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Abstract

We consider a new generalization of the celebrated Lax-Milgram Lemma, which is called the harmonic

Lax-Milgram Lemma. Some special cases are discussed. New concepts are introduced. The auxiliary

principle approach is applied to discuss the existence of the solution as well as to propose some iterative

schemes for computing the approximate solution of harmonic Max-Milgram Lemma. Convergence

analysis of the proposed methods is considered under some mild conditions. Ideas and techniques of

this paper may stimulate further research.

1 Introduction

Riesz [22] and Frechet [5] proved that a linear continuous functional can be represented by the inner

product independently. This result is known as Riesz-Frechet representation theorem. It have been

observed that this representation theorem is the optimum criteria of the quadratic differentiable functional

on the inner product spaces. Lax and Milgram [8] proved that a linear continuous functional can be

representation by an arbitrary bifunction under suitable conditions.. This representation is known as the

Lax-Milgram Lemma and plays a significant role in the development of various branches of mathematical

and engineering sciences. Motivated and inspired by ongoing research in this interesting field, we

consider a harmonic Lax-Milgram lemma, which contains the Lax-Milgram Lemma [8] and Riesz-Frechet

representation theorem as special cases. For the applications and generalizations of the Lax-Milgram

Lemma, see [3–9,11,13,17,19] and the references therein.

Convexity theory contains a wealth of novel ideas and innovative techniques, which have played the
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significant role in the development of almost all the branches of pure and applied sciences such as fixed

point, variational inequalities and optimizations. Several new generalizations and extensions of the convex

functions and convex sets have been introduced and studied to tackle unrelated complicated and complex

problems in a unified manner.

Anderson et al. [3] have investigated several aspects of the harmonic convex sets and harmonic convex

functions, which can viewed as important generalizations of the convex functions and convex sets. The

harmonic means have novel applications in electrical circuits theory. It is known that the total resistance

of a set of parallel resistors is obtained by adding up the reciprocals of the individual resistance values,

and then taking the reciprocal of their total. More precisely, if u and v are the resistances of two parallel

resistors, then the total resistance is computed by the formula:

(
1

u
+

1

v

)−1
=

uv

u+ v
,

which is half the harmonic means. Al-Azemi et al. [1] studied the Asian options with harmonic average,

which can be viewed a new direction in the study of the risk analysis and financial mathematics. Noor et

al. [14] used the harmonic mean to suggest some iterative methods for solving nonlinear equations. Noor

et al. [14] have shown that the minimum of the differentiable harmonic convex functions on the harmonic

convex set can be characterized by a class of variational inequalities. For more details, see [14–21] and

the references therein. We use the auxiliary principle technique, which is mainly due to Lions and

Stampachia [9] and Glowinski et al. [7], to discuss various aspects of the general Lax-Milgram Lemma.

Noor [12] and Noor et al. [14–21] have shown that the auxiliary principle technique can be used to

suggest some iterative methods for solving the boundary value problems and various classes of variational

inequalities. In Section 2, we introduce the harmonic Lax-Milgram Lemma and discuss its applications.

The auxiliary principle technique is used to discuss the existence of a unique solution as well as to suggest

some iterative methods for the boundary value problems. Convergence analysis of the proposed method

is also considered under some mild conditions.

2 Formulations and Basic Facts

Let H be a Hilbert space, whose norm and inner product are denoted by ‖ · ‖ and 〈·, ·〉 respectively. For

a given operator N and continuous functional f , we consider the problem of finding u ∈ H such that

〈
N

(
2uv

u+ v

)
, v

〉
= 〈f, v〉, ∀v ∈ H, (2.1)
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which is called the harmonic Lax-Milgram Lemma. Equivalently the problem (2.1) equivalent to finding

u ∈ H, we 〈
N

(
2uv

u+ v

)
, v − u

〉
= 〈f, v − u〉, ∀v ∈ H, (2.2)

which is known as the weak formulation of the boundary value problems and appears to be a new ones.

