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Abstract

This study presents a block method induced by Chebyshev polynomials of

first kind for directly solving initial value problems of fourth-order ordinary

differential equations without reducing the problems to a system of first-order

differential equations. The method was developed by applying interpolation

and collocation procedures to a Chebyshev approximate polynomial. The

unknown parameters were obtained using the Gaussian elimination method,

then substituted into the approximate solution to get the continuous scheme

and evaluated at the selected point to give the discrete scheme. The method

was zero stable, consistent, and convergent, p-stable as shown by the region

of absolute stability and has an order of seven. The accuracy and usability

of the developed method were tested by applying it to solve six numerical

examples. The method was found to be efficient as it gives minimal error.

The numerical results of the method were compared with other works cited

in the literature and found to be better as it gives minor errors.
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1 Introduction

This research provided an approximate solution to the general fourth order

ordinary differential equations of the form:

y(4)(x) = f(x, y, y′, y′′, y′′′), (1)

y(x0) = η0, y′(x0) = η1, y′′(x0) = η2, y′′′(x0) = η3,

where f is a continuous real value function.

Many mathematical models in engineering and sciences often results in

high-order linear and nonlinear IVPs. The static deflection of a uniform beam and

that of a cantilever beam (with the left end embedded and the right end free giving

birth to fourth-order IVPs) is one of the applications of fourth-order problems

(see [1]). According to [2] [3] [4] [5] and numerous others, the reduction strategy

is typically used to numerically solve equation (1). Despite the fact that this

strategy has been very effective, it does have certain drawbacks. For instance, the

subroutines that provide the beginning values for the techniques’ implementation

are usually sophisticated computer programs, which increases computational work

and computing time. Although, [6] discovered that these methods do not take

additional information related to a certain ordinary differential equation, such

the oscillatory behavior of the solution. To address the drawback of the reduction

methodology’s limitations, a direct approach presented as an alternative strategy.

In the literature, there are a number of direct numerical techniques, but only a

few are intended specifically for the solution of fourth-order ordinary differential

equations. To tackle fourth-order IVPs, for instance, [7] created the Block

Hybrid Collocation Method (BHCM). The collocation makes use of three off-grid

locations. In order to directly solve fourth-order IVPs, [8] created a four-step

implicit block approach with three generalized off-step points. An algorithmic

collocation method for achieving the approximation of fourth-order IVPs was

proposed in a study by [9]. For directly solving (1), [1] presented a Runge-Kutta

type approach. Single-step methods are efficient in terms of accuracy since they

incorporate hybrid points, according to [9] [10] [11]. The proposed method is a

http://www.earthlinepublishers.com



A Chebyshev Generated Block Method for Directly Solving Nonlinear ... 1269

fully hybrid block method that build on the success of [10] which is a motivation for

this work where the approximate solution of (1) is sorted in the interval [xn, xn+ 1
5
]

that included six intermediate points.

2 Mathematical Formulation

Let the exact solution y(x) of the fourth-order initial value problem of ordinary

differential equation (1) be approximated by a Chebyshev polynomial of the first

kind

y(x) =

(p+q)−1∑
j=0

ajTj(x). (2)

The fourth derivative of equation (2) is given as:

y(4)(x) =

(p+q)−1∑
j=4

ajT
(4)
j (x). (3)

Equations (1) and (3) yields a differential system:

f(x, y, y′, y′′, y′′′) =

(p+q)−1∑
j=4

ajT
(4)
j (x) (4)

where, x is continuous and differentiable, parameters aj ’s in (2), (3), and (4)

are linear terms to be determined. To get the system of algebraic equations in

equations (3) and (4), x = xn+i, i =
1

15

(
1

30

)
1

6
was applied to equation (2) and

x = xn+i, i = 0

(
1

30

)
1

5
applied to equation (3).

y(xn+i) =
10∑
j=0

ajTj(xn+i), i =
1

15

(
1

30

)
1

6
, (5)

f(xn+i) =
10∑
j=4

ajT
(4)
j (xn+i), i = 0

(
1

30

)
1

5
(6)
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Using the relation xn+i = xn + ih, (5) and (6) were written as matrix form and

solved using CAS in Wolfram Mathematica to obtain the parameters aj ’s for

j = 0, 1, 2, . . . 10. The parameters aj ’s were then substituted into (2) and after

replacing x with xn + th yields the following continuous scheme

y(t) =
5∑
j=2

αj(t)yn+ j
30

+ h4
6∑
j=0

βj(t)fn+ j
30
, (7)

