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Abstract

In this paper, we introduce new second order dynamical system approach for solving a class of mixed

general variational inequalities. Using the forward finite difference schemes, we suggest some multi-step

iterative methods for solving the mixed variational inequalities. Convergence analysis is investigated

under certain mild conditions. Some special cases are discussed as applications of the results. It is

an interesting problem to compare these methods with other technique for solving mixed variational

inequalities and related optimizations.

1 Introduction

Variational inequality theory, which was introduced by Stampacchia [64] and Lions et al. [27] in early

sixteen, provides us with a simple, natural, unified, novel and general framework to study an extensive

range of unilateral, obstacle, free, moving and equilibrium problems arising in fluid flow through porous

media, elasticity, circuit analysis, transportation, oceanography, operations research, finance, economics,

and optimization. It is worth mentioning that the variational inequalities can be viewed as a significant

and novel generalization of the variational principles. It is known that the minimum of a differentiable

convex functions on the convex sets can be characterized by the variational inequality. It is amazing that

variational inequalities have influenced various areas of pure and applied sciences and are still continue

to influence the recent research, see [6, 7, 9–12,17–19,21–24,27–29,31–51,54–59,59–67,70].

In recent years, variational inequalities have been extended and generalized in various directions by

using novel and innovative ideas and techniques, both for their own sake and for their applications. An
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important and useful generalization is called the mixed variational inequality or the variational inequality

of the second kind. For the applications, formulations and numerical methods, see [7,9–11,18,19,23,24,27,

31,36,39,40,42,43,47,48,50,58,59,66,67] and the references therein. Due to the presence of the nonlinear

term in the mixed variational inequality, projection method and its variant forms cannot be used to suggest

numerical methods for solving the mixed variational inequalities. These facts motivated us to use the

technique of the resolvent operator, the origin of which can be traced back to Brezis [11]. In this technique,

the given operator is decomposed into the sum of two maximal monotone operators, whose resolvent are

easier to evaluate than the resolvent of the original operator. Such a method is known as operator

splitting method. This can lead to every efficient methods, since one can treat each part of the original

operator independently. The operator splitting methods and related techniques have been analyzed and

studied by many researchers including Glowinski and Le Tallec [19], and Tseng [67]. In the context of the

mixed variational inequalities, Noor [28, 41] has used the projection operator technique to suggest some

splitting type methods applying the approach of updating the solution. These three-step methods are also

known as Noor’s iterations. It is noted that these forward-backward splitting algorithms are similar to

those of Glowinski et al. [19], which they suggested by using the Lagrangian technique. It is known that

three-step schemes are versatile and efficient. These three-step schemes are a natural generalization of the

splitting methods for solving partial differential equations. For applications of the splitting techniques to

partial differential equations, see Ames [1]. A useful feature of the forward-backward splitting method

is that the resolvent step involves the subdifferential of the proper, convex and lower-semicontinuous

only and the other part facilitates the problem decomposition. In particular, if the nonlinear term in

the mixed variational inequality is the indicator function of a closed convex set in the Hilbert space,

then these splitting (forward-backward) methods reduce to the projection and extragradient methods

for solving the variational inequalities. It has been established [9, 10, 12, 29, 38, 39, 42, 60, 62, 63, 65] that

Noor iterations and their modified form, perform better than two-step (Ishikawa iteration) and one step

method Mann iteration. In recent years, considerable interest has been shown in developing various

extensions and generalizations of Noor iterations, both for their own sake and for their applications. For

novel applications, modifications and generalizations of the Noor iterations. These methods include Mann

iteration, Ishikawa iteration, modified forward-backward splitting methods of Tseng [67] and Noor [38,42]

as special cases. Noor iterations have been modified and generalized in different directions to explore

their applications in fractal, chaos, images, signal recovery, polynomiography, fixed point theory, compress

programming, nonlinear equations, compressive sensing and image in painting, see [2–5,7–9,14,19,20,26,

29,52,53,60–63,65] and the references therein.

Dupuis and Nagurney [17] introduced and studied the projected dynamical systems associated with

variational inequalities using the equivalent fixed point formulation. The novel feature of the projected

dynamical system is that the its set of stationary points corresponds to the set of the corresponding set

of the solutions of the variational inequality problem. Thus the equilibrium and nonlinear programming
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problems, which can be formulated in the setting of the variational inequalities, can now be studied in the

more general framework of the dynamical systems. It has been shown [17,21,22,28,40,41,49,50,54,56,68,69]

that these dynamical systems are useful in developing efficient and powerful numerical techniques for

solving variational inequalities.

Motivated and inspired by ongoing research in these fascinations areas, we consider a dynamical system

coupled with second order boundary value problems associated with variational inequalities. In this paper,

we establish that the second boundary value problems can be exploited to suggest and analyzed multi

step methods for finding the approximate solutions of variational inequalities and related optimization

problem. This is a new approach. Using the finite difference schemes, we suggest and analyzed some

new multi step iterative methods for solving variational inequalities. Some special cases are also pointed

as potential applications of the obtained results. These multi step methods include Mann iteration,

Ishikawa iterations and Noor iterations as special cases. We have only considered theoretical aspects of

the suggested methods. It is an interesting problem to implement these methods and to illustrate the their

efficiency. Comparison with other methods need further research efforts. The ideas and techniques of this

paper may be extended for other classes of mixed quasi variational inequalities and related optimization

problems.

