,1 =+  

 ( ) ( ) ( ) ( ) ( ) ( ) .,
~
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1
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Taking the variation δ  on the one side as well as the other side with respect to ( )txuk ,  

( ) ( )txutxu kk ,,1 δ=δ +  
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Ignoring the restricted terms 
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The stationary conditions are: 

( ) ,0=ηλ′  

( ) ,01 =ηλ+  

we get the value of ( )ηλ  which is ( ) .1−=ηλ  
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Using this value of ( )ηλ  in equation (10) results in the below iterative scheme: 

( ) ( )txutxu kk ,,1 =+  

 
( ) ( ) ( ) ( ) ( ) .,,
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starting with 

( ) ,1,0 += xtxu  

other approximations by using the scheme (11), 

( ) ( ) ( ),11,1 ++= xttxu  

( ) ( ) (( ))
,

2

221
,

2

2
+++= ttx

txu  

( ) ( ) (( ))
,

6

6631
,

23

3
++++= tttx

txu  

⋮  

we stop the procedure at ( ).,10 txu  The absolute error of ( )txu ,10  in the solution 

domain ( ) [ ] [ ]1,05,0, ×∈tx  can be seen in Figure 1. 

 

Figure 1. Absolute error betwixt the exact and approximate solutions by VIA-I. 
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Now we want to solve this problem by VIA-I with AP. 

Using VIA-I with AP, the recurrence relation for equation (9) is 

( ) ( ) ( ) ( ) ( )∫ 

 η

η∂
+∂+

η∂
η∂−=+

t

k
kk

kk hxu
xuhxu
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dhxu
x
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Starting with 

( ) .1,0 += xtxu  

Other approximations can be get by using the recurrence relation (12), 

( ) ( ) ( ),11,,1 ++= xhthtxu  

( ) ( ) ( ) ( ) (( ))
,

2

221
11,,2

+−++++= hhtxht
xhthtxu  

( ) ( ) ( )
,
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618189661
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22232333

3
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⋮  

we stop the procedure at ( ).,,10 htxu  

The following residual function is defined 
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The square of residual function for 10th-order approximation with respect to h for  

( ) [ ] [ ]1,05,0, ×∈tx  is 
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The minimum value of above square residual function occurs at .84990240871853.1=h  

Using this value of h in ( )htxu ,,10  in the solution domain ( ) [ ] [ ],1,05,0, ×∈tx  error 

betwixt the exact and approximate solutions can be seen in Figure 2. 
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Figure 2. Absolute error betwixt the approximate and exact solutions by VIA-I with AP. 

Comparing Figure 1 and Figure 2, it is clear that VIA-I with AP gives better results 

as compared to VIA-I. Numerical comparison betwixt the exact and approximate 

solutions of both methods is given in the table below. 

Table 1. Comparison of absolute errors for 6th order approximation by VIA-I and VIA-I 

with AP. 

x t 
Absolute Error in 

VIA-I with AP 

Absolute Error in 

VIA-I 

0.5 0.1 3.553×10
−16

 2.220×10
−16

 

1.0 0.2 2.665×10
−15

 1.332×10
−15

 

1.5 0.3 2.398×10
−14

 1.137×10
−13

 

2.0 0.4 7.994×10
−15

 3.261×10
−12

 

2.5 0.5 6.750×10
−14

 4.467×10
−11

 

3.0 0.6 4.174×10
−13

 3.826×10
−10

 

3.5 0.7 3.608×10
−12

 2.376×10
−09

 

4.0 0.8 3.947×10
−11

 1.152×10
−08

 

4.5 0.9 6.701×10
−10

 4.672×10
−08

 

5.0 1.0 4.997×10
−09

 1.639×10
−07
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The above table shows that VIA-I with AP is better for a large domain of t as 

compared to VIA-I. 

5. Conclusions  

In this paper, variational iteration algorithm-I with an auxiliary parameter has been 

used in a way that accomplished the desired aim for solving Fokker-Planck equation. 

This work has made sure that the variational iteration algorithm-I with an auxiliary 

parameter offers noteworthy advantages in terms of its easy applicability, its 

computational success, and its adequacy to solve a wide class of differential equations. 

Graphical and numerical results reveal that this modification of variational iteration 

algorithm-I is suitable for all linear and nonlinear problems arise in physical sciences and 

engineering, superior to the variational iteration algorithm-I. 
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