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Abstract

The concept of linearized water wave theory is fundamental in fluid dynamics and 
extensively utilized for studying wave propagation in various aquatic environments. 
Water waves are crucial in many engineering and scientific fields like ocean and coastal 
engineering, ship hydrodynamics, and offshore engineering. However, the complexity of 
nonlinear wave dynamics has limited the accuracy of traditional numerical models, 
highlighting the need for a simpler yet robust approach. Linearized water wave theory 
offers a promising solution by assuming small-amplitude waves, which simplifies the 
governing equations and provides an efficient tool for wave analysis.

The numerical simulation of linearized water wave theory holds significant importance 
across a spectrum of engineering and scientific disciplines, spanning from coastal 
engineering to oceanography. This paper focuses on discretizing the Euler equation to 
facilitate precise and efficient numerical simulations of linearized water wave 
phenomena. The Euler equation, which governs the dynamics of inviscid fluid flow, 
undergoes linearization to simplify the mathematical formulation while preserving crucial 
wave dynamics. Discretization methods, including finite difference, finite element, or 
spectral techniques, are employed to approximate the continuous equations on a discrete 
computational grid. Subsequently, these discretized equations are numerically solved 
using iterative or time-stepping methods to forecast the evolution of water waves over 
time. The accuracy and stability of the numerical scheme are evaluated through 
convergence studies and validation against analytical solutions or experimental data.
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1. Introduction

Water waves are a pivotal aspect of engineering, particularly in coastal and offshore 
engineering, where a comprehensive understanding of their behaviour is essential for 
designing and constructing various structures. Among the prevalent methodologies 
employed to explore water wave dynamics, the linearized water wave theory stands out 
for its ability to provide a streamlined yet precise depiction of wave phenomena.

At the core of the linearized water wave theory lies the assumption that the wave's 
amplitude is significantly smaller than both the wavelength and water depth. This 
assumption facilitates the linearization of the governing equations, significantly 
simplifying mathematical analyses while preserving the essential characteristics of water 
wave behaviour.

A pivotal aspect of the linearized water wave theory is wave dispersion, 
encapsulating the relationship between wave frequency and wave number [6]. This 
relationship, articulated by the dispersion relation, enables the determination of wave 
celerity (wave propagation speed) and wavelength (distance between successive wave 
crests).

The applications of linearized water wave theory in engineering are multifaceted, 
extending to the design of coastal structures such as breakwaters and seawalls, analysis of 
wave-induced forces on offshore platforms, and prediction of wave-induced loads on 
marine vessels. Moreover, it serves as the groundwork for advanced wave modelling 
techniques such as the Boussinesq and nonlinear Schrödinger equations. In essence, the 
linearized water wave theory is a cornerstone concept in engineering, providing a concise 
yet accurate portrayal of water wave dynamics.  In the wind generated wave at the ocean 
surface which goes with the nonlinear correction critical value hypotheses of wave- 
amplitude based Reynold number relating wave amplitude and orbital velocity often 
trigger off a transition from Lamina to turbulence in the wave motion. Thus such problem 
often leads to the need to calculate wind stress drag coefficient over ocean water. It holds 
that whenever the wind velocity is known the wind stress can always be estimated in a 
reasonable manner. The following eleven factors have been identified by [7] as being 
responsible for first order effect on wave energy spectrum of wind generated waves:

Wind input, wave breaking, resonant wave-wave interactions, strong nonlinear 
interactions, nonlinear wave evolution, dissipation by turbulence, dissipation by 
viscosity, wave breaking in shallow water, bottom interaction, long wave to short wave 
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interactions and wave-current interactions are a common place phenomenon in the theory 
of  ocean water wave. In all cases therefore, waves are always under the influence of 
ambient current. 

The ambient current can be tidal current, ocean current local wind generated Current 
River current and wave generated current.

In particular, situations when discontinuities of first kind, i.e., jumps or saltus 
discontinuities which of course  called ‘shocks’ do occur frequently in the far field ocean 
. Thus the equations of continuity, momentum, and energy in the component direction of 
waves in terms of velocity, tangent and normal may be affected to the curve in which the 
shock occurs Lieberstein [16].