2 Basic Definitions and Results

Let Ω be a set in a real Hilbert space H with norm ‖ · ‖ and inner product 〈·, ·〉. Let T , g : H −→ H be

nonlinear operators and let φ : H −→ H be a lower semi-continuous function.

We consider the problem of finding µ ∈ H, such that〈
T µ+ µ− g(µ), ν − µ〉+ φ(ν)− φ(µ) ≥ 0, ∀ν ∈ H (2.1)

which is called the mixed general variational inequality, introduced and studied by Noor and Noor [50,51].

It has been shown [50] that the optimality conditions of sum of two differentiable nonconvex functions

can be characterized via the general variational inequalities of the type (2.1). Let F : H −→ R be a

differentiable convex function and φ be a lower semi-continuous convex function. If T = ∇F and g = I,

then problem (2.1) is equivalent to finding µ ∈ H such that

0 ∈ ∇F (µ) + ∂φ(µ). (2.2)

Problem (2.2) is nothing else than the convex optimization optimization problem:

min
µ∈H
{J(µ) + φ(µ)}.
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Special cases

We now discuss some special cases of general variational inequalities (2.1).

1. If φ is the indicator function of a closed convex set Ω ⊆ H, then problem (2.1) reduces to finding

µ ∈ Ω such that 〈
T µ+ µ− g(µ), ν − µ〉 ≥ 0, ∀ν ∈ Ω, (2.3)

which is called the general variational inequality introduced and studied by Noor and Noor [51]. It

has been shown [38] that the optimality conditions of the differentiable nonconvex functions can be

characterized via the general variational inequalities of the type (2.3).

2. If g = I, then the problem (2.1) reduces to finding µ ∈ H, such that〈
T µ, ν − µ〉+ φ(ν)− φ(µ) ≥ 0, ∀ ν ∈ H, (2.4)

is called the mixed variational inequality, introduced by Lions and Stampacchia [64]. It has been

shown a wide class of obstacle boundary value and initial value problems can be studied in the

general framework of variational inequalities. For the applications, motivation, numerical methods,

sensitivity analysis, dynamical system, merit functions and other aspects of variational inequalities,

see [6, 7, 9–12,17–19,21–24,27–29,31–51,54–59,59–65] and the references therein. For example, the

mixed variational inequality (2.4) characterizes the Signorini problem with non-local friction. If

S is an open bounded domain in Rn with regular boundary ∂S, representing the interior of an

elastic body subject to external forces and if a part of the boundary may come into contact with a

rigid foundation, then (2.4) is simply a statement of the virtual work for an elastic body restrained

by friction forces, assuming that a non-local law of friction holds. The strain energy of the body

corresponding to an admissible displacement ν is 〈Tν, ν〉. Thus 〈Tµ, ν − µ〉,∀µ, ν ∈ H is the work

produced by the stresses through strains caused by the virtual displacement ν − µ. The friction

forces are represented by the function φ(.). Similar problems arise in the study of the fluid flow

through porous media. For the physical and mathematical formulation of the mixed variational

inequalities of type (2.4), see [23].

3. If µ = g(µ), then problem (2.1) is equivalent to finding µ ∈ H

〈T (g(µ), ν − g(µ)〉+ φ(ν)− φ(g(µ)) ≥ 0, ∀ν ∈ H, (2.5)

which is called the mixed general variational inequalities. Variational inequality of the type (2.5)

arises as a minimum of the sum of two differentiable nonconvex functions.
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4. If g = I and Ω∗ = {µ ∈ H : 〈µ, ν〉 ≥ 0,∀ν ∈ Ω} is a polar(dual) cone, then problem (2.3) is

equivalent to finding µ ∈ H such that

µ ∈ Ω, T µ ∈ Ω∗, 〈T µ, µ〉 = 0, (2.6)

which is called the general complementarity problem.

For the applications, motivations, generalization, numerical methods and other aspects of

the complementarity problems in engineering and applied sciences, see [15,32,34,41,46,59] and the

references therein.

5. If Ω = H, then problem (2.3) collapses to finding µ ∈ H such that

〈ρT µ+ µ− g(µ), ν − µ〉 = 0, ∀ν ∈ H.

Consequently, it follows that µ ∈ H satisfies

µ = g(µ)− ρT µ, (2.7)

which is called the general equation and appears to be a new one.

For a different and appropriate choice of the operators and spaces, one can obtain several known and

new classes of variational inequalities and related problems. This clearly shows that the problem (2.1)

considered in this paper is more general and unifying one.

We need the following well-known definitions and results in obtaining our results.