where

α1 = −5
(
900t3 − 360t2 + 47t− 2

)
,

α2 = 10
(
1350t3 − 495t2 + 57t− 2

)
,

α3 = −15
(
900t3 − 300t2 + 31t− 1

)
,

α4 = 2
(
2250t3 − 675t2 + 65t− 2

)
,

β0 =
5625h4t10

28
− 1875h4t9

8
+

1875h4t8

16
− 525h4t7

16
+

203h4t6

36
− 49h4t5

80
+
h4t4

24

−5257h4t3

3110400
+

19823h4t2

544320000
− 547h4t

1749600000
+

h4

3061800000
,

β1 = − 1

14
16875h4t10 +

9375h4t9

7
− 34875h4t8

56
+

2175h4t7

14
− 87h4t6

4
+

3h4t5

2

−5519h4t3

680400
+

161141h4t2

272160000
− 14531h4t

816480000
+

79h4

408240000
,

β2 =
84375h4t10

28
− 178125h4t9

56
+

154125h4t8

112
− 34575h4t7

112
+

585h4t6

16
− 15h4t5

8

−55219h4t3

21772800
+

28759h4t2

27216000
− 41087h4t

544320000
+

461h4

272160000
,

β3 = −1

7
28125h4t10 +

28125h4t9

7
− 45375h4t8

28
+

2325h4t7

7
− 635h4t6

18
+

5h4t5

3

−3923h4t3

544320
+

3643h4t2

2721600
− 35563h4t

306180000
+

131h4

38272500
,

http://www.earthlinepublishers.com



A Chebyshev Generated Block Method for Directly Solving Nonlinear ... 1271

β4 =
84375h4t10

28
− 159375h4t9

56
+

120375h4t8

112
− 23025h4t7

112
+

165h4t6

8
− 15h4t5

16

+
10459h4t3

21772800
+

28183h4t2

108864000
− 11609h4t

408240000
+

359h4

408240000
,

β5 = − 1

14
16875h4t10 +

7500h4t9

7
− 21375h4t8

56
+

975h4t7

14
− 27h4t6

4
+

3h4t5

10

−1201h4t3

2721600
+

1451h4t2

272160000
+

89h4t

151200000
− 13h4

680400000
,

β6 =
5625h4t10

28
− 9375h4t9

56
+

6375h4t8

112
− 1125h4t7

112
+

137h4t6

144
− h4t5

24

+
89h4t3

1451520
− 251h4t2

272160000
− 307h4t

4898880000
+

h4

489888000

The coefficients αj ’s and βj ’s define the continuous scheme. The main linear

multistep formula of the proposed hybrid Chebyshev induced block method is

obtained by evaluating (7) at t = 1
5 . This gives

yn+ 1
5
− 4yn+ 1

6
+ 6yn+ 2

15
− 4yn+ 1

10
+ yn+ 1

15

=
h4

12247200000

(
5fn − 30fn+ 1

30
+ 54fn+ 1

15
+ 2504fn+ 1

10

+10029fn+ 2
15

+ 2574fn+ 1
6
− 16fn+ 1

5

)
. (8)

2.1 The additional formulas

The next task is to implement the main formula (7) in block mode. Five additional

formulas are require to achieve this. These formulas are obtained by evaluating

(7) at t = 0, 1
6 and its first, second and third derivative at t = 0. They are given

respectively as

yn − 10yn+ 1
15

+ 20yn+ 1
10
− 15yn+ 2

15
+ 4yn+ 1

6

=
h4

12247200000

(
4fn + 2370fn+ 1

30
+ 20745fn+ 1

15

41920fn+ 1
10

+ 10770fn+ 2
15
− 234fn+ 1

6
.+ 25fn+ 1

5

)
, (9)
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yn+ 1
30
− 4yn+ 1

15
+ 6yn+ 1

10
− 4yn+ 2

15
+ yn+ 1

6

=
h4

12247200000

(
5fn − 51fn+ 1

30
+ 2679fn+ 1

15
+ 9854fn+ 1

10

+2679fn+ 2
15
− 51fn+ 1

6
+ 5fn+ 1

5

)
, (10)

hy′n + 235yn+ 1
15
− 570yn+ 1

10
+ 465yn+ 2

15
− 130yn+ 1

6

=
−h4

24494400000

(
7658fn + 1535fn+ 1

5
− 14418fn+ 1

6

+2845040fn+ 1
10

+ 1848915fn+ 1
15

+ 696540fn+ 2
15

+ 435930fn+ 1
30

)
, (11)

h2y′′n + 2700yn+ 1
6

+ 9900yn+ 1
10
− 3600yn+ 1

15
− 9000yn+ 2

15

=
h4

272160000

(
19823fn − 502fn+ 1

5
+ 2902fn+ 1

6

+728600fn+ 1
10

+ 575180fn+ 1
15

+ 140915fn+ 2
15

+ 322282fn+ 1
30

)
, (12)

and

h3y′′′n− 27000yn+ 1
6
− 81000yn+ 1

10
+ 27000yn+ 1

15
+ 81000yn+ 2

15

=
−h4

3628800

(
36799fn − 1335fn+ 1

5

+9608fn+ 1
6

+ 156920fn+ 1
10
.+ 55219fn+ 1

15
− 10459fn+ 2

15
+ 176608fn+ 1

30

)
. (13)