1.1. Literature Review

Water waves play a crucial role in various engineering disciplines, particularly in 
coastal and offshore engineering. Understanding their behaviour is essential for designing 
resilient structures and predicting wave-induced loads accurately. Linearized water wave 
theory has emerged as a fundamental framework for analysing wave dynamics, offering 
simplified yet effective solutions to complex problems. This literature review aims to 
provide a detailed overview of the key concepts, historical development, applications, 
and recent advancements in linearized water wave theory.

The foundation of linearized water wave theory can be traced back to Sir George 
Biddell Airy’s seminal work in 1845. Airy developed a linear model to describe small-
amplitude waves propagating in uniform depth environments. His model assumed wave 
amplitude to be much smaller than wavelength and considered fluid motion as irrotational 
and inviscid. This work laid the groundwork for what became known as the Airy wave 
theory, which remains a cornerstone of linearized water wave theory.

Building upon Airy’s pioneering work, subsequent researchers have refined and 
extended linearized water wave theory to address more complex scenarios. In 1847, 
George Gabriel Stokes introduced a higher-order linear wave theory that accounted for 
nonlinear effects of wave propagation. Stokes’ work provided valuable insights into wave 
behaviour beyond the limitations of Airy’s theory. Additionally, Joseph Valentin 
Boussinesq's contributions in 1872 led to the development of equations capable of 
describing wave propagation in shallow water environments, further expanding the 
applicability of linearized water wave theory in Boussinesq, 1872.
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The key concepts and developments ocean water waves date back to Euler Stoke in 
19th century. This work is based on linearization. The study of water wave with relation 
to ocean waves has had a significant impact in water mechanics engineering. This 
translates to the study of hydrodynamics; an important tool in aerospace mechanics. By 
understanding the underlying principles of linearized water wave theory, engineers can 
devise effective solutions for a wide range of coastal and offshore engineering 
challenges, ensuring the safety and resilience of coastal communities and infrastructure.

The remaining part of this paper is categorised as follows:

Section two discusses the methodology, focusing on the formulation of the Euler-
Stokes equations. We examined wave height and wave speed in both deep and shallow 
water. The situation where a wave degenerates from a circular to an elliptical (or straight 
line) shape is also addressed. We provided equations for the potential and kinetic energy 
involved as the waves propagate from the source to the far field, where they transition 
from laminar flow to turbulence. This behavior is distinct from that of ‘rogue waves,’ 
which are highly destructive and typically occur in the middle of the ocean.

In section three, we discretized the Euler-Stokes equation using a 3 point grid or 5 
point grid. This reduces the wave equation into a system of linear equations in which case 
the matrix is sparse. The disadvantage of using the Gaussian elimination method is due to 
the problem of ‘fill in’ this led us to the method of Gauss-Siedel and Jacobi iteration 
method. It should be noted that Jacobi iteration converges if and only if the matrix is 
diagonally dominant. Again, it converges slower than Guass-Siedel because Guass-Siedel 
is an implicit method which requires an additional storage of work. The Guass-Siedel 
method is polynomial bounded.

In section four, we presented the discussion aspect of the work.

2. Methodology

The velocity potential for a progressive wave is given as

𝜑 = 𝑎𝑛 𝑐𝑜𝑠ℎ𝑚(𝑦 + ℎ)cos(𝑚𝑥 ― 𝑛𝑡)
𝑚𝑠𝑖𝑛ℎ𝑚ℎ .                                          (2.1)

To derive the velocity profile or path, we recall that; 

𝑢 = ―∂𝜑
∂𝑥 ,    𝑣 =

―∂𝜑
∂𝑦  ,
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∴ 𝑢 = ―∂𝜑
∂𝑥 = ―[ ― 𝑎𝑛𝑚 𝑐𝑜𝑠ℎ𝑚(𝑦 + ℎ)sin(𝑚𝑥 ― 𝑛𝑡)

𝑚 𝑠𝑖𝑛ℎ𝑚ℎ ] = 𝑎𝑛 𝑐𝑜𝑠ℎ𝑚(𝑦 + ℎ)sin (𝑚𝑥 ― 𝑛𝑡)
sinh 𝑚ℎ      (2.2)