This is also called the weak formulation of the harmonic boundary value problems. A wide class of

problems arising in pure and applied sciences can be studied via equations (2.1) and (2.2).

From problems (2.1) and (2.2), on can easily obtain the problem of finding u ∈ H such that

N

(
2uv

u+ v

)
= f, (2.3)

which is called the harmonic nonlinear equation.

Note that, for v = u, the problem (2.3) reduces to finding u ∈ H such that

N(u) = f, ∀v ∈ H, (2.4)

is the usual nonlinear equation.

If a

(
2uv

v + u
, v − u

)
=

〈
N

(
2uv

v + u

)
, v − u

〉
, where a(·, ·) : H × H → H is a bifunction, then the

problem (2.2) is equivalent to finding u ∈ H such that

a

(
2uv

v + u
, v − u

)
= 〈f, v − u〉, ∀v ∈ H, (2.5)

which is called the harmonic Lax-Milgram Lemma. This result has been used to discuss the existence of

a unique solution of the boundary value problems. This result can have tantamount significance in the

study of function spaces and partial differential equations.

If N

(
2uv

u+ v

)
=

2uv

u+ v
, ∀v ∈ H, then the problem (2.1) is equivalent to finding u ∈ H such that〈

2uv

u+ v
, v

〉
= 〈f, v〉, ∀v ∈ H, (2.6)

which can be viewed as the Riesz-Frechet representation for the continuous functionals with respect to

harmonic inner product.

We now introduce some new concepts in harmonic convex analysis.

Definition 2.1. A set Ω ⊆ H is said to be a harmonic-like convex set, if

2uv

u+ v
+ t(v − u) ∈ Ω, ∀u, v ∈ Ω, t ∈ [0, 1].

Note that, for t = 0,
2uv

u+ v
∈ Ω, t = 1,

(
2uv

u+ v
+ v − u

)
∈ Ω.
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Definition 2.2. A function f on the harmonic-like convex set Ω is said to be harmonic-like convex

function, if

f

(
2uv

u+ v

)
+ t(v − u) ≤ f(u) + t(f(v)− f(u)), ∀u, v ∈ Ω, t ∈ [0, 1].

We remark that, if v → u, then the harmonic-like convex set become the convex set and the

harmonic-like convex functions reduces to the convex function.

Using the technique of Noor [12], one easily prove that the minimum of the differentiable harmonic-like

convex function can be discussed.

Theorem 2.3. Let f be a differentiable harmonic-like convex function. Then u ∈ H is the minimum of

the harmonic-like convex function, if and only if, u ∈ H satisfies

f ′
(

2uv

u+ v

)
= 0, ∀v ∈ H, (2.7)

which is special case of the nonlinear harmonic equation (2.3).

Definition 2.4. An operator N(·) is said to be

(I). strongly harmonic-like monotone, if there exists a constant α ≥ 0 such that∥∥∥∥u− v − ρ(N( 2uη

u+ η

)
−N

(
2vζ

v + ζ

))∥∥∥∥ ≥ α‖u− v‖2, ∀u, v, η, ζ ∈ H.

(II). harmonic-like Lipchitz continuous, if there exists a constant β ≥ 0 such that∥∥∥∥N( 2uη

u+ η

)
−N

(
2vζ

v + ζ

)∥∥∥∥ ≤ β‖u− v‖, ∀u, v, η, ζ ∈ H.

We remark that, for u = η and v = ζ, the definition 2.4 reduces to the classical strongly monotonicity

and Lipchitz continuity of the operator.

3 Main Results

In this section, we use the auxiliary principle technique, the origin of which can be traced back to Lions

and Stampacchia [9] and Glowinski et al. [4], as developed by Noor [14–21]. The main of idea of this

technique is to consider an arbitrary auxiliary problem related to the original problem. This way, one

defines a mapping connecting the solutions of both problems. To prove the existence of a solution of the

original problem, it is enough to show that this connecting mapping is a contraction which yields the

solution of the original problem. Another novel feature of this approach is that this technique enables us

to suggest some iterative methods for solving the boundary value problems.

http://www.earthlinepublishers.com



On a New Generalization of the Lax-Milgram Lemma 27

Theorem 3.1. Let the operator L be strongly monotone with constant α > 0 and Lipschitz continuous

with constant β > 0, respectively. If there exists a constant ρ > 0 such that

0 < ρ ≤ α

β2
, (3.1)

then there exists a unique solution of problem (2.2).

