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Abstract 

In this paper, we present a family of stiffly stable second derivative block methods 

(SDBMs) suitable for solving first-order stiff ordinary differential equations (ODEs). The 

methods proposed herein are consistent and zero stable, hence, they are convergent. 

Furthermore, we investigate the local truncation error and the region of absolute stability 

of the SDBMs. A flowchart, describing this procedure is illustrated. Some of the 

developed schemes are shown to be A-stable and L-stable, while some are found to be 

A(α)-stable. The numerical results show that our SDBMs are stiffly stable and give better 

approximations than the existing methods in the literature. 

1. Introduction 

Ordinary differential equations are very important when modeling physical systems 

in engineering and sciences. Examples of such systems are circuit theory, chemical 

kinetics, control theory, celestial mechanics and biology. The solution equations of these 

systems give insight into how the systems evolve and what the effects of changes in the 
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systems are. Consequently, the ODEs emanating from the real-life phenomena are highly 

non-linear and cannot be solved analytically. Hence, we need appropriate numerical 

methods to solve these problems. The problem of deriving more advanced and efficient 

methods for stiff problems has received a great deal of attention since the emergence of 

the famous theorem of Dahlquist [7]. As in Dahlquist [7], a potentially good numerical 

method for the solution of stiff systems of ODEs must have good accuracy and 

reasonable wide region of absolute stability. As a matter of necessity, we will investigate 

the accuracy and the stability of the method to be presented in this paper through 

numerical experiment and stability analysis.   

The backward differentiation formula (BDF) was introduced by Curtiss and 

Hirschfelder [6] and further development was made by Cash [4]. This was achieved by 

proposing a class of extended BDF of high order ODEs. Similarly, Chartier [5] and 

Fatunla [9] have independently improved on the BDF by deriving A-stable methods 

suitable for the integration of first-order initial value problems (IVPs). The search for 

higher order A-stable multistep methods is carried out in the two main directions: (1) use 

higher derivatives of the solutions, (2) throw in additional stages, off-step points, super-

future points. This leads into the large field general linear methods Hairer and Wanner 

[14]. However, the super-future points could be likened to the super-implicit points 

presented in Ibrahim and Ikhile [16], Ibrahim and Ikhile [17] respectively for the case of 

special second-order linear multistep methods. Several authors have considered the 

second and higher derivatives methods because of the existence of A-stable higher multi-

derivative schemes, see for example, Enright [10], Ismail and Ibrahim [18], Kumleng and 

Sirisena [20]. Also, the combination of one-step procedures and the Runge-Kutta 

procedures was introduced by Gear [11]. In like manner, some numerical analysts have 

considered the development of this form of methods. Examples are the works presented 

in Butcher [3], Gupta [12], Mehdizadeh and Molayi [23], Ngwane and Jator [26]. 

Lambert [19] opined that Milne in 1953 introduced block method for the sole aim of 

obtaining starting values for predictor-corrector algorithms. Furthermore, Rosser [28] 

generalized the idea of Milne into an algorithm, and nowadays, several authors have 

employed Rosser’s approach to developing efficient numerical schemes. These authors 

include Ajie et al. [1], Akinfenwa et al. [2], Majid et al. [21] and Muka and Ikhile [24]. 

In this work, we consider the block method for the numerical integration of stiff 

ODEs. We are spur by the fact that block methods are capable of obtaining numerical 

solutions at several points simultaneously as well as effectively formulated scheme 
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capable of solving stiff IVPs in ODEs (stiffly stable). This paper is organized as follows: 

In Section 2, the formulation of second derivative block methods are considered as well 

as the pictorial representation of the algorithm. In Section 3, some basic properties of the 

block methods were investigated and analyzed. The numerical solutions and comparison 

have been drawn for some methods in Section 4 while the conclusion of the work is 

stated in Section 5. 

We seek the numerical solution of the stiff IVP 

 ( ) ( ) bxayayyxfy ≤≤==′ ,,, 0   (1) 

where a and b are a finite interval, i.e., [ ],, baI = m
RIy →:  and mm

RRIf →→:  

is continuous and differentiable. 