 𝑣 =
―∂𝜑
∂𝑦 = ― 𝑎𝑛𝑚𝑠𝑖𝑛ℎ𝑚(𝑦 + ℎ)cos(𝑚𝑥 ― 𝑛𝑡)

𝑚 𝑠𝑖𝑛ℎ𝑚ℎ
= ―

𝑎𝑛 𝑠𝑖𝑛ℎ𝑚(𝑦 + ℎ)cos (𝑚𝑥 ― 𝑛𝑡)
sinh 𝑚ℎ .     (2.3)

Next, we integrate both equations with respect to 𝑡 to get values for 𝑥 and 𝑦, that is; 

𝑥 = 𝑢,  𝑦 = 𝑣

𝑥 = ∫ 𝑢𝑑𝑡 = ∫ 𝑎𝑛 𝑐𝑜𝑠ℎ𝑚(𝑦 + ℎ)sin (𝑚𝑥 ― 𝑛𝑡)
sinh 𝑚ℎ

𝑑𝑡] = [ ―𝑎𝑛 𝑐𝑜𝑠ℎ𝑚(𝑦 + ℎ)cos(𝑚𝑥 ― 𝑛𝑡)
𝑠𝑖𝑛ℎ𝑚ℎ ∗ 1

―𝑛]

𝑥 = 𝑎 𝑐𝑜𝑠ℎ𝑚(𝑦 + ℎ)cos (𝑚𝑥 ― 𝑛𝑡)
𝑠𝑖𝑛ℎ𝑚ℎ                                                                                      (2.4)

𝑦 = 𝑣𝑑𝑡 = ―
𝑎𝑛 𝑠𝑖𝑛ℎ𝑚(𝑦 + ℎ)cos (𝑚𝑥 ― 𝑛𝑡)

sinh 𝑚ℎ
𝑑𝑡

= ―
𝑎𝑛𝑠𝑖𝑛ℎ𝑚(𝑦 + ℎ)sin(𝑚𝑥 ― 𝑛𝑡)

𝑠𝑖𝑛ℎ𝑚ℎ ∗
1

―𝑛  

𝑦 = 𝑎𝑠𝑖𝑛ℎ𝑚(𝑦 + ℎ)sin(𝑚𝑥 ― 𝑛𝑡)
𝑠𝑖𝑛ℎ𝑚ℎ .                                                                                     

(2.5)

Squaring both equations we have that

𝑥2 = 𝑎2𝑐𝑜𝑠ℎ2𝑚(𝑦 + ℎ)𝑐𝑜𝑠2(𝑚𝑥 ― 𝑛𝑡)
𝑠𝑖𝑛ℎ2𝑚ℎ                                           (2.6)

𝑦2 = 𝑎2𝑠𝑖𝑛ℎ2𝑚(𝑦 + ℎ)𝑠𝑖𝑛2(𝑚𝑥 ― 𝑛𝑡)
𝑠𝑖𝑛ℎ2𝑚ℎ .                                          (2.7)

 Let 𝐴2 = 𝑎2𝑐𝑜𝑠ℎ2𝑚(𝑦 + ℎ)
𝑠𝑖𝑛ℎ2𝑚ℎ  and 𝐵2 = 𝑎2𝑠𝑖𝑛ℎ2𝑚(𝑦 + ℎ)

𝑠𝑖𝑛ℎ2𝑚ℎ  respectively. So that we can rewrite 

equation 

𝑥2 = 𝐴2𝑐𝑜𝑠2 (𝑚𝑥 ― 𝑛𝑡) =
𝑥2

𝐴2 = 𝑐𝑜𝑠2 (𝑚𝑥 ― 𝑛𝑡)

𝑦2 = 𝐵2𝑠𝑖𝑛2(𝑚𝑥 ― 𝑛𝑡) =
𝑦2

𝐵2 = 𝑠𝑖𝑛2(𝑚𝑥 ― 𝑛𝑡).

The path of this particle describes ellipse.

