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Abstract

In this paper, we investigate a new subclass of univalent functions defined by a
generalized differential operator, and obtain some interesting properties of functions

belonging to the class Ry',, o gy, 9(®)-

1. Introduction

Let A denote the class of the functions f of the form

00

F@) =2+ ) a2t (D

k=2
which are analytic in the open unit disc U ={z O C:|z| <1}. Let H(U) be the space
of holomorphic functions in U. By S and K we denote the subclasses of functions in A
which are univalent and convex in U, respectively. Let P be the well-known

Carathéodory class of normalized functions with positive real part in U.

The Hadamard product or convolution of the functions

[e)

flz)=z+ Zakzk and g(z) =z+ Zbkzk

k=2 k=2
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is given by

[e)

(fOg)(z)=z+ Zakbkzk, (zO ).

k=2
We now define a new generalized multiplier differential operator.

Definition 1.1. Let m 0Ny = NU{0}, o, B. A, 1, p20, 0Sy<A, 0<¢p<I,

o +pB>0. Then for f [ A, we define a new generalized multiplier operator

D)’\n,u(a9 B’ y? '8) by
Dy (@ B, v, 9) £ (2) = /().
D)l\,u(a9 B’ Y, ‘S)f(Z)

_lo+Bry-(28 -1+ ] £(2) +[(29 D + 1) - V] 7f'(2) + AP ()
a+p

s

ooy

Df'(a, B, v, 8) £(z) = Dy (0, B, v, 8) (D (0, B, v, 9)).

Remark 1. If f(z) is given by (1), then from Definition 1.1, we obtain

DY (e, By, 9) £(2) = 2+ DO (@, B, v, 8) a2, 2)
k=2

where

oy (. By, 9) = [a +[(29 = 1)(A + ) + y(kA = 1)] (k —1) + BT" &)

a+p

From (2) it follows that Dy, (a, B, Y, ®)f(z) can be written in terms of

convolution as

Dy (e, By, 9) f(z) = (f Dg)(2), )
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where

g(z) =2+ O (a, B v, 9)ayz". (5)
k=2

The differential operator D{\’fu(a, B,Y, 19) includes many earlier differential

operators (see also [2]), which are mentioned below:

«  D{"(0,1,0,1):= D™ f(z), has been studied by Salagean [24].

«  D{"y(1,1,0,1):= L" f(z), has been studied by Uralegaddi and Somanatha [26].
. Dl’flo (a,1,0,1):= lg , has been studied by Cho and Srivastava [9].

. D)‘\)’O(O, 1, 0,1) := DY f(z), has been studied by Acu and Owa [1].

«  Dy'((0,1,0,1) = Dy" f(z), has been studied by Al-Oboudi [4].

. D)‘\)’O(l, B, V. 1) := Li(p, A, B) f(z), has been studied by Ctas et al. [8].

*  Dy'o(a, 0,0,1):= DY"(a), has been studied by Aouf et al. [5].

a+p

. D)’ffo(o, 1,0, j = D§ B0\ (z), has been studied Alamoush and Darus
[3].

* Dyo(0.1,y,1):= D', f(z), has been studied by Raducanu and Orhan [23] (see
also [20]).

. D)’ffu((x, B, 0, 1) := Dy*(a, B, 1), has been studied by Darus and Faisal [11].

« Dy y(a, 0,0,1):= Dy'(a, p), has been studied by Darus and Faisal [10].

Definition 1.2. Let mON, =NU{0}, w0O[0,1), o,B, A pu=0, 0<y<A,
0<¢<l, a+pB>0. Then a function f[A is said to be in the class

RY' 1 a.p.y, 9 (@), if it satisfies the condition
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U

O[3 (e, B, v, 8)] >w, zOU.
Remark 2. It is clear that the following classes

1. R)(\)’ 0.0.1,0,1(m) = R)(w) = R(w) = RY'(w) and that R} (@) = Ry (w), the class of
functions f O A satisfying O[f'(z) + Azf"'(z)] > @, z O U studied by Ponnusamy [22]

and other.
2. R"0.0.1.01(@) =R"(w) = M,,(w), the class of functions f A satisfying

O[D"f(z)] > w, zOU studied by Oros [21].

I

3. RY'0.0.1.0.1(@) = RY'(w), the class of functions f [ A satisfying O[ D}’ f(z)]
>w, z U studied by Al-Oboudi [4].

U

4. RY'0.0.1,y,1(@) = Ry (), the class of functions f O A satisfying O[Dy'\ f(z)]
> w, z UU studied by Zhou and Xu [17].

The main object of this paper is to present a systematic investigation for the class
Ry 1 a.p,y,9(@). In particular, for this function class, we derive an inclusion result,

structural formula, extreme points, coefficient bound, convolution property and other
interesting properties.