In Zabidi et al. [30], the two-point block method of the form 

 ( ) ( ) ( ( ) ( ) )1
10

1
10

−− ++= mmmm YBFBhYAYA   (2) 

is proposed, where 
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2. Development of the Second Derivative Block Method 

Second derivative block method (SDBM) with high order is derived herein, the 

continuous form of (2) is proposed and extended to second derivative block formulation. 

In the spirit of Zabidi et al. [30], the k-point, r block SDBM under consideration is of the 

form 

 ( ) ( ) [ ( ) ( ) ( ) ( )] [ ( ) ( )],02
1

10
1

10
mmmmm YGChYFBYFBhYAYA +++= −−  (3) 

where k is the number of points and r is the number of blocks, h is the mesh size, the 

matrix ( ) ( )mm YFYG ′=  and the matrix ( )0
C  are strictly diagonal matrices with 
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dimension .kk ×  The general structure of the coefficient matrices for method (3) are as 

given below 
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The vectors mmmmm GFFYY ,,,, 11 −−  and 1−mG  are defined by 
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where ( ) ( )Tk
T

k bbbb 212111 ...,,,...,,  and ( )Tkkk bb ...,,1  are the coefficients to be 

determined. The entries in matrices ( )0
A  in ( )1

A  are fixed to ensure desirable stability 

criteria. Hence, we present the flowchart of the formulation of the SDBM for first-order 

IVPs in ODEs. 
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Figure 1. Flowchart algorithm for the development of the SDBM. 

3. Construction of the Second Derivative Block Method (SDBM) 

In this section, we construct up to seven points second derivative block method using 

Mathematica Software, Borwein and Skerritt [32]. 
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3.1. Two-point second derivative block method (SDBM) 

To derive the two-point SDBM of the form (3), we set 
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The algebraic coefficients obtained for the two-point SDBM yields 
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Hence, the block form (4) can be written in the linear form 

 ( ) ( ) ,6
24
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1

2

211 ++++ −++++= nnnnnn g
h

fff
h

yy   (5) 

 ( ) ( ) .6
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h
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h

yy   (6) 

In similar fashion, we derive for .7...,,3=k  
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3.2. Three-point second derivative block method 

The three-point SDBM for 3=k  is given by 
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3.3. Four-point second derivative block method 

The four-point SDBM for 4=k  is given by 
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3.4. Five-point second derivative block method 

The five-point SDBM for 5=k  is given by 
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3.5. Six-point second derivative block method 

The six-point SDBM for 6=k  is given by 
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3.6. The coefficients of seven-point second derivative block method 

The seven-point SDBM for 7=k  is given by 
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4. Stability Analysis of Methods 

Theorem 1 (Chartier [5]). Let [ ] ,1...,,1,1,1
T

e =  [ ]Tkc ...,,3,2,1=   and the order 

condition for k-point r-block method (3) be given as 

∑
=

−=
k

j
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= =
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( ) ( )∑ ∑
= =

µ−−µ−−=
k

j
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j

jj jecBjecAcC

1 0

22
2 2  

⋮  

⋮  
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i
j

i
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The powers of vectors in (7) are component-wise. The SDBM (3) are of order p, if 

....,,1,0,0 pjC j =∀=  It can be verified that the coefficients of (3) for k-point SDBM 

is order .2+= kp   

Theorem 2. The application of the scalar test equations 

( ) 0Re,,
2 >λλ=′′λ=′ yyyy  

on the method (3) yields the stability polynomial  

( ) .,1 hzYzMY mm λ== −  

The matrix ( )zM  is called the amplification matrix and it is given by 

( ) ( ( ) ( ) ( ) ) ( ( ) ( ) ).1110200
zBACzzBAzM +−−= −  

The polynomial ( )zw,π  associated with (3) is given by 

( ) ( )[ ]., zMwIDetzw k −=π  

As in Fatunla [9], we state the preliminary definitions. 

Definition 1. The block method (3) is zero stable provided the roots kjR j ...,,1, =  

of the first characteristics polynomial ( )Rρ  specified by 

( ) ( ) ( )
IARAr

k

i

ki ==




=ρ ∑ =

− 0

0

1 ,0det  

satisfied ,...,,1,1 kjR j =≤  and for those roots with ,1=jR  the multiplicity does 

not exceed 1. 
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Definition 2. The block method (3) is consistent if it has order at least one. 