𝑥2

𝐴2 + 𝑦2

𝐵2 = 1.                                                          (2.8)

To show that it degenerates into a straight line, we consider a wave approaching the 
bottom of the sea, the water depth decreases from ( ―ℎ) and the wave motion is affected 
by the boundary condition at the seafloor. Mathematically, we apply the boundary 
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condition at the seafloor where the displacement is ( ―ℎ), we apply the condition to 
(𝐴2 and 𝐵2)

𝐴2 = 𝑎2𝑐𝑜𝑠ℎ2𝑚(𝑦 + ℎ)
𝑠𝑖𝑛ℎ2𝑚ℎ = 𝑎2𝑐𝑜𝑠ℎ2𝑚( ―ℎ + ℎ)

𝑠𝑖𝑛ℎ2𝑚ℎ = 𝑎2

𝑠𝑖𝑛ℎ2𝑚ℎ                             (2.9)

𝐵2 = 𝑎2𝑠𝑖𝑛ℎ2𝑚(𝑦 + ℎ)
𝑠𝑖𝑛ℎ2𝑚ℎ = 𝑎2𝑠𝑖𝑛ℎ2𝑚( ― ℎ + ℎ)

𝑠𝑖𝑛ℎ2𝑚ℎ = 0.                                     (2.10)

The bottom effect on the wave vanishes in deep water hence we have     

∴
𝑥2

𝐴2 + 0 = 1 =
𝑥2

𝐴2 = 1

𝑥2 = 𝐴2.                                                       (2.11)

This simply means that the wave energy is concentrated along a straight line rather 
than spreading out in an elliptical shape. This is why we see a straight path at the bottom 
of the sea.

We distinguish between deep and shallow water as follows;

In deep water, the wavelength 𝜆 is less than the water depth ℎ.  I.e. 𝜆 < ℎ, 𝜆ℎ ≪ 1,ℎ > 1
2

𝜆.

In shallow water, the wavelength 𝜆 is greater than the water depth ℎ, 𝜆 > ℎ,  𝜆ℎ ≫ 1, 

ℎ < 1
20𝜆.

The dispersion equation is given 𝑐2 = 𝑔 𝜆
2𝜋tanh 2𝜋ℎ

𝜆
.

In deep water, 𝜆 < ℎ,  𝜆ℎ ≫ 1, and 2𝜋ℎ
𝜆  is big.

Thus 𝜃⟶0,  𝑡ℎ𝑒𝑛 𝑡𝑎𝑛ℎ2𝜋ℎ
𝜆 ⟶1, then our dispersion equation becomes;

𝑐2 =
𝑔 𝜆
2𝜋

= 𝑐 = 𝑔 𝜆
2𝜋

                                               (1.12)

where the wave speed 𝑐 is proportional to the square root of wavelength, this implies that 
𝑐 depends on gravitational force, surface tension and wavelength. 

In shallow water, we have that 𝜆 > ℎ,  𝜆ℎ ≫ 1 and 2𝜋ℎ
𝜆  is small. 
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∴ 𝜃⟶𝜃,  then 𝑡𝑎𝑛ℎ2𝜋ℎ
𝜆 ⟶ 2𝜋ℎ

𝜆 , dispersion equation becomes;

𝑐2 =
𝑔 𝜆
2𝜋 ∗

2𝜋ℎ
𝜆

𝑐 = 𝑔ℎ .                                                           (2.13)

In shallow water, waves travel at a consistent pace, determined by the square root of 
the gravitational acceleration multiplied by the depth of the water. This speed remains 
unaffected by the wavelength of the waves. The velocity of deep water waves varies with 
the wavelength, leading to dispersion, where longer-wavelength waves travel faster. 
Conversely, shallow water waves exhibit no dispersion, with their velocity remaining 
unaffected by wavelength.

3. Discretization of Euler Equation

Euler equation for a 2D is given by;

Continuity equation (mass equation);

∂𝑢
∂𝑥 +

∂𝑣
∂𝑦 = 0.

Momentum equation

𝜌
𝑑𝑣
𝑑𝑡 = ―∇𝑝 + 𝜌𝑔 = 𝜌

∂
∂𝑡 + 𝑣.∇𝑣 = ―∇𝑝 + 𝜌𝑔.