2. Preliminaries

In order to prove our results, we will make use of the following lemmas.

Lemma 2.1. [18] Let h O K, and let A =0. Suppose that B(z) and D(z) are
analytic in U, with D(0) = 0 and

D(2)

#'(0)

If an analytic function p with p(0) = h(0) satisfies

0B) = A+4 2% gu,

AZ?p"(z) + B(z) 2p'(z) + p(2) + D(z) < h(z), z D,
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then

p(z) < h(z), zOU.
Lemma 2.2. [19] Let g be a convex function in U and let

h(z) = q(z) + wzq'(2),

where @ > 0. If p 0 H(U) with

p(2) = q(0) + piz + ppz® +++ and  p(z) +wep'(z) < h(z), 20O,

then

p(z)<4q(z), 20T,

and this result is sharp.

Lemma 2.3. [25] If p(z) is analytic in U, p(0) =1 and, O(P(z)) > %, 200,

then for any function F analytic in U, the function P L F takes values in the convex hull
of the image of U under F.

Note that the symbol “< ” stands for subordination throughout this paper.

3. Coefficient Bounds for the Function Class Bg’ a.B.3.A (v, )

Theorem 3.1. Let mONy, =NU{0}, wO[0,1), o,B A u=20, 0<y<A,
0<¢ <1 a+PB>0. Then RY'\!q p.y.0(@) ORY 1 a.p.y.o (@)
Proof. Let fORy EG,B, v,9(m). By using the properties of the operator
R;\rfu,a,B,y,ﬁ(m)’ we get
Dy (o, By, 9) £(z)

[a+B+y=(28 -1)(A + W] D", (a. B, v. 9) £(2)

+[(28 1) (N + 1) = vl 2(DR (o, B, v, 9) £(2))
a+p
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n

+ VAZZ(D)’\H,H(G9 B? y9 ‘S)f(Z))
a+p ‘

(6)

Differentiating (6) with respect to z, we obtain

I

(04 By 90 = pto)+| BEIREREI o | ), 0

a+f a+p

where

U

p(z) = (Dy,(a, B. v, 9) f(2))

Since f O Ry EG,B, v, (@), by using Definition 1.2 and (7), we have

D{p(z) + [(23 DO+ u) > ZAV} p'(z) + {y—)\} p”(Z)} >w, 0T,

a+f a+p

which is equivalent to

{p(Z) + {(2’9 N 2?\\/} P'(z) + [L} p”(Z)} (LrGwohz h(z).

a+p oa+p 1-z

_ YA  B(2) = (29 —1)(A + p) + 2\y
a+p a+p

we have p(z) < h(z), which implies that O{(Dy!,(a. By, 9) f(z))’} >w, z OU.

From Lemma 2.1, with , and D(z) =0,

Hence f O Ry’ q.py,5(0) and the proof of the theorem is complete.

Clearly Ry, q.p.y.0(@) O Ry W apyo@ O ORY i apys@OS (see
[12, 14]).

Now, we will show that the set R}, ¢ p,y,s (@) is convex (see [17]).

Theorem 3.2. The set R)’\", Wa,B,y.9 () is convex.

Proof. Let the functions

http://www.earthlinepublishers.com
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be in the class Ry q.p,y,9(0). It is sufficient to show that the function A(z) =

X1f1(z) + X2 f>(z), with X; and X, nonnegative and X; +X, =1, is in the class
R\wa..y,9(®).

Since

h(z) =z + Zkzz(XIakl + XZakz)Zk’

then we have

o0

[DY (0, By, ®)A(z)] =1+ Zkzzk(xlakl + X8k, )[@X (0, B, v, 9)] 7,
hence

0(D§" (0, B, . 9)h(2))

= D(l + xlzkzzk[wﬁ’,u(a, B, Y, 8)]ak1zk_l)

+ 5(1 + Xzz Ko (@ By, 8)]ak2zk_1) - 1. (8)
Since fi, fo DRy a.p.y,0(00), this implies that

D(l X D M @ B . 8)]ak,~zk_l) >1+xi(@-1). ©)

Using (9) in (8), we obtain

1

O(DX (. By, 8)A(z)) >1+w(X; +X2) = (X1 +X2)
and since X; + X, =1, the theorem is proved.

Theorem 3.3. Let g be convex function with q(0) =1 and let h be a function of the
form h(z) = q(z) +2q'(z), zOU. If fOA satisfies the differential subordination

(D§ (c, By Y, 9)) < (), 20U, then DY, (0, B, Y. 8)z < q(z) and the result is

sharp.
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U

Proof. If we let p(z) = D', (0, B, Y, 9)/z, z O U, then we get (Dy,(a, B, v, 9))

= p(z) + zp'(z). So the subordination (D)’ffp((x, B,Y,9)) < h(z), zOU, becomes
p(z)+ 2p'(z) = q(z) + z¢'(z), zOU. Hence from Lemma 2.2, we have

(Di' (o, B, Y, 9))/z < g(z). The result is sharp.
4. Structural Formula

In this section, a structural formula, extreme points and coefficient bounds for

functions in Ry}, o p,y, (@) are obtained.

