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Abstract

In this paper, we present a family of stiffly stable second derivative block methods
(SDBMs) suitable for solving first-order stiff ordinary differential equations (ODEs). The
methods proposed herein are consistent and zero stable, hence, they are convergent.
Furthermore, we investigate the local truncation error and the region of absolute stability
of the SDBMs. A flowchart, describing this procedure is illustrated. Some of the
developed schemes are shown to be A-stable and L-stable, while some are found to be
A(0)-stable. The numerical results show that our SDBMs are stiffly stable and give better

approximations than the existing methods in the literature.

1. Introduction

Ordinary differential equations are very important when modeling physical systems
in engineering and sciences. Examples of such systems are circuit theory, chemical
kinetics, control theory, celestial mechanics and biology. The solution equations of these
systems give insight into how the systems evolve and what the effects of changes in the
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systems are. Consequently, the ODEs emanating from the real-life phenomena are highly
non-linear and cannot be solved analytically. Hence, we need appropriate numerical
methods to solve these problems. The problem of deriving more advanced and efficient
methods for stiff problems has received a great deal of attention since the emergence of
the famous theorem of Dahlquist [7]. As in Dahlquist [7], a potentially good numerical
method for the solution of stiff systems of ODEs must have good accuracy and
reasonable wide region of absolute stability. As a matter of necessity, we will investigate
the accuracy and the stability of the method to be presented in this paper through
numerical experiment and stability analysis.

The backward differentiation formula (BDF) was introduced by Curtiss and
Hirschfelder [6] and further development was made by Cash [4]. This was achieved by
proposing a class of extended BDF of high order ODEs. Similarly, Chartier [5] and
Fatunla [9] have independently improved on the BDF by deriving A-stable methods
suitable for the integration of first-order initial value problems (IVPs). The search for
higher order A-stable multistep methods is carried out in the two main directions: (1) use
higher derivatives of the solutions, (2) throw in additional stages, off-step points, super-
future points. This leads into the large field general linear methods Hairer and Wanner
[14]. However, the super-future points could be likened to the super-implicit points
presented in Ibrahim and Ikhile [16], Ibrahim and Ikhile [17] respectively for the case of
special second-order linear multistep methods. Several authors have considered the
second and higher derivatives methods because of the existence of A-stable higher multi-
derivative schemes, see for example, Enright [10], Ismail and Ibrahim [18], Kumleng and
Sirisena [20]. Also, the combination of one-step procedures and the Runge-Kutta
procedures was introduced by Gear [11]. In like manner, some numerical analysts have
considered the development of this form of methods. Examples are the works presented
in Butcher [3], Gupta [12], Mehdizadeh and Molayi [23], Ngwane and Jator [26].
Lambert [19] opined that Milne in 1953 introduced block method for the sole aim of
obtaining starting values for predictor-corrector algorithms. Furthermore, Rosser [28]
generalized the idea of Milne into an algorithm, and nowadays, several authors have
employed Rosser’s approach to developing efficient numerical schemes. These authors
include Ajie et al. [1], Akinfenwa et al. [2], Majid et al. [21] and Muka and Ikhile [24].

In this work, we consider the block method for the numerical integration of stiff
ODEs. We are spur by the fact that block methods are capable of obtaining numerical
solutions at several points simultaneously as well as effectively formulated scheme
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capable of solving stiff IVPs in ODEs (stiffly stable). This paper is organized as follows:
In Section 2, the formulation of second derivative block methods are considered as well
as the pictorial representation of the algorithm. In Section 3, some basic properties of the
block methods were investigated and analyzed. The numerical solutions and comparison
have been drawn for some methods in Section 4 while the conclusion of the work is

stated in Section 5.

We seek the numerical solution of the stiff IVP
Y =fxy), ya)=y. asxs<b (1)

where a and b are a finite interval, i.e., I =[a, b], y: 1 -~ R™ and f:1 - R™ - R"™

is continuous and differentiable.