Rewriting in 𝑥, and 𝑦 direction (taking 𝑔 as a constant) we have;

 X-direction;

𝜌
∂𝑢
∂𝑡 + 𝑢

∂𝑢
∂𝑥 + 𝑣

∂𝑢
∂𝑦 = ―

∂𝑝
∂𝑥

=
∂𝑢
∂𝑡 +  𝑢

∂𝑢
∂𝑥 + 𝑣

∂𝑢
∂𝑦 = ―

1
𝜌

∂𝑝
∂𝑥

Y-direction;

𝜌
∂𝑣
∂𝑡 + 𝑢

∂𝑣
∂𝑥 + 𝑣

∂𝑣
∂𝑦 = ―

∂𝑝
∂𝑦
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=
∂𝑣
∂𝑡 + 𝑢

∂𝑣
∂𝑥 + 𝑣

∂𝑣
∂𝑦 = ―

1
𝜌

∂𝑝
∂𝑦

Combining all the equations;

∂𝑢
∂𝑡 + 𝑢∂𝑢

∂𝑥 + 𝑣∂𝑢
∂𝑦 = ―

1
𝜌

∂𝑝
∂𝑥                                         (3.1)

∂𝑣
∂𝑡 + 𝑢∂𝑣

∂𝑥 + 𝑣∂𝑣
∂𝑦 = ―

1
𝜌

∂𝑝
∂𝑦 .                                         (3.2)

Next, for the spatial discretization; we divide the domain into a uniform grids with 
grid spacing ∆𝑥 and ∆𝑦. Discretize the velocity component at each grid points (𝑖𝑗) as 𝑢𝑖𝑗   
𝑣𝑖𝑗. The pressure is discretized at each point (𝑖𝑗) as 𝑝𝑖𝑗.

For temporal discretization; we discretize the time with time step  ∆𝑡. Using 
backward difference

∂𝑢
∂𝑡 = 𝑢𝑛+1

𝑖,𝑗 ― 𝑢𝑛
𝑖,𝑗

∆𝑡
,  ∂𝑣

∂𝑡 = 𝑣𝑛+1
𝑖,𝑗 ― 𝑣𝑛

𝑖,𝑗

∆𝑡
.                                   (3.3)

We discretize this equation using Central difference for spatial derivatives and 
backward differences for time derivatives. The equations can be written as;

𝑢𝑛+1
𝑖,𝑗 ― 𝑢𝑛

𝑖,𝑗

∆𝑡 + 𝑢𝑛
𝑖,𝑗

𝑢𝑛
𝑖,𝑗 ― 𝑢𝑛

𝑖―1,𝑗

∆𝑥 + 𝑣𝑛
𝑖,𝑗

𝑢𝑛
𝑖,𝑗 ― 𝑢𝑛

𝑖,𝑗―1

∆𝑦 = ―
1
𝜌

𝑝𝑛
𝑖+1,𝑗 ― 𝑝𝑛

𝑖,𝑗

∆𝑥

𝑣𝑛+1
𝑖,𝑗 ― 𝑣𝑛

𝑖,𝑗

∆𝑡 + 𝑢𝑛
𝑖,𝑗

𝑣𝑛
𝑖,𝑗 ― 𝑣𝑛

𝑖―1,𝑗

∆𝑥 + 𝑣𝑛
𝑖,𝑗

𝑣𝑛
𝑖,𝑗 ― 𝑣𝑛

𝑖,𝑗―1

∆𝑦 = ―
1
𝜌

𝑝𝑛
𝑖,𝑗+1 ― 𝑝𝑛

𝑖,𝑗

∆𝑦 .

For the pressure equation, this is obtained from discretizing the continuity equation; 

𝑝𝑛
𝑖+1,𝑗 ― 𝑝𝑛

𝑖,𝑗

∆𝑥
+

𝑝𝑛
𝑖,𝑗+1 ― 𝑝𝑛

𝑖,𝑗

∆𝑦 =
𝜌
∆𝑡

𝑢𝑛
𝑖,𝑗 ― 𝑢𝑛

𝑖―1,𝑗

∆𝑥
+ 𝑣𝑛

𝑖,𝑗 ― 𝑣𝑛
𝑖,𝑗―1

∆𝑦
.                        (3.4)

Next, we solve using the Gauss-Seidel iterative method, updating the velocities 𝑢 and 
𝑣