2.2 Block formulation of the derived formula

The Linear Multistep Method (8) can be written in block form by expressing the

formulas (8)-(13) as a matrix equation

Û0Ŷ = Û1Yn + hÛ2Y
′
n + h2Û3Y

′′
n + h3Û4Y

′′′
n + h4

(
F0 F̄ + F1 F̂

)
, (14)
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where Ûi, i = 0, ... 4, Fi, i = 0, 1 are 6 × 6 matrices whose entries are

coefficients of equations (8) -(13);

Ŷ =
(
yn+ 1

30
, yn+ 1

15
, yn+ 1

10
, yn+ 2

15
, yn+ 1

6
, yn+ 1

5

)
,

Yn =
(
yn− 1

30
, yn− 1

15
, yn− 1

10
, yn− 2

15
, yn− 1

6
, yn

)
Y ′n =

(
y′
n− 1

30

, y′
n− 1

15

, y′
n− 1

10

, y′
n− 2

15

, y′
n− 1

6

, y′n

)
,

Y ′′n =
(
y′′
n− 1

30

, y′′
n− 1

15

, y′′
n− 1

10

, y′′
n− 2

15

, y′′
n− 1

6

, y′′n

)
Y ′′′n =

(
y′′′
n− 1

30

, y′′′
n− 1

15

, y′′′
n− 1

10

, y′′′
n− 2

15

, y′′′
n− 1

6

, y′′′n

)
,

F̂ =
(
fn+ 1

30
, fn+ 1

15
, fn+ 1

10
, fn+ 2

15
, fn+ 1

6
, fn+ 1

5

)
and

F̄ =
(
fn− 1

30
, fn− 1

15
, fn− 1

10
, fn− 2

15
, fn− 1

6
, fn

)
.

Let start by combining equations (8) and (9)-(13) as a matrix equation of

the type (14) and then solve using matrix inversion to obtain a version (14) with

following coefficient matrices;

Û1 =



0 0 0 0 0 1
162000

0 0 0 0 0 1
20250

0 0 0 0 0 1
6000

0 0 0 0 0 4
10125

0 0 0 0 0 1
1296

0 0 0 0 0 1
750


, Û2 =



0 0 0 0 0 1
1800

0 0 0 0 0 1
450

0 0 0 0 0 1
200

0 0 0 0 0 2
225

0 0 0 0 0 1
72

0 0 0 0 0 1
50


,

Û3 =



0 0 0 0 0 1
30

0 0 0 0 0 1
15

0 0 0 0 0 1
10

0 0 0 0 0 2
15

0 0 0 0 0 1
6

0 0 0 0 0 1
5


, Û4 =



0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1


,

Earthline J. Math. Sci. Vol. 14 No. 6 (2024), 1267-1292



1274 M. K. Duromola, A. L. Momoh and O. J. Akingbodi

F̄ =



0 0 0 0 0 95929
2939328000000

0 0 0 0 0 4127
11481750000

0 0 0 0 0 5471
4032000000

0 0 0 0 0 488
143521875

0 0 0 0 0 6457
940584960

0 0 0 0 0 191
15750000


,

and

F̂ =



4001
104976000000

− 23033
587865600000

811
24494400000

− 10693
587865600000

4219
734832000000

− 2323
2939328000000

4391
5740875000

− 199
328050000

97
191362500

− 127
459270000

499
5740875000

− 137
11481750000

423
112000000

− 39
17920000

29
14400000

− 99
89600000

39
112000000

− 193
4032000000

7808
717609375

− 632
143521875

256
47840625

− 58
20503125

128
143521875

− 88
717609375

1123
47029248

− 1265
188116992

95
7838208

− 1045
188116992

61
33592320

− 47
188116992

39
875000

− 3
350000

19
787500

− 3
350000

3
875000

− 1
2250000


,

Û0 is an identity matrix of dimension six.