In Zabidi et al. [30], the two-point block method of the form

Ay =AWy _ +n(BOF, + BVy, ) 2)
is proposed, where
8 1 0 2
OIS R O L S I ST R (I P
-1 1 00 8 5 o -L
12 12 12

and
Y, = |:Yn+1:|’ Y, = |:yn—1:|, F, = |:fn+1:|’ F,_ = |:fn—1:|.
Yn+2 Yn Jn+2 In

2. Development of the Second Derivative Block Method

Second derivative block method (SDBM) with high order is derived herein, the
continuous form of (2) is proposed and extended to second derivative block formulation.
In the spirit of Zabidi et al. [30], the k-point, r block SDBM under consideration is of the
form

AQy,, = AWy, + W[ BOF(,) + BUF(E, )]+ [cO6m,)]. @

where k is the number of points and 7 is the number of blocks, % is the mesh size, the

matrix G(Y,,) = F'(Y,,) and the matrix ) are strictly diagonal matrices with

m
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dimension k x k. The general structure of the coefficient matrices for method (3) are as

given below

1 o o --- 0 00 01
-1 1 0 : 0O 0 0O
AQ =] o -1 1 . AD=lo 0 0t :|
O -1 1 O o o0 : :
0O O -1 1 00 00
bip bio by 0 by
g0 — P21 D2 bgk B0 = 0 bk ’
br1 bio bk 00 bk
1 0 0
o [0 10
00 1
The vectors Y,,, Y,,—y, F,,, F,-1, G,, and G,,_; are defined by
Yn+l Yn—k+1 Jn+1
Yn+2 : Jn+2
Y, = n:+ ; Yip-1 = 5 Fy = n:+ ;
Yn-1 .
Yn+k Yn fn+k
Sn-k+1 8n+l 8n—k+1
_ : _| 8n+2 _ 5
Fm—l - ; Gm - n: > Gm—l - >
Sn-1 : 8n-1
fn En+k 8n

where (b1, . by)' s (oo s ba)! and (byg, ... by )'  are the coefficients to be

determined. The entries in matrices A(®) in A() are fixed to ensure desirable stability
criteria. Hence, we present the flowchart of the formulation of the SDBM for first-order
IVPs in ODEs.
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Development of the SDBM is based on the
application of the scalar test problems (STPs)

Y=y, ¥ =Ny

The presentation of the general form
of the SDBM under considearation is given by

T: A0y, = AWY,,_; + h[BOF(Y;,) + BUF(Y,,_1)] + B2 [COG(Y;n)],

where:
L. {z;};_y € [a.b] and [a,b] is the integration region,
2. the stepsize of the integration h = |z;,; — x;/,j = 0(1)r.

|

. {Br;éo implicit,

B" =0 explicit.

On the application of the general STP
on the general form of the SDBM T yields the stability

polinomial that determines the region of absolute stability.

Figure 1. Flowchart algorithm for the development of the SDBM.

3. Construction of the Second Derivative Block Method (SDBM)

In this section, we construct up to seven points second derivative block method using
Mathematica Software, Borwein and Skerritt [32].
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3.1. Two-point second derivative block method (SDBM)

To derive the two-point SDBM of the form (3), we set

A(o)z(l 0]’ A(l):(o 1}9 B(o):[bn bnj’
-1 1 00

by by

JROBN ol o[ 0 ,
0 b22 0 (%)
where the corresponding vectors
Y Yn-
Ym:|: n+1:|; Ym_1:|:nl:|;
Yn+2 Yn
Fm - |:fn+1:|; Fm—1 - |:fn—1:|; Gm - |:gn+1:|.
fn+2 fn En+2

The algebraic coefficients obtained for the two-point SDBM yields

6 1
("0 Lo_(01 (0) -| 24 24
4 -1 1) 4 0 0) 5 20 29
48 48
0 7 -5 0
O T R N T @
0 — 0 -—
48 48
Hence, the block form (4) can be written in the linear form
Yn+1 = Vn ¥t i(7fn + 16fn+1 + fn+2) + ﬁ(_6gn+1)9 &)
24 24
~ h h?
Yn+2 = Yn+a1 T 4_8(fn + 20fn+1 + 29fn+2) + 4_8(_6gn+2)' (6)