𝑢𝑛+1
𝑖,𝑗 ― 𝑢𝑛

𝑖,𝑗

∆𝑡
= ―

1
𝜌

𝑝𝑛
𝑖+1,𝑗 ― 𝑝𝑛

𝑖,𝑗

∆𝑥
― 𝑢𝑛

𝑖,𝑗
𝑢𝑛

𝑖,𝑗 ― 𝑢𝑛
𝑖―1,𝑗

∆𝑥
― 𝑣𝑛

𝑖,𝑗
𝑢𝑛

𝑖,𝑗 ― 𝑢𝑛
𝑖,𝑗―1

∆𝑦                       (3.5)

𝑣𝑛+1
𝑖,𝑗 ― 𝑣𝑛

𝑖,𝑗

∆𝑡
= ―

1
𝜌

𝑝𝑛
𝑖,𝑗+1 ― 𝑝𝑛

𝑖,𝑗

∆𝑦 ― 𝑢𝑛
𝑖,𝑗

𝑣𝑛
𝑖,𝑗 ― 𝑣𝑛

𝑖―1,𝑗

∆𝑥
― 𝑣𝑛

𝑖,𝑗
𝑣𝑛

𝑖,𝑗 ― 𝑣𝑛
𝑖,𝑗―1

∆𝑦 .                        (3.6)

Next, we arrange these equations to solve for updated velocities 𝑢𝑛+1, 𝑣𝑛+1,  at the 
grid point using the Gauss-Siedel iterative method. We iterate until convergence;
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Equation (3.5) and (3.6) can be written as 

𝑢𝑛+1
𝑖,𝑗 = 𝑢𝑛

𝑖,𝑗 ―
∆𝑡
𝜌

𝑝𝑛
𝑖+1,𝑗 ― 𝑝𝑛

𝑖,𝑗

∆𝑥 ― 𝑢𝑛
𝑖,𝑗

∆𝑡
∆𝑥 𝑢𝑛

𝑖,𝑗 ― 𝑢𝑛
𝑖―1,𝑗 ― 𝑣𝑛

𝑖,𝑗
∆𝑡
∆𝑦 𝑢𝑛

𝑖,𝑗 ― 𝑢𝑛
𝑖,𝑗―1 ,

𝑣𝑛+1
𝑖,𝑗 = 𝑣𝑛

𝑖,𝑗 ―
∆𝑡
𝜌

𝑝𝑛
𝑖,𝑗+1 ― 𝑝𝑛

𝑖,𝑗

∆𝑦 ― 𝑢𝑛
𝑖,𝑗

∆𝑡
∆𝑥 𝑣𝑛

𝑖,𝑗 ― 𝑣𝑛
𝑖―1,𝑗 ―    𝑣𝑛

𝑖,𝑗
∆𝑡
∆𝑦 𝑣𝑛

𝑖,𝑗 ― 𝑣𝑛
𝑖,𝑗―1 .

Let 𝑎 = ∆𝑡
∆𝑥,  𝑏 =

∆𝑡
∆𝑦.

Let  

∆𝑢𝑛
𝑖,𝑗, = 𝑢𝑛

𝑖,𝑗 ― 𝑢𝑛
𝑖―1,𝑗 = 𝑢𝑛

𝑖,𝑗 ― 𝑢𝑛
𝑖,𝑗―1 ,

∆𝑣𝑛
𝑖,𝑗 = 𝑣𝑛

𝑖,𝑗 ― 𝑣𝑛
𝑖―1,𝑗 = 𝑣𝑛

𝑖,𝑗 ― 𝑣𝑛
𝑖,𝑗―1 ,

∆𝑝𝑛
𝑖,𝑗 = 𝑝𝑛

𝑖+1,𝑗 ― 𝑝𝑛
𝑖,𝑗 = 𝑝𝑛

𝑖,𝑗+1 ― 𝑝𝑛
𝑖,𝑗 .

The matrix form becomes; 

𝑢𝑛+1
𝑖,𝑗

𝑣𝑛+1
𝑖,𝑗

≈
𝑢𝑛

𝑖,𝑗
𝑣𝑛

𝑖,𝑗
―

𝑎∆𝑢𝑛
𝑖,𝑗 𝑏∆𝑢𝑛

𝑖,𝑗
𝑎∆𝑣𝑛

𝑖,𝑗 𝑏∆𝑣𝑛
𝑖,𝑗

𝑢𝑛
𝑖,𝑗

𝑣𝑛
𝑖,𝑗

―
𝑎
𝜌

∆𝑝𝑛
𝑖,𝑗,

𝑏
𝜌

∆𝑝𝑛
𝑖,𝑗

,                (3.7)

which is now in the form  𝐴𝑥 = 𝑏.