Proof. We now use the auxiliary principle technique to prove the existence of a solution of (2.2). To be

more precise, for a given u ∈ H satisfying (2.2), consider the problem of finding u ∈ H such that〈
ρN

(
2uv

u+ v

)
, v − w

〉
+ 〈w − u, v − w〉 = 〈ρf, v − w〉, ∀v ∈ H, (3.2)

which is called the auxiliary problem, where ρ > 0 is a constant. It is clear that (3.2) defines a mapping

w connected the both problems (2.1) and (3.2). To prove the existence of a solution of (2.2), it is enough

to show that the mapping w defined by (3.2) is a contraction mapping.

Let w1 6= w2 ∈ H (corresponding to u1 6= u2 ∈ H) be solutions of (3.2). Then〈
ρN

(
2u1v

u1 + v

)
, v − w1

〉
+ 〈w1 − u1, v − w1〉 = 〈ρf, v − w1〉, ∀v ∈ H, (3.3)

〈
ρN

(
2u2v

u2 + v

)
, v − w2

〉
+ 〈w2 − u2, v − w2〉 = 〈ρf, v − w2〉, ∀v ∈ H. (3.4)

Taking v = w2 in (3.3) and v = w1 in (3.4) and adding the resultants, we have

‖w1 − w2‖2 = 〈w1 − w2, w1 − w2〉

=

〈
u2 − u1 − ρ

[
N

(
2u2w2

u2 + w2

)
−N

(
2u1w1

u1 + w1

)]
, w1 − w2

〉
≤

∥∥∥∥u2 − u1 − ρ[N( 2u2w2

u2 + w2

)
−N

(
2u1w1

u1 + w1

)∥∥∥∥‖w1 − w2‖, (3.5)

from which, it follows that

‖w1 − w2‖ ≤
∥∥∥∥u2 − u1 − ρ[N( 2u2w2

u2 + w2

)
−N

(
2u1w1

u1 + w1

)]∥∥∥∥. (3.6)

Using the strongly harmonic-like monotonicity and harmonic-like Lipchitz continuity of the operator
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L with constants α > 0 and β > 0, we have

‖w1 − w2‖2 ≤
∥∥∥∥u2 − u1 − ρ[N( 2u2w2

u2 + w2

)
−N

(
2u1w1

u1 + w1

)]∥∥∥∥2
=

〈
u2 − u1 − ρ

[
N

(
2u2w2

u2 + w2

)
−N

(
2u1w1

u1 + w1

)]
,

u2 − u1 − ρ
[
N

(
2u2w2

u2 + w2

)
−N

(
2u1w1

u1 + w1

)]〉
= 〈u1 − u2, u1 − u2〉 − 2ρ

〈
N

(
2u2w2

u2 + w2

)
−N

(
2u1w1

u1 + w1

)
, u2 − u1

〉
+ρ2

〈
N

(
2u2w2

u2 + w2

)
−N

(
2u1w1

u1 + w1

)
, N

(
2u2w2

u2 + w2

)
−N

(
2u1w1

u1 + w1

)〉
≤ (1− 2ρα+ ρ2β2)‖u1 − u2‖2, (3.7)

using the strongly harmonic-like monotonicity with constant α > 0 and harmonic-like Lipschitz continuity

with constant β ≥ 0 of the harmonic operator N .

Form (3.7), we obtain

‖w1 − w2‖ ≤
√

1− 2ρα+ ρ2β2 · ‖u1 − u2‖

= ϑ(ρ)‖u1 − u2‖ (3.8)

where ϑ(ρ) =
√

1− 2ρα+ ρ2β2.