In similar fashion, we derive for k =3, ..., 7.
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3.2. Three-point second derivative block method

The three-point SDBM for k& = 3 is given by

1 0 0 00
AO =1 1 of, AD=|0 0 0,
0 -1 1 00O
28 39 4 00 2
360 360 360 360
O] 129 28 T | 4|
360 360 360 360
54 513 614 00 7
1080 1080 1080 1080
sy, 0
360
cO® - o -0
360
0 _ 114
1080
3.3. Four-point second derivative block method
The four-point SDBM for k£ = 4 is given by
1 0 00 0 0 01
A(O) _ -1 1 0 0 ’ A(l) _ 0 0 0O ’
0 -1 1 0 0 00O
0 0 -1 1 0 00O
842 282 58 7 00 0 _ 540
1440 1440 1440 1440 1440
944 1824 144 11 21
— — — -—— 000 —-—
g0) =| 2880 2880 2880 2880 gl) = 2880
_ 114 1746 2626 51 ’ 00 0 11 ’
4320 4320 4320 4320 4320
690464 1554156 2079264 1068851 0 129441
17280 17280 17280 17280 17280
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3.4. Five-point second derivative block method

540 0 0
1440
0 660 0
c0) = 2880
0 0 660
4320
0 0 o 315940
17280
The five-point SDBM for k£ = 5 is given by
1 0 0 00 00001
-1'1 0 0 0 00000
=lo -1 1 0 0], aA0={0 0 0 0 0f,
0 0 -1 1 0 00000
0 0 0 -11 00000
63773 36528 11292 2728 321
120960 120960 120960 120960 120960
_ 6208 12501 1808 277 27
20160 20160 20160 20160 20160
. 347 7408 12501 608 37
20160 20160 20160 20160 20160 |’
1048 5412 53328 71123 984
120960 120960 120960 120960 120960
7935 29840 76260 340440 317731
604800 604800 604800 604800 604800
0 29544 000 o 21780
120960 120960
00 —ﬂ 0 0 0O ﬂ
20160 20160
000 2L | c®@=lgoo0o -520
20160 20160
00 o - M 000 0 - 16260
120960 120960
984 0 51780
604800 604800
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3.5. Six-point second derivative block method

The six-point SDBM for k = 6 is given by

1 0 0 0 0 O 0 0 00 01
-1 1 0 0 0 O 0 000 00O
A(O) _ 0 -1 0O 0 O , A(l) _ 0O 000 00O ,
0O 0 -1 1 0 O 0O 00 0 OO
0O 0 0 -1 1 0 0 00 0 OO
0O 0 0 0 -11 0 00 0 OO
112223 102906 42484 15406 3627 398

241920 241920 241920 241920 241920 241920
146387 2801749 4157 11551 152347 1123

406560 4181760 101640 406560 18295200 1084160

503 13861 586 2171 53 191
BO) | 40320 40320 945 40320 8064 362880
271 781 12067 293347 139 253 '
60480 26880 30240 483840 6720 241920
109 257 3971 6347 7686l 731
26880 13440 60480 13440 134400 120960
179 5771 8131 13823 12079 247021