Definition 2.1. Let T : H −→ H be a given mapping.

i. The mapping T is called strongly monotone, if there exists a constant α ≥ 0 such that〈
T µ− T ν , µ− ν

〉
≥ α ‖µ− ν‖2, ∀ µ, ν ∈ H.

ii. The mapping T is called monotone, if〈
T µ− T ν , µ− ν

〉
≥ 0, ∀µ, ν ∈ H.

iii. The mapping T is called η−Lipschitz continuous, if there exists a constant η > 0 such that

‖ T µ− T ν ‖ ≤ η ‖µ− ν‖, ∀ µ, ν ∈ H.
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Definition 2.2. [11] If T is a maximal monotone operator on H, then, for a constant ρ > 0, the

resolvent operator associated with T is defined by

JT (µ) = (I + ρT )−1(µ), ∀µ ∈ H,

where I is the identity operator. It is known that a monotone operator T is maximal monotone, if and only

if, its resolvent operator JT is defined everywhere. Furthermore, the resolvent operator JT is nonexpansive,

that is,

‖JT (µ)− JT (ν)‖ ≤ ‖µ− ν‖, ∀µ, ν ∈ H.

Remark 2.1. Since the subdifferential ∂φ of a proper, convex and lower-semicontinuous φ : H −→
R ∪ {+∞} is a maximal monotone operator, we define by

Jϕ ≡ (I + ρ∂φ)−1,

the resolvent operator associated with ∂φ and ρ > 0 is a constant.

We also need the following result, known as the resolvent Lemma(best approximation) Lemma, which

plays a crucial part in establishing the equivalence between the mixed variational inequalities and the fixed

point problem. This result can be used in the analysing the convergence analysis of the projective implicit

and explicit methods for solving the mixed variational inequalities and related optimization problems.

Lemma 2.1. [11] For a given z ∈ H, µ ∈ H satisfies the inequality

〈µ− z, ν − µ〉+ ρφ(ν)− ρφ(µ) ≥ 0, ∀ν ∈ H, (2.8)

if and only if

µ = Jφ(z),

where Jφ is the resolvent operator.

It is well known that the resolvent operator Jφ is nonexpansive, that is,

‖Jφ(µ)− Jφ(ν)‖ ≤ ‖µ− ν‖, ∀µ, ν ∈ H.

This property of the resolvent operator plays an important part in the derivation of our main results.
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3 Main Results

In this section, we consider the projected dynamical system associated with the general variational

inequalities. The innovative and novel feature of a projected dynamical system is that its set of stationary

points corresponds to the set of solutions of the corresponding variational inequality problem. Equilibrium

and nonlinear problems arising in various branches in pure and applied sciences can now be studied in the

more general setting of dynamical systems. It has been shown [17,21,22,28,40,41,49,50,54,56,68,69] that

the dynamical systems are useful in developing some efficient numerical techniques for solving variational

inequalities and related optimization problems. In recent years, much attention has been given to study

the globally asymptotic stability of these projected dynamical systems. We use this equivalent fixed point

formulation to suggest and analyze the resolvent dynamical system associated with the general variational

inequalities (2.1).

dµ

dt
= λ{Jφ[g(µ)− ρTµ]− µ}, µ(t0) = µ0 ∈ H, (3.1)

where λ is a parameter. The system of type (3.1) is called the resolvent general dynamical system. Here

the right hand side is related to the projection operator and is discontinuous on the boundary. It is clear

from the definition that the solution to (3.1) always stays in the constraint set. This implies that the

qualitative results such as the existence, uniqueness and continuous dependence of the solution on the

given data can be studied.

The equilibrium points of the dynamical system (3.1) are naturally defined as follows.

Definition 3.1. An element µ ∈ H, g is an equilibrium point of the dynamical system (3.1), if dµ
dt = 0,

that is,

Jφ[g(µ)− ρTµ]− µ = 0.

Thus it is clear that µ ∈ H is a solution of the general variational inequality (2.1), if and only if, µ ∈ H
is an equilibrium point.

Definition 3.2. The dynamical system is said to converge to the solution set S∗ of (3.1), if , irrespective

of the initial point, the trajectory of the dynamical system satisfies

lim
t→∞

dist(µ(t), S∗) = 0, (3.2)

where

dist(µ, S∗) = infν∈S∗‖µ− ν‖.
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It is easy to see, if the set S∗ has a unique point µ∗, then (3.2) implies that

lim
t→∞

µ(t) = µ∗.

If the dynamical system is still stable at µ∗ in the Lyapunov sense, then the dynamical system is globally

asymptotically stable at µ∗.

Definition 3.3. The dynamical system is said to be globally exponentially stable with degree η at µ∗, if,

irrespective of the initial point, the trajectory of the system satisfies

‖µ(t)− µ∗‖ ≤ η1‖µ(t0)− µ∗‖exp(−η(t− t0)), ∀t ≥ t0,

where µ1 and η are positive constants independent of the initial point.

It is clear that the globally exponentially stability is necessarily globally asymptotically stable and the

dynamical system converges arbitrarily fast.

Lemma 3.1. (Gronwall Lemma) [17, 28] Let µ̂ and ν̂ be real-valued nonnegative continuous functions

with domain {t : t ≤ t0} and let α(t) = α0(|t − t0|), where α0 is a monotone increasing function. If for

t ≥ t0,

µ̂ ≤ α(t) +

∫ t

t0

µ̂(s)ν̂(s)ds,

then

µ̂(s) ≤ α(t)exp{
∫ t

t0

ν̂(s)ds}.