Remark 1. This result contains a block of formulas that can be used to obtain

direct numerical solution of fourth order initial value problems where lower

derivatives are absent. However, the block of formulas needs to be modified

to handle general fourth order ordinary differential equation. To achieve this

objective, first, second and third derivatives of (7) are evaluated at t = i
30 , i =

1, 2, . . . , 6 which simultaneously yields the following Chebyshev induced hybrid

block method;

http://www.earthlinepublishers.com
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yn+ 1
30

=
h3

162000
y′′′n +

h2

1800
y′′n +

h

30
y′n + yn +

h4

2939328000000
(95929fn

+112028fn+ 1
30
− 115165fn+ 1

15
+ 97320fn+ 1

10
− 53465fn+ 2

15
+ 16876fn+ 1

6

−2323fn+ 1
5

)
yn+ 1

15
=

h3

20250
y′′′n +

h2

450
y′′n +

h

15
y′n + yn +

h4

11481750000

(
4127fn + 8782fn+ 1

30

−6965fn+ 1
15

+ 5820fn+ 1
10
− 3175fn+ 2

15
+ 998fn+ 1

6
− 137fn+ 1

5

)
yn+ 1

10
=

h3

6000
y′′′n +

h2

200
y′′n +

h

10
y′n + yn +

h4

4032000000

(
5471fn + 15228fn+ 1

30

−8775fn+ 1
15

+ 8120fn+ 1
10
− 4455fn+ 2

15
+ 1404fn+ 1

6
− 193fn+ 1

5

)
yn+ 2

15
=

4h3

10125
y′′′n +

2h2

225
y′′n +

2h

15
y′n + yn +

h4

717609375

(
2440fn + 7808fn+ 1

30

−3160fn+ 1
15

+ 3840dfn+ 1
10
− 2030fn+ 2

15
+ 640fn+ 1

6
− 88fn+ 1

5

)
yn+ 1

6
= +

h3

1296
y′′′n +

h2

72
y′′n +

h

6
y′n + yn +

h4

940584960

(
6457fn + 22460fn+ 1

30

−6325fn+ 1
15

+ 11400fn+ 1
10
− 5225fn+ 2

15
+ 1708fn+ 1

6
− 235fn+ 1

5

)
yn+ 1

5
=

h3

750
y′′′n +

h2

50

h

5
y′n + yn +

h4

15750000

(
191fn + 702fn+ 1

30
− 135fn+ 1

15

+380fn+ 1
10
− 135fn+ 2

15
+ 54fn+ 1

6
− 7fn+ 1

5

)



,

(15)
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y′n+ 1
30

=
h2

1800
y′′′n +

h

30
y′′n + y′n +

h3

97977600000

(
343801fn + 506604fn+ 1

30

−494715fn+ 1
15

+ 414160fn+ 1
10
− 226605fn+ 2

15
+ 71364fn+ 1

6
− 9809fn+ 1

5

)
y′n+ 1

15
=

h2

450
y′′′n +

h

15
y′′n + y′n +

h3

765450000

(
13774fn + 35976fn+ 1

30
− 24465fn+ 1

15

+20800fn+ 1
10
− 11370fn+ 2

15
+ 3576fn+ 1

6
− 491fn+ 1

5

)
y′n+ 1

10
=

h2

200
y′′′n +

h

10
y′′n + y′n +

h3

134400000

(
5877fn + 19188fn+ 1

30
− 8055fn+ 1

15

+8960fn+ 1
10
− 4905fn+ 2

15
+ 1548fn+ 1

6
− 213fn+ 1

5

)
y′n+ 2

15
=

2h2

225
y′′′n +

h3

47840625

(
3863fn + 13992fn+ 1

30
− 3390fn+ 1

15
+ 6800fn+ 1

10

−3255fn+ 2
15

+ 1032fn+ 1
6
− 142fn+ 1

5

)
y′n+ 1

6
=
h2

72
y′′′n +

h

6
y′′n + y′n +

h3

31352832

(
4045fn + 15564fn+ 1

30
− 2055fn+ 1

15

+8560fn+ 1
10
− 2865fn+ 2

15
+ 1092fn+ 1

6
− 149fn+ 1

5

)
y′n+ 1

5
=
h2

50
y′′′n +

h

5
y′′n + y′n +

h3

1050000

(
198fn + 792fn+ 1

30
− 45fn+ 1

15
+ 480fn+ 1

10

−90fn+ 2
15

+ 72fn+ 1
6
− 7fn+ 1

5

)