20160 161280 90720 80640 20160 483840

00000 7098
241920
4065600
00000 -2
5 = 362880 |
00000 -1
483840
0000 253
604800
000 731
725760
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115500 0 0 0 0
241920
1
_ 10843 0 0 0
69696
0 -— 0 0
c0) = 864
0 0 1oL 0 0
1152
0 0 0 A 0
320
0 0 0 0 S 25
3456
3.6. The coefficients of seven-point second derivative block method
The seven-point SDBM for k = 7 is given by
1 0 0 0 0 0O 0 00O0O0O 01
-1 1. 0 0 0 0 O 0 00O0O0O OO
0 -1 1 0 0 0O 0 00O0O0OO OO
AO=l0o 0 -1 1 0 00| 4a%=l000000 0]
0 0 0-11 00O 000O0O0OO OO
0 0 0 0 -1 10 0 00O0O0OO OO
0 0 0 0 0 -1O 0 00O0O0OO OO
449527 341699 105943 153761 _ 943 99359 _ 6031
1134000 604800 362880 1088640 18900 9072000 5443200
512669 2600231 13985 21509 31111 _ 3047 409
1814400 4536000 72576 362880 1814400 907200 1296000
_ 17483 197611 13903 29843 9127 13169 23
1814400 604800 22680 362880 604800 5443200 113400
B(()) _ 14639 _ 12697 135053 13903 22261 6773 199
5443200 604800 362880 22680 604800 1814400 777600
_ 1577 17831 15419 30911 2692841 27779 _ 1201
907200 1814400 362880 72576 4536000 1814400 1814400
20609 _ 52 37631 32233 302429 633277 8563
9072000 4725 1088640 362880 604800 1134000 1814400
_ 35453 86791 _ 2797 157513 133643 1147051 1758023
5443200 302400 36288 1088640 604800 1814400 3528000
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00000 416173
1814400
000000 -201
1814400
00000 409
777600
B0 =0 00000 -—2
113400
00000 199
1296000
5443200
12700800
64800
21600
0 _3238 0, 0 0 0
12960
C(0)= 0 0 _ﬁ 0 0 0
12960
0 0 0 _ 3233 0
21600
0 0 0 0 _ 1297
64800
0 0 0 0 0 33953
453600

4. Stability Analysis of Methods

Theorem 1 (Chartier [5]). Let e = [1, 1, 1, .., 1]*, ¢ =[1, 2,3, ... k]" and the order

condition for k-point r-block method (3) be given as

k
Cy = e—ZAje
J=1

k k
C=c —ZA]-(C - Wie) - ZBje
J=1 Jj=0

Earthline J. Math. Sci. Vol. 1 No. 2 (2019), 221-239
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k
= ZAJ c — We) —ZZB (c = Wje)
j=1 j=0

k k
= ZAJC—Hje Z C—U.]e) ; 1=3,4,5, ... @)
Jj=1 Jj=0

The powers of vectors in (7) are component-wise. The SDBM (3) are of order p, if
C; =0,0j=0,1, ..., p. It can be verified that the coefficients of (3) for k-point SDBM

isorder p =k +2.
Theorem 2. The application of the scalar test equations
Yy =Ay, ' =My, Re(\)>0
on the method (3) yields the stability polynomial
Y, =M(2)Y,-;, z=MAh
The matrix M (z) is called the amplification matrix and it is given by
M(z) = (A0 - zB(0) — 2001 (4() 4 ,p(V),
The polynomial T(w, z) associated with (3) is given by
mw, z) = Det[lkw - M(z)].
As in Fatunla [9], we state the preliminary definitions.

Definition 1. The block method (3) is zero stable provided the roots R iz j=1 ..,k

of the first characteristics polynomial p(R) specified by
_ k(i) pk=1] _ (0) _
p(r) = det[zi:oA R } =0, AY =7

satisfied | R j | <1, j=1,.., k, and for those roots with | R j | =1, the multiplicity does

not exceed 1.

http://www.earthlinepublishers.com



A Family of Stiffly Stable Second Derivative Block Methods ... 233

Definition 2. The block method (3) is consistent if it has order at least one.

Definition 3. The block method (3) is convergent if and only if it is consistent and
zero stable.

Definition 4. The block method (3) is said to be A-stable if the region of absolute
stability (RAS) includes the entire left half of the complex z plane. That is

RAS 0O {z:Re(z) < 0}.

Definition 5. The block method (3) is said to be A(Q)-stable with o O [0, g}, if
the wedge
Sq ={z:|arg(-2)| < a, z # 0}
is contained in its RAS.
Definition 6. The block method (3) is L-stable if it is A-stable and if in addition

lim R(z) = 0.