We now show that the trajectory of the solution of the general dynamical system (3.1) converges to

the unique solution of the general variational inequality (2.1). The analysis is in the spirit of Noor [41]

and Xia and Wang [68,69].

Theorem 3.1. Let the operators T, g : H −→ H be both Lipschitz continuous with constants β > 0 and

µ > 0 respectively. Then, for each µ0 ∈ H, there exists a unique continuous solution µ(t) of the dynamical

system (3.1) with µ(t0) = µ0 over [t0,∞).

Proof. Let

G(µ) = λ{Jφ[g(µ)− ρTµ]− µ}.

where λ > 0 is a constant and G(µ) = dµ
dt . ∀µ, ν ∈ H, we have

‖G(µ)−G(ν)‖ ≤ λ{‖Jφ[g(µ)− ρTµ]− Jφ[g(ν)− ρTν]‖+ ‖µ− ν‖}

≤ λ‖µ− ν‖+ λ‖g(µ)− g(ν)‖+ λρ‖Tµ− Tν‖

≤ λ{1 + µ+ βρ}‖µ− ν‖.
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This implies that the operator G(µ) is a Lipschitz continuous in H, and for each µ0 ∈ H, there exists a

unique and continuous solution µ(t) of the dynamical system (3.1), defined on an interval t0 ≤ t < T1

with the initial condition µ(t0) = µ0. Let [t0, T1) be its maximal interval of existence. Then we have to

show that T1 =∞. Consider, for any µ ∈ H,

‖G(µ)‖ = ‖dµ
dt
‖ = λ‖Jφ[g(µ)− ρTµ]− µ‖

≤ λ{‖Jφ[g(µ)− ρTµ]− Jφ[0]‖+ ‖Jφ[0]− µ‖}

≤ λ{ρ‖Tµ‖+ ‖Jφ[u]− Jφ[0]‖+ ‖Jφ[0]− µ‖}

≤ λ{(ρβ + 1 + η)‖µ‖+ ‖Jφ[0]‖}.

Then

‖µ(t)‖ ≤ ‖µ0‖+

∫ t

t0

‖Tµ(s)‖ds

≤ (‖µ0‖+ k1(t− t0)) + k2

∫ t

t0

‖µ(s)‖ds,

where k1 = λ‖Jφ[0]‖ and k2 = λ(ρβ + 1 + µ). Hence by the Gronwall Lemma 3.1, we have

‖µ(t)‖ ≤ {‖µ0‖+ k1(t− t0)}ek2(t−t0), t ∈ [t0, T1).

This shows that the solution is bounded on [t0, T1). So T1 =∞.

Theorem 3.2. Let the operators T, g : H −→ H be Lipschitz continuous with constants β > 0 and µ > 0

respectively. If the operator g : H −→ H is strongly monotone with constant γ > 0 and λ > 0, then

the dynamical system (3.1) converges globally exponentially to the unique solution of the mixed general

variational inequality (2.1).

Proof. Since the operators T, g are both Lipschitz continuous, it follows from Theorem 3.1 that the

dynamical system (3.1) has unique solution µ(t) over [t0, T1) for any fixed µ0 ∈ H. Let µ(t) be a solution

of the initial value problem (3.1). For a given µ∗ ∈ H satisfying (2.1), consider the Lyapunov function

L(µ) = λ‖µ(t)− µ∗‖2, µ(t) ∈ H. (3.3)

From (3.1) and (3.3), we have

dL

dt
= 2λ〈µ(t)− µ∗, Jφ[g(µ(t))− ρTµ(t)]− µ(t)〉

= −2λ〈µ(t)− µ∗, µ(t)− µ∗〉

+2λ〈µ(t)− µ∗, Jφ[g(µ(t))− ρTµ(t)]− µ∗〉

≤ −2λ‖µ(t)− µ∗‖2

+2λ〈µ(t)− µ∗, Jφ[g(µ(t))− ρTµ(t)]− µ∗〉, (3.4)
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where u∗ ∈ H is a solution of (2.1). Thus

µ∗ = Jφ[g(µ∗)− ρTµ∗].

Using the Lipschitz continuity of the operators T, g, we have

‖Jφ[g(µ)− ρTµ]− Jφ[g(µ∗)− ρTµ∗]‖ ≤ ‖g(µ)− g(µ∗)− ρ(Tµ− Tµ∗)‖

≤ (µ+ ρβ)‖µ− µ∗‖. (3.5)

From (3.4) and (3.5), we have

d

dt
‖µ(t)− µ∗‖ ≤ 2αλ‖µ(t)− µ∗‖,

where

α = µ+ ρβλ.

Thus, for λ = −λ1, where λ1 is a positive constant, we have

‖µ(t)− µ∗‖ ≤ ‖µ(t0)− µ∗‖e−αλ1(t−t0),

which shows that the trajectory of the solution of the dynamical system (3.1) converges globally

exponentially to the unique solution of the general variational inequality (2.1).