,

(16)
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y′′n+ 1
30

=
h

30
+ y′′n +

h2

108864000

(
28549fn + 57750fn+ 1

30
− 51453fn+ 1

15
+ 42484fn+ 1

10

−23109fn+ 2
15

+ 7254fn+ 1
6
− 995fn+ 1

5

)
y′′n+ 1

15
=

h

15
y′′′n + y′′n +

h2

1701000

(
1027fn + 3492fn+ 1

30
− 1680fn+ 1

15
+ 1576fn+ 1

10

−873fn+ 2
15

+ 276fn+ 1
6
− 38fn+ 1

5

)
y′′n+ 1

10
=

h

10
y′′′n + y′′n +

h2

1344000

(
1265fn + 4950fn+ 1

30
− 801fn+ 1

15
+ 2100dfn+ 1

10

−1089fn+ 2
15

+ 342fn+ 1
6
− 47fn+ 1

5

)
y′′n+ 2

15
=

2h

15
y′′′n + y′′n +

2h2

212625

(
272fn + 1128fn+ 1

30
− 18fn+ 1

15
+ 656fn+ 1

10

−210fn+ 2
15

+ 72fn+ 1
6
− 10fn+ 1

5

)
y′′n+ 1

6
=
h

6
y′′′n + y′′n +

h2

870912

(
1409fn + 6030fn+ 1

30
+ 375fn+ 1

15
+ 4100fn+ 1

10

−225fn+ 2
15

+ 462fn+ 1
6
− 55fn+ 1

5

)
y′′n+ 1

5
=
h

5
y′′′n + y′′n

h2

21000

(
41fn + 180fn+ 1

30
+ 18fn+ 1

15
+ 136fn+ 1

10

+9fn+ 2
15

+ 36fn+ 1
6

)



,

(17)
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and

y′′′n+ 1
30

= y′′′n +
h

1814400

(
19087fn + 65112fn+ 1

30
− 46461fn+ 1

15
+ 37504fn+ 1

10

−20211fn+ 2
15

+ 6312fn+ 1
6
− 863fn+ 1

5

)
y′′′n+ 1

15
= y′′′n +

h

113400

(
1139fn + 5640fn+ 1

30
+ 33fn+ 1

15
+ 1328fn+ 1

10
− 807fn+ 2

15

+264fn+ 1
6
− 37fn+ 1

5

)
y′′′n+ 1

10
= y′′′n +

h

67200

(
685fn + 3240fn+ 1

30
+ 1161fn+ 1

15
+ 2176fn+ 1

10
− 729fn+ 2

15

+216fn+ 1
6
− 29fn+ 1

5

)
y′′′n+ 2

15
= y′′′n +

h

14175

(
143fn + 696fn+ 1

30
+ 192fn+ 1

15
+ 752fn+ 1

10
+ 87fn+ 2

15

+24fn+ 1
6
− 4fn+ 1

5

)
y′′′n+ 1

6
= y′′′n +

h

72576

(
743fn + 3480fn+ 1

30
+ 3200fn+ 1

10
+ 1275fn+ 1

15
+ 2325fn+ 2

15

+1128fn+ 1
6
− 55fn+ 1

5

)
y′′′n+ 1

5
= y′′′n +

h

4200

(
41fn + 216fn+ 1

30
+ 27fn+ 1

15
+ 272fn+ 1

10
+ 27fn+ 2

15
+ 216fn+ 1

6

+41fn+ 1
5

)



.

(18)

3 Analysis of the Properties of the Derived Method

In this section, the analysis of the basic properties of the derived Chebyshev

induced hybrid block method is presented.

3.1 Local truncation and order of the proposed method

Proposition 1. The theoretical order of each of the six primary formulas for the

proposed methods is seven while the local truncation error is Υ r
30
{y(x) : h} =

cn+11y
(11)(tn)h11 + 0(h12).
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Proof. Since y(x) is continuous and differentiable, and following [2], the linear

difference operator equivalent to formulas in (15)-(18) is defined by

Υ r
30
{y(x) : h} = y

(
xn +

r

30
h
)
−

{
3∑
b=0

αby
(b)(x)hb − h4

6∑
r=0

βry
(4)
(
x+

r

30
h
)}

.

(19)

The Taylor series expansion about the point x to (19) provides a formula for the

local truncation errors of the proposed scheme

Υ r
30
{y(x) : h} =c0y(x) + c1hy

′
(x) + c2h

2y
′′
(x) + · · ·+ cp+3h

p+3y(p+3)(x)

+ cp+4h
p+4y(p+4)(x)

(20)

The term cp+4 is called the error constant and it implies that the local truncation

error is defined as:

Υ r
30
{y(x) : h} = cp+4h

p+4y(p+4) (xn) +Ohp+5 (21)

where

Υ 1
30
{y(x) : h} =

15739h11y(11) (xn)

530335602720000000000000
+O

(
h12
)

Υ 2
30
{y(x) : h} =

733h11y(11) (xn)

1657298758500000000000
+O

(
h12
)

Υ 3
30
{y(x) : h} =

h11y(11) (xn)