-0

The RAS of the SDBM (3) is given in Figure 2 while the summary of the error
constant and the order of the methods are presented in Table 1.

4 T T T T T T T
/://, :
V7 T »
2 < f ny .
k2——>\ \
‘ P e N
z, T ) == »
£ Ks— J
- | Ke— | —7
\ k56— /
\ Kti———————>
24 -
4 r r 3 —+ r r r
-1 0 1 2 3 4 5 6 7

Re(z)

Figure 2. The RAS of the SDBM (k =1(1)6).
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Table 1. The summary of the error constant and the order of the SDBM (3).
k Error Constant C p+2 Order p
T
) (_;L) 4
180 1440
T
3 ( 7 - 11 , 17) s
2400° 7200 7200
A [_ 107 1 1487 _422633)T 6
60480 512° 60480° 30240
s [ 199 289 191 253 431177231 jT .
169344 846720  846720° 846720 192036096000
(_ 6031 793291 23
7257600 878169600° 226800
6 8
199 1201 8563 )T
2073600° 7257600 14515200
( 5741 2687 3391 2497
93312007 21772800  65318400° 65318400’
7 9

41 6533 27719 jT
870912° 65318400 65318400

5. Numerical Experiments

In this section, the k-point SDBM (3) is tested on some given problems and the

numerical results are compared to exact solution, existing solutions in the literature, and
the solution generated by MATLAB Software ODE 15 Otto and Denier [33].

The exact solution: y(x) = e

Problem 1. Consider the initial value problem Zabidi et al. [30]:

y' =-=10xy, y(0)=1 0<x<10.

—5x2

http://www.earthlinepublishers.com
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Table 4.1. Error results for problem 1.

h Musa et al. [31] Zabidi et al. [30] Two-point SDBM
107! - 9.37x10" 6.21x107>
1072 1.24x1072 1.25%10°7 7.28x107%
107 7.36x10" 4.58x10" 7.28x107Y
107 7.07x107> 4.55%x107° 0.00x10”

Problem 2. Consider the initial value problem, Zabidi et al. [30]:

100(y = x°) +3x2,

¥(0)

The eigenvalue is A = =100. Exact solution: y(x) = x°.

Table 4.2. Error results for problem 2.

0 O=sx<l0.

h Zabidi et al. [30] Two-point SDBM
107! 2.41x1077 2.16 x10°7
107 4.00 x107 124 x10°%
107 6.07 x10® 1.47 100D
107 9.21x10"® 4.03 x10C1

Problem 3. Consider the nonlinear stiff system, Hairer et al. [13]:
i =2

vh = =yy +ya(1-y7): »(0) =2, y,(0)=0.

The Van der pol equation describes the oscillations in an electrical circuit. The SDBM of
order four of our method with step size £ = 0.001 was compared with that of ODE 15,

and the resulting phase diagram is given in Figure 3.

Earthline J. Math. Sci. Vol. 1 No. 2 (2019), 221-239
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| ode15
SDBM

15

10

25 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 25

Figure 3. Numerical solution for problem 3 in phase diagram.

Problem 4. Consider the nonlinear problem, Akinfenwa et al. [2]

1
Je+l

1 1-;:__ T T T T T T
5=

for + 1]0, #] with the exact solution: y =

y num

ﬁ‘%@_ = yexact
%
k>

0.9

0.8 |-

0.5

0.4 ; : : £
0 0.5 1 15 2 25 3 35 4

Figure 4. Numerical and exact solutions for problem 4.
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6. Conclusion

In this paper, SDBM for the solution of first order IVP in ODEs is proposed. The
methods are found to be consistent and zero stable. Furthermore, the result obtained in
Figure 2 shows that some of the SDBM proposed herein are A-stable and L-stable, while
some are A(0)-stable. Flowchart algorithm for the development of the SDBM is also
presented herein. The SDBM is found to be suitable for the integration of stiff first-order
IVP when applied on classical problems earlier studied in Zabidi et al. [30], Hairer et al.
[13], Akinfenwa et al. [2].
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