Definition 3. The block method (3) is convergent if and only if it is consistent and 

zero stable. 

Definition 4. The block method (3) is said to be A-stable if the region of absolute 

stability (RAS) includes the entire left half of the complex z plane. That is 

( ){ }.0Re: <⊇ zzRAS  

Definition 5. The block method (3) is said to be ( )αA -stable with ,
2

,0 




 π∈α  if 

the wedge  

( ){ }0,arg: ≠<−=α zazzS  

is contained in its RAS. 

Definition 6. The block method (3) is L-stable if it is A-stable and if in addition  

( ) .0lim =
∞→

zR
z

 

The RAS of the SDBM (3) is given in Figure 2 while the summary of the error 

constant and the order of the methods are presented in Table 1. 

 

Figure 2. The RAS of the SDBM ( )( ).611=k  
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Table 1. The summary of the error constant and the order of the SDBM (3). 

k Error Constant 2+pC  Order p 
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5. Numerical Experiments 

In this section, the k-point SDBM (3) is tested on some given problems and the 

numerical results are compared to exact solution, existing solutions in the literature, and 

the solution generated by MATLAB Software ODE 15 Otto and Denier [33]. 

Problem 1. Consider the initial value problem Zabidi et al. [30]: 

( ) .10010,10 ≤≤=−=′ xyxyy  

The exact solution: ( ) .
25x

exy
−=  
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Table 4.1. Error results for problem 1. 

h Musa et al. [31] Zabidi et al. [30] Two-point SDBM 

10
−1

 − 9.37×10
(−4)

 6.21×10
(−5)

 

10
−2

 1.24×10
(−2)

 1.25×10
(−7)

 7.28×10
(−8)

 

10
−3

 7.36×10
(−4)

 4.58×10
(−8)

 7.28×10
(−11)

 

10
−4

 7.07×10
(−5)

 4.55×10
(−8)

 0.00×10
(0)

 

Problem 2. Consider the initial value problem, Zabidi et al. [30]: 

( ) ( ) .10000,3100
23 ≤≤=+−−=′ xyxxyy  

The eigenvalue is .100−=λ  Exact solution: ( ) .
3

xxy =  

Table 4.2. Error results for problem 2. 

h Zabidi et al. [30] Two-point SDBM 

10
−1

 2.41×10
(−7)

 2.16 ×10
(−7)

 

10
−2

 4.00 ×10
(−7)

 1.24 ×10
(−8)

 

10
−3

 6.07 ×10
(−8)

 1.47 ×10
(−11)

 

10
−4

 9.21×10
(−8)

 4.03 ×10
(−13)

 

Problem 3. Consider the nonlinear stiff system, Hairer et al. [13]: 

21 yy =′  

( ) ( ) ( ) .00,20:1 21
2
1222 ==−µ+−=′ yyyyyy  

The Van der pol equation describes the oscillations in an electrical circuit. The SDBM of 

order four of our method with step size 001.0=h  was compared with that of ODE 15, 

and the resulting phase diagram is given in Figure 3. 
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Figure 3. Numerical solution for problem 3 in phase diagram. 

Problem 4. Consider the nonlinear problem, Akinfenwa et al. [2] 

( ) 10,
2

3 =−=′ y
y

y  

for [ ]tt ,0∈  with the exact solution: .
1

1

+
=

t
y  

 

Figure 4. Numerical and exact solutions for problem 4. 
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6. Conclusion 

In this paper, SDBM for the solution of first order IVP in ODEs is proposed. The 

methods are found to be consistent and zero stable. Furthermore, the result obtained in 

Figure 2 shows that some of the SDBM proposed herein are A-stable and L-stable, while 

some are A(α)-stable. Flowchart algorithm for the development of the SDBM is also 

presented herein. The SDBM is found to be suitable for the integration of stiff first-order 

IVP when applied on classical problems earlier studied in Zabidi et al. [30], Hairer et al. 

[13], Akinfenwa et al. [2]. 
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