561330000000000000
+O

(
h12
)

Υ 4
30
{y(x) : h} =

37h11y(11) (xn)

8092279094238281250
+O

(
h12
)

Υ 5
30
{y(x) : h} =

317h11y(11) (xn)

33941478574080000000
+O

(
h12
)

Υ 6
30
{y(x) : h} =

h11y(11) (xn)

60142500000000000
+O

(
h12
)



. (22)

for each formula in (15). This procedure was also repeated for the formulas in

(16)-(18). Since c0 = c1 = ... = cp+3 = 0, cp+4 6= 0, refer to [14]; then formulas in

(15)-(18) have uniform order p = 7.
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3.2 Consistency of the Method

Definition 1. (see [2]) The linear multistep method is said to be consistent if it

has order p ≥ 1. It is obvious that the present method is consistent.

3.3 Zero Stability of the Block Method

Authors such [3], [14], and [22] described the zero stability of a numerical method

as the one that tells its behaviors as h → 0. That is, if we set h to zero in the

primary formulas of the proposed in (15), it will reduce to a set of equations that

be written as in matrix form

Û0Ŷ = Û1Yn (23)

where, Û0 and Û1 remain as earlier defined.

Definition 2. (see [2]) The linear multistep method (15) is said to be zero-stable

if no root of the first characteristic polynomial has modulus greater than one, and

if every root with modulus one is simple.

From (23), the characteristics polynomial of the primary formulas of the

proposed method can be written as:

Det
(
λÛ0 − Û1

)
= 0 (24)

Det


λ



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


−



0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1




(25)

This gives λ5(λ − 1) = 0, that is λ = (0, 0, 0, 0, 0, 1). Similar results were

obtained when this procedure was repeated for the formulas in (16)-(18) indicating

that the Chebyshev induced block method is zero stable in line with Definition 2.
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3.4 Convergence

It is important to state the fundamental Dahlquist theorem on linear multistep

methods.

Theorem 1. The necessary and sufficient conditions for a linear multi- step

method to be convergent are that it be consistent and zero-stable.

The proposed method is convergent since it consistent and zero stable.

3.5 Region of Absolute Stability of the Method

Definition 3. [2] The block method MHBM2 is P -stable if the periodicity

interval of the method (0,+∞).

Proposition 2. The proposed method is P -stable.

This proposition is ascertained by first considering the characteristics

polynomial of the primary formulas of (15) given as

p(r) =



r1/30 0 0 0 0 −1

0 r1/15 0 0 0 −1

0 0 r1/10 0 0 −1

0 0 0 r2/15 0 −1

0 0 0 0 6
√
r −1

0 0 0 0 0 5
√
r − 1


(26)
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and

q(r) =



39 r1/30

875000
−3 r1/15

350000
19 r1/10

787500
−3 r2/15

350000
3 6√r

875000
− 5√r

2250000
+ 95929

2939328000000

1123 r1/30

47029248
−1265 r1/15

188116992
95 r1/10

7838208
−1045 r2/15

188116992
61 6√r

33592320
−47 5√r

188116992
+ 6457

940584960

7808 r1/30

717609375
−632 r1/15

143521875
256 r1/10

47840625
−58 r2/15

20503125
128 6√r

143521875
−88 5√r

717609375
+ 5471

4032000000

4391 r1/30

5740875000
−199 r1/15

328050000
97 r1/10

191362500
−127 r2/15

459270000
499 6√r

5740875000
−137 5√r

11481750000
+ 4127

11481750000

423 r1/30

112000000
−39 r1/15

17920000
29 r1/10

14400000
−99 r2/15

89600000
39 6√r

112000000
−193 5√r

4032000000
+ 488

143521875

4001 r1/30

104976000000
−23033 r1/15

587865600000
811 r1/10

24494400000
−10693 r2/15

587865600000
4219 6√r

734832000000
−2323 5√r

2939328000000
+ 191

15750000



.

(27)

The stability polynomial of (15) is given by

Π(r, z) = p(r) + zq(r) (28)

where, z = λ4h4 and λ = ∂f
∂y . Note that the stability polynomial (28) is obtained

by applying the formulas in (15) to the scalar test function

y(4) = −λ4y. (29)

Replacing r with eIθ and solving the stability polynomial (28) for Π(r, z) = 0

yields after some simplifications

z =
18223519635182674907136000000000000000000000000000(e

I
5
θ − 1)

18662400e
I
5
θ − 15611903689201

. (30)

Figure 1: Region of absolute stability of the method.
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This is plotted in Maplesoft environment using the following commands.

with(plots);

complexplot(-z, theta = 0 .. 360, filled = true, labels = [”Re”, ”Im”], color =

grey);

Figure 1 shown the region of absolute stability of the proposed method, the shaded

region is where the method is unstable. This confirmed that the left-hand side

of the complex plane (0,+∞) is included in the stability region of the proposed

method. Hence, the derived method is p-stable.