We have to show that ϑ(ρ) < 1 It is clear that ϑ(ρ) assumes its minimum value for ρ =
α

β2
with

ϑ(ρ) =

√
1− α

β2
. From (3.1), It follows that ϑ(ρ) < 1 for 0 < ρ ≤ α

β2
. Thus the mapping is a contraction

mapping and consequently, it has a fixed point w(u) = u ∈ H satisfying the problem (2.2).

It is worth mentioning that, if w(u) = u ∈ H is a solution of (2.2), then the auxiliary principle

technique enables us to suggest the following iterative method for solving the problem (2.2).

Algorithm 3.2. For a given initial value u0, compute the approximate solution un+1 by the iterative

scheme 〈
ρN

(
2unv

un + v

)
+ un+1 − un, v − un+1

〉
= 〈ρf, v − un+1〉, ∀v ∈ H.

We again use the auxiliary principle technique to suggest an implicit method for solving the problem

(2.2). For a given u ∈ H satisfying (2.2), consider the problem of finding w ∈ H such that,〈
ρN

(
2vw

v + w

)
, v − w

〉
+ 〈w − u, v − w〉 = 〈ρf, v − w〉, ∀v ∈ H, (3.9)
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which is called the auxiliary problem. We note that the auxiliary problems (3.2) and (3.9) are quite

different. Clearly w = u ∈ H is a solution of (2.1). This observation allows us to suggest the following

iterative method for solving the problem (2.2).

Algorithm 3.3. For a given initial value u0, compute the approximate solution un+1 by the iterative

scheme 〈
ρN

(
2un+1v

un+1 + v

)
+ un+1 − un, v − un+1

〉
= 〈ρf, v − un+1〉, ∀v ∈ H. (3.10)

This is a predictor-corrector method as a predictor. Consequently, we obtain the two-step method for

solving the problem (2.1).

Algorithm 3.4. For a given initial value u0 ∈ H, compute the approximate solution un+1 ∈ H by the

iterative scheme 〈
ρN

(
2unv

un + v

)
+ yn − un, v − yn

〉
= 〈ρf, v − yn〉, ∀v ∈ H,

〈
ρN

(
2ynv

yn + v

)
+ un+1 − un, v − un+1

〉
= 〈ρf, v − un+1〉, ∀v ∈ H,

which is known as two-step iterative method for solving problem (2.2).

For the convergence criteria, we need the following concept.

Definition 3.5. An operator N(·) is said to be pseudo harmonic-like with respect to the functional f , if〈
N

(
2uv

u+ v

)
, v − u

〉
− 〈f, v − u〉 ≥ 0 ∀v ∈ H,

⇒
〈
N

(
2uv

u+ v

)
, u− v

〉
− 〈f, u− v〉 ≥ 0 ∀v ∈ H.

We now consider the convergence analysis of Algorithm 3.3 and this is the main motivation of our

next result.

Theorem 3.6. Let u ∈ H be a solution of (2.2) and let un+1 be the approximate solution obtained from

Algorithm 3.4. If the operator N(·) is pseudo harmonic-like operator, then

‖un+1 − u‖2 ≤ ‖un − u‖2 − ‖un+1 − un‖2. (3.11)

Earthline J. Math. Sci. Vol. 15 No. 1 (2025), 23-34



30 Khalida Inayat Noor, Muhammad Aslam Noor and Kunrada Kankam

Proof. Let u ∈ H be a solution of (2.2). Then〈
N

(
2uv

u+ v

)
, u− v

〉
− 〈f, u− v〉 ≥ 0 ∀v ∈ H. (3.12)

Since the operator N is pseudo harmonic-like monotone with respect to the functional f . Taking v = un+1

in (3.12) and v = u in (3.10), respectively, we have〈
N

(
2uun+1

u+ un+1

)
, u− un+1

〉
− 〈f, u− un+1〉 ≥ 0 (3.13)

and 〈
N

(
2uun+1

u+ un+1

)
+ un+1 − un, u− un+1

〉
− 〈f, u− un+1〉 ≥ 0. (3.14)

From (3.13) and (3.14), we obtain

〈un+1 − un, u− un+1〉 ≥ 0.