Theorem 4.1. A function f [ A is in the class R;r\'f Wa,B,y.9 (w) if and only if it can

be expressed as

_ c k (] — “
| Zopaa v )Z]DIH[Z ey

where QY'\,(a, B, Y, ) is given by (3) and © is a positive probability measure defined

}1’0 , (10)

on the unit circle T ={{ OC :|{| < 1}.

Proof. From (4) it follows that, f O RY" | o g y,9(w) if and only if

(D)TIJ((L B.Y, a)f(Z))’ -
l1-w

ap.

Using Herglotz integral representation of functions in Carathéodory class P (see [13]

and [15]), there exists a positive Borel probability measure 0 such that

(DY (0, B, Y. 9) £(2)) —@ | 142z

- 1o 0@ 20U
which is equivalent to
(O By 9) £ = [ P2 40y oo an
* = 1

http://www.earthlinepublishers.com
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Integrating (11), we obtain

D (e B v, 9) 7(2) - I(;Uzﬂwdc@}du
B} J‘ZZIUOZWW}&S(Z)

that is

D;\n,p(a’ B’ y’ '8) = I

k

) [z P -a S (Zz)k}do(z).
<=t k=2

(12)

Equality (10) follows now, from (4), (5) and (12). Since the converse of this deductive

process is also true, we have proved our theorem.

Corollary 4.2. The extreme points of the class R)'ff waB,y, 9 (w) are

_ o< () _
f(2)g =z+2(1-w)¢ . 00 [7]=1L

Proof. Consider the functions

o0

g7(2) = z+2(1—W)ZZ@ and  g4(z) =_[ g¢(z)do(C)
‘ k = |

k=2

13)

Since the map 0 — 8z is one-to-one, making use of (5), (6) and (12), the assertion

follows from (10) (see [7]).

From Corollary 4.3, we can obtain coefficient bounds for the functions in the class

R\ w.a.B.y. (@)
Corollary 4.3. If f O R)’\"’ wa,B,y, 9 (w) is given by (1), then

2(1 - )

p , k=2
QY (o, By, 9)

lay | <

The result is sharp.
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The coefficient bounds are maximized at an extreme point. Therefore, the result
follows from (13).

Corollary 44. If f O R\, q.p.y.9(®), then, for |z| =r <1

(0]

1
r-20-m)r <|f@)]sr+201-m)r? ’
ZkQ)\ p( B.Y, 9) kzsz)r(?,u(a’ B, Y, 9)
and
- 1 = 1
1-2(1-w)r <l f@)s1+2(1-w)r .
,;mx{u(a, B, v, 9) ,;mxﬁu(a, B, v, 9)

5. Convolution Property

In this part, we prove the analogue of the Pélya-Schoenberg conjecture for the class

Ry o, y, 8 ().
Theorem 5.1. The class Ry’ W a, B, V’S(ID) is closed under the convolution with a
convex function. That is, if f U R)T,p,a,s,y,s(w) and gUC, then fLgl

RV ..y, 9 (W)

It is known that if g is convex univalent in U, then (see [18])

SECINY
Z 2
Using convolution properties, we have

D082 B.v.9) (7 09)@) = O [D (e By )] 05E) g

and the result follows by application of Lemma 2.3.

Corollary 5.2. The class R)'ff H,G,B,Y,S(W) is invariant under Bernardi integral

operator.

Proof. Let Ry’ Wa,B,y.9 (). The Bernardi integral operator is defined as (see [6]):

http://www.earthlinepublishers.com
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FANE =[G a0 e> ),

Z

It is easy to check that F.(f)(z) = (f Og)(z), where

o l+¢ 1+¢
g(z) =), =

k:1k+c z

z ¢¢
01-1¢

(H)ar, (zOU, ¢ >-1).

Since the function (p(z) = L, z O U is convex, it follows (see [16]) that the function

g is also convex. From Theorem 5.1, we obtain F,(f) 0 Ry, q g, y,s (). Therefore,

Fc[R)’\Tfp,u,B,y,S(w)] O R7’\n,p,a,[3,y,8(m)-

6. Conclusion

In this article, by using the Hadamard product or convolution, we define a new
generalized multiplier operator. Also, we have presented new subclass of univalent
functions and we have investigated some geometric properties like inclusion result,
structural formula, extreme points, coefficient bound and convolution property. By
Varying the parameter in results, several well-known results have been obtained by
Ponnusamy [22], Oros [21], Al-Oboudi [4], and Zhou and Xu [17] as shown in above
Remark 2.
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