4 Numerical Experiments

To test how well the proposed method works, six numerical examples are

considered for the numerical experiment. The accuracy was measured by

calculating the absolute error using the relation Error = |yn − y(x)|.

Problem 1. The general fourth-order IVP of ordinary differential equation

y(4) = y′′′ + y′′ + y′ + 2y, y(0) = 0, y′(0) = 0, y′′(0) = 0, y′′′(0) = 30

whose exact solution is reported as y(x) = 2e2x − 5e−x + 3 cosx − 9 sinx is

considered as the first test problem (Source: see [6] and [7]. The solutions to

problem (1) were obtained within [0, 2] over 10 iterations and are compared with

the exact solution, as presented in Figure 2. It is clear from Table 1 and Figure

2 that methods shows good performance over the methods in [6] and [7].

Table 1: Solution of problem 1 obtained using the proposed method.

x y-computed y -exact Error in Method Error in [7] Error in [6]

0.2 0.04217 0.04217 8.70415 E-14 3.5129 E-13 2.319 E-13

0.4 0.3579 0.3579 8.04246 E-13 4.1833 E-12 2.2603 E-12

1.8 62.9237 62.9237 2.93019 E-10 5.4334 E-10 9.1180 E-09

2.0 99.0875 99.0875 5.1155 E-10 8.0796 E-10 1.7409 E-08
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Error in Mthod

Abdelrahim, R. and Omar, Z. (2017)

Yap, L. and Ismail, F. (2015)

0.5 1.0 1.5 2.0

0

5.×10-9

1.×10-8

1.5×10-8

Grid-values

y
-
v
a
lu
e

Figure 2: Comparison curves of problem 1.

Problem 2. The second sample equation considered in this work is

y(4) = −4x2+ex
(
x2 − 4t+ 1

)
−yy′+(y′)2, y(0) = 0, y′(0) = 1, y′′(0) = 0, y′′′(0) = 0

whose exact solution is reported as y(x) = x2 +ex (Source: see [9]). The solutions

to problem 2 were obtained within [0, 1] over 10 iterations and are compared with

the results of NDSolve and exact solutions, as presented in Figure 3. Table 2

presents the comparison of the maximum absolute errors of the proposed method

with those of methods in [9] and [20].

Table 2: Comparison of the maximum absolute errorsobtained for Problem 2.

h Methods Error

Proposed Method 5.28 E-21

0.2 BHI In [20] 1.21 E-17

AM In [20] 5.59 E-10

BHCM4 In [20] 2.38 E-17

Proposed Method 2.06 E-23

0.1 BHI In [20] 5.20 E-21

AM In [20] 2.84 E-14

BHCM4 In [20] 1.95 E-17
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y-computed

Exact

NDSolve
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y
-
v
a
lu
e

Figure 3: Comparison curves obtained for problem 2.

Problem 3. The third sample equation considered is

y(4) = −y′′, y(0) = 0, y′(0) = − 1.1

72− 50π
, y′′(0) =

1

144− 100π
, y′′′(0) =

1.2

144− 100π

whose exact solution is reported as y(t) = −t−1.2 sin(t)−cos(t)+1
144−100π (Source: see [7]).

Problem 3 was approximated using the derived method within [0, 2] over 10

iterations and the results are compared with [21] in Table 3. It is obvious from

Table 3 that y-approx agreed with exact solution up to eighteen decimal places

which confirmed the good performance of the present method over the method

in [21].

Table 3: Comparison results of Problem 3.

x Error in Proposed Method Error in [21]

0.0 0.0000 0.0000

0.2 2.60208E-18 3.40060E - 15

0.4 4.33680E-18 7.40519E - 14

1.6 5.37764E-17 5.09100E - 11

1.8 6.76542E-17 9.85949E - 11

2.0 7.97972E-17 1.83206E - 10
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Problem 4. The fourth sample equation considered is a nonlinear fourth-order

ordinary differential equation

y(4) =
3Sin(y)(3 + 2Sin2(y))

Cos7(y)
, y(0) = 0, y′(0) = 1, y′′(0) = 0, y′′′(0) = 1

with the exact y(x) = arcsin(x) (Source: see [20, 21]. The problem is integrated

in the interval [0, π
4 ]. Table 4 and Figure 4 showed the y-approx generated by

the derived methods at the grid points
(
π
200 ,

π
100 ,

3π
200 ,

π
50 ,

π
40 ,

3π
100 ,

7π
200 ,

π
25 ,

9π
200

)
as compared those generated NDSolve in Wolfram Mathematica. This confirmed

that the present method is a good alternative for solving nonlinear problems.