We use the projected dynamical system (3.1) to suggest some iterative for solving variational

inequalities (2.1). These methods can be viewed in the sense of Korpelevich [11] and Noor [18, 19]

involving the double projection operator.

For simplicity, we take λ = 1. Thus the dynamical system (3.1) becomes

dµ

dt
+ µ = Jφ[g(µ)− ρTµ], µ(t0) = α. (3.6)

We construct the implicit iterative method using the forward difference scheme. Discretizing (3.1), we

have
µn+1 − µn

h
+ µn+1 = Jφ[g(µn+1)− ρTµn+1], (3.7)

where h > 0 is the step size. Now, we can suggest the following implicit iterative method for solving the

variational inequality (2.1).

Algorithm 3.1. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

µn+1 = Jφ

[
g(µn+1)− ρTµn+1 −

µn+1 − µn
h

]
, n = 0, 1, 2, . . . .
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This is an implicit method and is quite different from the implicit method of [5]. Using Lemma 2.1,

Algorithm 3.1 can be rewritten in the equivalent form as:

Algorithm 3.2. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

〈ρTµn+1 + µn+1 − g(µn+1) +
µn+1 − µn

h
, ν − µn+1〉+ φ(ν)− φ(µn+1) ≥ 0, ∀ν ∈ H. (3.8)

We now study the convergence analysis of algorithm 3.1

Theorem 3.3. Let µ ∈ H be a solution of mixed general variational inequality (2.1). Let µn+1 be the

approximate solution obtained from (3). If T is pseudo g-monotone, then

‖µ− µn+1‖2 ≤ ‖µ− µn‖2 − ‖µn − µn+1‖2. (3.9)

Proof. Let µ ∈ H be a solution of (2.1). Then

〈ρTν + ν − g(ν), ν − µ〉+ φ(ν)− φ(µ) ≥ 0, ∀ν ∈ H, (3.10)

since T is a pseudo g-monotone operator.

Set ν = µn+1 in (3.10), to have

〈ρTµn+1 + µn+1 − g(µn+1), µn+1 − µ〉+ φ(µn+1)− φ(µ) ≥ 0. (3.11)

Take ν = µ in equation (3.8), we have

〈ρTµn+1 + un+1 − g(un+1) +
µn+1 − µn

h
, µ− µn+1〉+ φ(µ)− φ(un+ 1) ≥ 0. (3.12)

From (3.11) and (3.12), we have

〈µn+1 − µn, µ− µn+1〉 ≥ 0. (3.13)

From (3.13) and using 2〈a, b〉 = ‖a+ b‖2 − ‖a‖2 − ‖b‖2, ∀a, b ∈ H, we obtain

‖µn+1 − µ‖2 ≤ ‖µ− µn‖2 − ‖µn+1 − µn‖2, (3.14)

the required result.

Theorem 3.4. Let µ ∈ H be the solution of mixed general variational inequality (2.1). Let µn+1 be the

approximate solution obtained from (3). If T is a pseudo g-monotone operator, then µn+1 converges to

µ ∈ H satisfying (2.1).
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Proof. Let T be a pseudo g-monotone operator. Then, from (3.23), it follows the sequence {µi}∞i=1 is a

bounded sequence and
∞∑
i=1

‖µn − µn+1‖2 ≤ ‖µ− µ0‖2,

which implies that

lim
n→∞

‖µn+1 − µn‖2 = 0. (3.15)

Since sequence {ui}∞i=1 is bounded, so there exists a cluster point µ̂ to which the subsequence {uik}∞k=1

converges. Taking limit in (3.8) and using (3.15), it follows that µ̂ ∈ H satisfies

〈T µ̂+ µ̂− g(µ̂), ν − µ̂〉+ φ(ν)− φ(û) ≥ 0, ∀ν ∈ H,

and

‖µn+1 − µ‖2 ≤ ‖µ− µn‖2.

Using this inequality, one can show that the cluster point û is unique and

lim
n→∞

µn+1 = µ̂.

We now suggest an other implicit iterative method for solving (2.1). Discretizing (3.1), we have

µn+1 − µn
h

+ µn = Jφ[g(µn+1)− ρTµn+1], (3.16)

where h is the step size.

For h = 1, this formulation enable us to suggest the following iterative method.

Algorithm 3.3. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

µn+1 = Jφ

[
g(µn+1)− ρTµn+1

]
, n = 0, 1, 2, . . . .

Using Lemma 2.1, Algorithm 3.3 can be rewritten in the equivalent form as:

Algorithm 3.4. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

〈ρTµn+1 + µn+1 − g(µn+1), ν − µn+1〉+ φ(ν)− φ(µn+1) ≥ 0, ∀ν ∈ H. (3.17)

Remark 3.1. For appropriate and suitable choice of the discretizing (3.1), one can suggest and analyze

a wide class of iterative methods for solving mixed general variational inequalities. This is an interesting

problem for future research.
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We now introduce the second order dynamical system associated with the variational inequality (2.1),

which is the main aim of this paper. To be more precise, we consider the problem of finding µ ∈ H such

that

γµ̈+ µ̇ = λ
{
Jφ[g(µ)− ρT µ]− µ

}
, µ(a) = α, µ(b) = β, (3.18)

where γ > 0, λ > 0 and ρ > 0 are constants. We would like to emphasize that the problem (3.18) is indeed

a second order boundary value problem.