From which, we have

‖un+1 − u‖2 ≤ ‖un − u‖2 − ‖un+1 − un‖2,

which is the required (3.14).

Theorem 3.7. Let u ∈ H be a solution of (2.2) and let un+1 be the approximate solution obtained from

Algorithm 3.2. If all the assumptions of Theorem 3.2 holds, then

lim
n→∞

un+1 = u. (3.15)

Proof. Let u ∈ H be a solution of (2.2). From (3.11), it follows that the sequence {‖u − un‖} is

nonincreasing and consequently the sequence {un} is bounded. Also, from (3.11), we have

∞∑
n=1

‖un+1 − u‖ = 0

which implies that

‖un+1 − un‖2 ≤ ‖u0 − u‖2 and lim
n→∞

‖un+1 − un‖ = 0. (3.16)

Let û be a cluster point of {un} and the subsequences {unj} of the sequence {un} converge to û. Replacing

un by {unj} in (3.10), taking the limit as lim
n→∞

nj →∞ and using (3.16), we have〈
N

(
2vû

v + û

)
, v − û

〉
= 〈f, v − û〉, ∀v ∈ H,

which shows that û ∈ H satisfies (2.2) and

‖un+1 − un‖2 ≤ ‖un − û‖2.

From the above inequality, it follows that the sequence {un} has exactly one cluster point û and lim
n→∞

un =

û.
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We can apply the auxiliary principle technique to suggest hybrid iterative methods for solving the

problem (2.2). For a given u ∈ H satisfying (2.2), consider the problem of finding w ∈ H such that〈
ρN

(
2vw

v + w

)
, v − w

〉
+ 〈M(w)−M(u) + η(w − u), v − w〉 = 〈ρf, v − w〉, ∀v ∈ H, (3.17)

where M is a nonlinear arbitrary operator and η ≥ 0 is an arbitrary parameter.

For M = I the identity operator and η = 0 the auxiliary problem is exactly the auxiliary problem

(3.9). For suitable choice of the operator M and the parameter, one can obtain some new auxiliary

problems associated with problem (2.1). It is obvious that w = u ∈ H is solution of the problem (2.2).

This observation is used to suggest the general hybrid iterative methods for solving the problem (2.2),

which contain some new inertial iterative methods.

Algorithm 3.8. For given u0, u1 ∈ H, compute the approximate solution un+1 by the iterative scheme〈
ρN

(
2un+1v

un+1 + v

)
+M(un+1)−M(un) + η(un − un−1), v − un+1

〉
= 〈ρf, v − un+1〉, ∀v ∈ H.

Algorithm 3.8 is called the hybrid inertial iterative method, which contains Algorithm 3.3 and the

following inertial iterative method.

Algorithm 3.9. For given u0, u1 ∈ H, compute the approximate solution un+1 by the iterative scheme〈
ρN

(
2un+1v

un+1 + v

)
+ η(un − un−1), v − un+1

〉
= 〈ρf, v − un+1〉, ∀v ∈ H.

Algorithm 3.9 appears to be a new one. Using the technique of Noor, one can study the convergence

criteria of Algorithm 3.9. For the applications and convergence analysis of the inertial type methods,

See [1–3] and the references therein.

4 Conclusion

In this paper, we have introduced a new generalization of the Lax-Milgram Lemma.,Several special cases

are discussed as applications. In particular, this new class contains Lax-Milgram Lemma and Riesz-Frechet

theorem as special cases. The auxiliary principle technique is used to study the existence of the solution

of the nonlinear harmonic problems. Some new iterative methods are considered. Convergence analysis of

these iterative methods is investigated under suitable conditions. We would like emphasize that the results

obtained in this paper may motivate and bring a number of novel, potential applications, extensions and

interesting new topics for further study.
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