Table 4: Computed results of Problem 4.

x y-approx y-Exact NDSolve y-Error NDSolveError

0 0. 0. 0. 0. 0.
π
200 0.0157086 0.0157086 0.015708 1.0447E-23 6.4594E-7
π
100 0.0314211 0.0314211 0.0314159 8.6841E-23 5.1676E-6
3π
200 0.0471413 0.0471413 0.0471239 2.9686E-22 1.74409E-5
π
50 0.0628733 0.0628733 0.0628319 7.1173E-22 4.1345E-5
π
40 0.0786208 0.0786208 0.07854 1.4082E-21 8.07453E-5
3π
100 0.0943879 0.0943879 0.0942483 2.4706E-21 1.39528E-4
7π
200 0.110179 0.110179 0.109957 3.9938E-21 2.21566E-4
π
25 0.125997 0.125997 0.125666 6.0856E-21 3.30734E-4
9π
200 0.141847 0.141847 0.141376 8.8707E-21 4.7091E-4
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Figure 4: Solution curves of problem 4.

Problem 5. The fifth sample equation considered in this work is also a nonlinear,

non-homogeneous fourth-order ordinary differential equation

y(4) = y2 + cos2(x) + sin(x)− 1, y(0) = 0, y′(0) = 1, y′′(0) = 0, y′′′(0) = −1

whose exact solution is y(x) = sin(x) (Source: see [21]). The problem is integrated

in the interval [0, 1]. The results are presented in Table 5 and Figure 5.

Table 5: Computed results of Problem 5.

x y-approx y-Exact NDSolve y-Error NDSolveError

0. 0. 0. 0. 0. 0.

0.02 0.0199987 0.0199987 0.0199987 2.4887E-16 2.5364E-8

0.04 0.0399893 0.0399893 0.0399897 3.1200E-14 3.2640E-7

0.1 0.0998334 0.0998334 0.0998458 1.7832E-11 1.24265E-5

0.16 0.159318 0.159318 0.159399 4.4589E-10 8.11434E-5

0.18 0.17903 0.17903 0.179159 9.9195E-10 1.29839E-4

0.2 0.198669 0.198669 0.198867 2.0216E-9 1.97695E-4
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Figure 5: Solution curves of problem 5.

Problem 6. The last sample equation considered in this work is the ill-posed

Problem of a Beam on Elastic Foundation. The equation is given as

y(4) = 1− y.

The ill-posed problem has an important engineering application in a beam

on elastic foundation according to [23], where y is the normalized vertical

displacement (deviation), and 1 is the normalized distributed load, with the

following initial conditions y(0) = 0, y′(0) = 0, y′′(0) = 0, y′′′(0) = 0. The

exact solution is given by

y(x) = −1

2
e
− t√

2

(
−2e

t√
2 + e

√
2t cos

(
t√
2

)
+ cos

(
t√
2

))
.

(Source: see [20, 21]). The problem is integrated in the interval [0, 1]. Table

6 demonstrates the good performance of the derived method which was further

analysed in Figure 6.
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Table 6: Computed results of Problem 6.

x y-approx y-Exact NDSolve y-Error NDSolveError

0 0. 0. 0. 0. 0.
1
50 6.6666E-9 6.6666E-9 7.5574E-9 1.4746E-30 8.9079E-10
1
25 1.0666E-7 1.0666E-7 1.09687E-7 1.5043E-29 3.0205E-9
1
10 4.1666E-6 4.1666E-6 4.1721E-6 4.9411E-28 5.4695E-9
3
25 8.6399E-6 8.6399E-6 8.6409E-6 1.0133E-27 9.8926E-10
9
50 0.00004374 0.00004374 0.0000437401 5.0577E-27 8.1364E-11
1
5 0.0000666666 0.0000666666 0.0000666664 7.6920E-27 1.7100E-10

Computed
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NDSolve
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0.0

0.2

0.4

0.6

0.8

1.0

Grid-values

y
-
v
a
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Figure 6: Solution curves of problem 6.

5 Conclusion

This work concentrated on deriving a Chebyshev-induced hybrid block method

of theoretical order seven to solve initial value problems of fourth-order ordinary

differential equations. The method satisfied the basic properties of linear multistep
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methods. The accuracy and usability of the developed method were tested

by applying it to solve six numerical examples. They were efficient as they

give minimal error and have higher accuracy for handling the direct solution of

fourth-order initial value problems of ordinary differential equations including

nonlinear and ill-posed ones.
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