The equilibrium point of the dynamical system (3.18) is naturally defined as follows.

Definition 3.4. An element µ ∈ H is an equilibrium point of the dynamical system (3.18), if γ d
2u
dx2

+ du
dx =

0, that is,

µ = Jφ[g(µ)− ρT µ].

This implies that

µ = Jφ
[
g(µ)− ρT µ+ γ

d2µ

dx2
+
dµ

dx

]
. (3.19)

Thus it is clear that µ ∈ H is a solution of the variational inequality (2.1), if and only if, µ ∈ H is an

equilibrium point.

For simplicity, we take λ = 1. Thus the problem (3.18) is equivalent to finding µ ∈ φ such that

γµ̈+ µ̇+ µ = Jφ
[
g(µ)− ρT µ

]
, µ(a) = α, µ(b) = β. (3.20)

The problem (3.20) is called the second dynamical system, which is a second order boundary

value problem. This interlink among various areas is fruitful from numerical analysis in developing

implementable numerical methods for finding the approximate solutions of the variational inequalities.

Consequently, we can explore the ideas and techniques of the differential equations to suggest and propose

hybrid proximal point methods for solving the variational inequalities and related optimization problems.

We discretize the second-order dynamical systems (3.20) using central finite difference and backward

difference schemes to have

γ
µn+1 − 2µn + µn−1

h2
+
µn − µn−1

h
+ µn = Jφ[g(µn)− ρ(T µn+1)], (3.21)

where h is the step size.

If γ = 1, h = 1, then from equation (3.21), we have

Algorithm 3.1. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

µn+1 = Jφ[g(µn)− ρT µn+1].
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Algorithm 3.1 is an implicit method. To implement the implicit method, we use the predictor-corrector

technique to suggest the method.

Algorithm 3.2. For given µ0, µ1 ∈ H, compute µn+1 by the iterative scheme

yn = Jφ[g(µn)− ρT µn]

µn+1 = Jφ[g(µn)− ρT yn],

is called the extraresolvent method of Korpelevich [25] for solving the mixed general variational inequality.

Problem (3.20) can be rewritten as

γµ̈+ µ̇+ µ = Jφ[g((1− θn)µ+ θnµ)− ρT ((1− θn)µ+ θnµ)], µ(a) = α, µ(b) = β, (3.22)

where γ > 0, θn and ρ > 0 are constants.

Discretising the system (3.22), we have

γ
µn+1 − 2µn + µn−1

h2
+
µn+1 − µn

h
+ µn

= Jφ[g((1− θn)µn + θnµn−1)− ρT ((1− θn)µn + θnµn−1)]

from which, for γ = 0, h = 1, we have

Algorithm 3.3. For a given µ0, µ1 ∈ H, compute µn+1 by the iterative scheme

µn+1 = Jφ[g((1− θn)un + θnµn−1)− ρT ((1− θn)µn + θnµn−1)].

Using the predictor corrector technique, Algorithm 3.3 can be written as

Algorithm 3.4. For a given µ0, µ1 ∈ H, compute µn+1 by the iterative scheme

yn = (1− θn)µn + θnµn−1

µn+1 = Jφ[g(yn)− ρT yn],

which is called the new two step inertial iterative method for solving the variational inequality.

We discretize the second-order dynamical systems (3.20) using central finite difference and backward

difference schemes to have

γ
µn+1 − 2µn + µn−1

h2
+
µn − µn−1

h
+ µn+1 = Jφ[g(µn)− ρT µn+1],

where h is the step size.

Using this discrete form, we can suggest the following an iterative method for solving the variational

inequalities (2.1).
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Algorithm 3.5. For given µ0, µ1 ∈ H, compute µn+1 by the iterative scheme

µn+1 = Jφ[g(µn)− ρT µn+1 −
γµn+1 − (2γ − h)µn + (γ − h)µn−1

h2
].

Algorithm 3.5 is called the inertial proximal method for solving the general variational inequalities

and related optimization problems. This is a new proposed method.

We can rewrite the Algorithm 3.5 in the equivalent form as follows:

Algorithm 3.6. For a given µ0, µ1 ∈ H, compute µn+1 by the iterative scheme

〈ρT µn+1 +
(γ + h2)µn+1 − (2γ − h)µn + (γ − h)µn−1

h2
− g(µn), ν − νn+1〉

+ρ(φ(ν)− φ(µn+1)) ≥ 0,∀ν ∈ H (3.23)

We note that, for γ = 0, h = 1, Algorithm 3.6 reduces to the following iterative method for solving

variational inequalities (2.1).

Algorithm 3.7. For given µ0, µ1 ∈ H,, compute µn+1 by the iterative scheme

µn+1 = Jφ[g(µn) + (µn − µn−1)− ρT µn+1)].

We again discretize the second-order dynamical systems (3.20) using central difference scheme and

forward difference scheme to suggest the following inertial proximal method for solving (2.1).

Algorithm 3.8. For a given µ0, µ1 ∈ H, compute µn+1 by the iterative scheme

µn+1 = Jφ[g(µn+1)− ρT µn+1 −
(γ + h)µn+1 − (2γ + h)µn + γµn−1

h2
].

Algorithm 3.8 is quite different from other inertial proximal methods for solving the variational

inequalities.

If γ = 0, then Algorithm 3.8 collapses to:

Algorithm 3.9. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

µn+1 = Jφ[g(µn+1)− ρT µn+1 −
µn+1 − µn

h
].

Algorithm 3.8 is an proximal method for solving the variational inequalities. Such type of proximal

methods were suggested by Noor [36] using the fixed point problems.
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In brief, by suitable descritization of the second-order dynamical systems (3.20), one can construct a

wide class of explicit and implicit method for solving inequalities.

Rewriting the problem (3.20) in the following form

γµ̈+ µ̇+ µ = Jφ
[
g(
µ+ µ

2
)− ρT (

µ+ µ

2
)
]
, (3.24)

and descretizing, taking λ = 1, h = 1, we obtain

Algorithm 3.10. For given µ0 ∈ H, compute the approximate solution un+1 by the iterative scheme

µn+1 = Jφ
[
g(
µn + µn+1

2
)− ρT (

µn + µn+1

2
)
]
,

which is an implicit iterative method. Using the predictor and corrector technique, we suggest the following

two-step iterative method for solving the variational inequalities.

Algorithm 3.11. For given µ0 ∈ H, compute the approximate solution µn+1 by the iterative scheme

yn = Jφ
[
g(µn)− ρT µn

]
µn+1 = Jφ

[
g(
µn + yn

2
)− ρT (

µn + yn
2

)
]
.

Algorithm 3.11 is the two step iterative method.

Clearly Algorithm 3.10 and Algorithm 3.11 are equivalent.

It is enough to prove the convergence of Algorithm 3.10, which is the main motivation of our next

result.

Theorem 3.5. Let the operator T, g be Lipschitz continuous with constant β > 0, σ > 0, respectively. Let

u ∈ H be solution of (2.1) and µn+1 be an approximate solution obtained from Algorithm 3.10. If there

exists a constant ρ > 0, such that

ρ <
1− σ
β

, σ < 1, (3.25)

then the approximate solution µn+1 converge to the exact solution µ ∈ Ω.

Proof. Let µ ∈ H be a solution of (2.1) and µn+1 be the approximate solution obtained from Algorithm
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3.10. Then. using the Lipschitz continuity of the operators T and g with constants β, σ, we obtain

‖µn+1 − µ‖ = ‖Jφ[g(
µn + µn+1

2
)− ρT (

µn + µn+1

2
)]− Jφ[g(

µ+ µ

2
)− ρT (

µ+ µ

2
)]‖

≤ ‖g(
µn + µn+1

2
)− g(

µ+ µ

2
)− ρ(T (

µn+1 + µn
2

)− T (
µ+ µ

2
))‖

≤ ‖g(
µn + µn+1

2
)− g(

µ+ µ

2
)‖+ ρ(T (

µn+1 + µn
2

)− T (
µ+ µ

2
))‖

≤ (σ + ρβ)‖(µn + µn+1

2
)− (

µ+ µ

2
)‖

≤ σ + ρβ

2
{‖µn+1 − µ‖+ ‖µn − µ‖},

from which, we obtain

‖µn+1 − µ‖ ≤
σ + ρβ

2− σ − ρβ
‖µn − µ‖

= θ‖µn − µ‖,

where

θ =
σ + ρβ

2− σ − ρβ
.

From (3.25), it implies that θ < 1. This shows that the approximate solution µn+1 obtained from

Algorithm 3.10 converges to the exact solution µ ∈ H satisfying the general variational inequality (2.1).

To implement the implicit Algorithm 3.10, one uses the predictor-corrector technique. Thus, we obtain

new multi step step methods for solving variational inequalities.

Algorithm 3.12. For given µ0 ∈ Ω, compute the approximate solution un+1 by the iterative schemes

yn = (1− αn)µn + αnJφ
[
µn − ρT µn

]
wn = (1− ηn)yn + ηnJφ

[
g(
µn + yn

2
)− ρT (

µn + yn
2

)
]

µn+1 = (1− βn)wn + βnJφ
[
g(
wn + yn

2
)− ρT (

wn + yn
2

)
]
,

which is a three step method, where αn, ηn, βn are constants.

Algorithm 3.13. For given µ0, µ1 ∈ H, compute the approximate solution un+1 by the iterative schemes

tn = (1− θn)µn + θnµn−1

yn = (1− αn)tn + αnJφ
[
g(
µn + tn

2
)− ρT (

µn − tn
2

)
]

wn = (1− βn)yn + βnJφ
[
g(
µn + yn

2
)− ρT (

µn + yn
2

)
]

µn+1 = (1− ζn)wn + ζnJφ
[
g(
wn + yn

2
)− ρT (

wn + yn
2

)
]
,

which is a four step inertial iterative method, here θn, αn, βn, ζn are constants.
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Remark 3.2. These multi-step methods contain Mann (one-step) iteration, Ishikawa (two-step) iteration

and Noor (three-step) iterations as special cases. Noor [28, 30] has proposed and suggested three step

forward-backward iterative methods for finding the approximate solution of general variational inequalities

using the technique of updating the solution and auxiliary principle. These tree-step methods are known

as Noor iterations. Suantai et al. [65] have also considered some novel forward-backward algorithms for

optimization and their applications to compressive sensing and image inpainting. We have shown that

these multi step can be proposed and suggested using the dynamical systems coupled with boundary value

problems, which is can be considered entirely new approach.

Zeng et al. [70] have investigated the fractional dynamical systems associated with variational

inequalities. They have investigated the criteria for the asymptotically stability of the equilibrium

points. We would like to point out that our results are more general than the results of Zeng et al. [70].

These ideas and techniques may inspire the interested readers for further research in this area. We now

suggest a new fractional resolvent dynamical system associated with mixed general variational inequalities.

Dα
t µ = γ{−R(µ)− ρTJφ[g(µ)− ρT µ] + ρT µ}, µ(0) = α, µ ∈ H, (3.26)

where 0 < α < 1 and γ is a constant, associated with problem mixed variational inequality. For more

applications and motivation, see [22].

For α = 1, problem (3.26) reduces to finding u ∈ H such that

dµ

dx
= γ{−R(µ)− ρTJφ[g(µ)− ρT u] + ρT µ}, µ(0) = α, µ ∈ H, (3.27)

is called the resolvent dynamical system, which appear to be a new one. Using the technique of this

section, one can investigate the asymptotically stability and other aspects.

4 Generalizations and Future Research

We would like to mention that some of the results obtained and presented in this paper can be extended

for multivalued variational inequalities. To be more precise, let C(H) be a family of nonempty compact

subsets of H. Let T, V : H −→ C(H) be the multivalued operators. For a given nonlinear bifunction

N(., .) : H ×H −→ H, consider the problem of finding u ∈ H, w ∈ T (µ), y ∈ V (µ) such that

〈N(w, y) + µ− g(µ), ν − µ〉+ φ(ν)− φ(µ) ≥ 0, ∀ν ∈ H, (4.1)

which is called the multivalued mixed general variational inequality. We would like to mention that one

can obtain various classes of variational inequalities for appropriate and suitable choices of the bifunction

N(., .), and the operators.
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1. For g(µ) = µ, the problem (4.1) reduces to finding µ ∈ H, such that

〈N(w, y), ν − µ〉+ φ(ν)− φ(g(µ)) ≥ 0, ∀ ν ∈ H, (4.2)

is called the multivalued mixed general variational inequality, which appears to be a new one.

2. If N(w, y) = Tµ, then the problem (4.1) is equivalent to find µ ∈ H, such that

〈Tµ+ µ− g(µ), ν − µ〉+ φ(ν)− φ(µ) ≥ 0 ∀ν ∈ H,

which is the mixed general variational inequality (2.1).

Using Lemma 2.1, one can prove that the problem (4.1) is equivalent to finding u ∈ H such that

µ = Jφ[g(µ)− ρN(w, y)]. (4.3)

This shows that the the problem (4.1) is equivalent to the fixed point problem (4.3). This equivalent

formulation is applied to consider the second order dynamical system associated with the problem (4.1)

as

γµ̈+ µ̇+ µ = Jφ[g(µ)− ρT µ], µ(a) = α, µ(b) = β,

which is the second order boundary value problem and may be applied to suggest and investigate proximal

point methods for solving the multivalued mixed variational inequality (4.1) applying the techniques

developed in this paper. Consequently, all results obtained for the problem (2.1) continue to hold for

the problem (4.1) with suitable modifications and adjustments. Since the problem (4.1) and problem

(4.2) are equivalent, if the convex set is a convex cone. This implies that the dynamical system approach

may be exploited to solve the complementarity problems. The development of efficient implementable

numerical methods for solving the multivalued variational inequalities, random elastic traffic equilibrium

problem and optimization problems requires further efforts. Despite the current research activates, very

few results are available. The development of efficient implementable numerical methods for solving the

general quasi variational inequalities and non optimizations problems requires further efforts.

Conclusion

In this paper, we have used the technique of the dynamical systems coupled with the second order

boundary value problem to suggest some multi step inertial proximal methods for solving variational

inequalities. The convergence analysis of these methods have been considered under some weaker

conditions. Our method of convergence criteria is very simple as compared with other techniques.
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Comparison and implementation of these new methods need further efforts. We have only discussed

the theoretical aspects of the proposed iterative methods. It is an interesting problem to discuss the

implementation and performance of these new methods with other methods. Applications of the fuzzy set

theory, stochastic, quantum calculus, fractal, fractional and random can be found in many branches

of mathematical and engineering sciences including artificial intelligence, computer science, control

engineering, management science, operations research and variational inequalities. Similar methods can

be suggested for stochastic, fuzzy, quantum, random and fractional variational inequalities, which is an

interesting and challenging problem. Despite the recent research activates, very few results are available.

The development of efficient numerical methods requires further efforts. The ideas and techniques

presented in this paper may be starting point for further developments.
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