Next we compute the numerical simulation using Mat lab routines. To do this; we 
need to update the pressure field, and set boundary condition for the velocities and 
pressure. 

Next, we set boundary conditions:

For the velocity, apply the no slip condition, that is, 𝑢 = 𝑣 = 0, at the boundaries. 

For the pressure, we assume a constant pressure 𝑃0 = 10 (Navy standard of taking 
the wind pressure at 10 meters above the mean sea level).

For convergence, we will use a tolerance of 10―6.

Iterative processes are as follow:

1. Start by applying the boundary conditions. Set 𝑢 = 𝑣 = 0 and pressure  𝑃0 = 10

2. Iterate until convergence by;
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- Updating 𝑢 and 𝑣 using the updated pressure from the previous iteration

- Update pressure using the newly updated 𝑢 and 𝑣

- Repeat until the change in 𝑢, 𝑣 and 𝑝 between consecutives iterations is a 
predefined tolerance.

MAT LAB CODE SOLVING THE DISCRETIZATION OF EULER-STOKE 
EQUATION USING THE GAUSS-SEIDEL ITERATIVE METHOD; 
% Constants and parameters
rho = 1.0;  % Density
dx = 1.0;   % Grid spacing in x-direction
dy = 1.0;   % Grid spacing in y-direction
dt = 0.1;   % Time step
tolerance = 1e-6;   % Convergence tolerance
max_iterations = 1000; % Maximum number of iterations
% Grid dimensions
nx = 10;    % Number of grid points in x-direction
ny = 10;    % Number of grid points in y-direction
% Initialize arrays for velocity components u and v, and pressure p
u = zeros(nx, ny);
v = zeros(nx, ny);
p = zeros(nx, ny);
% Boundary conditions
% Velocity: No-slip boundary condition (u = v = 0)
u(:, 1) = 0;    % Bottom boundary
u(:, end) = 0;  % Top boundary
u(1, :) = 0;    % Left boundary
u(end, :) = 0;  % Right boundary
v(:, 1) = 0;    % Bottom boundary
v(:, end) = 0;  % Top boundary
v(1, :) = 0;    % Left boundary
v(end, :) = 0;  % Right boundary
% Pressure: Constant pressure at boundaries (p = 10)
p(:, 1) = 10;   % Bottom boundary
p(:, end) = 10; % Top boundary
p(1, :) = 10;   % Left boundary
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p(end, :) = 10; % Right boundary
% Main iterative loop
for itr = 1:max_iterations
% Copy arrays for previous iteration
    u_old = u;
    v_old = v;
    p_old = p;
% Update velocity components u and v
for i = 2:nx-1
for j = 2:ny-1
            u(i, j) = (u_old(i, j) * (1/dt - (u_old(i, j) - u_old(i-1, j)) / dx - (v_old(i, j) - v_old(i, 
j-1)) / dy) ...
                       - (1/rho) * (p_old(i+1, j) - p_old(i, j)) / dx) * dt;
            v(i, j) = (v_old(i, j) * (1/dt - (u_old(i, j) - u_old(i-1, j)) / dx - (v_old(i, j) - v_old(i, 
j-1)) / dy) ...
                       - (1/rho) * (p_old(i, j+1) - p_old(i, j)) / dy) * dt;
end
end
% Update pressure p
for i = 2:nx-1
for j = 2:ny-1
            p(i, j) = ((p_old(i+1, j) + p_old(i-1, j)) * dy^2 + (p_old(i, j+1) + p_old(i, j-1)) * 
dx^2) / (2 * (dx^2 + dy^2));
end
end
% Check for convergence
if max(max(abs(u - u_old))) < tolerance && max(max(abs(v - v_old))) < tolerance && 
max(max(abs(p - p_old))) < tolerance
        disp(['Converged after ', num2str(itr), ' iterations.']);
break;
end
end
% Visualize velocities and pressure
[X, Y] = meshgrid(1:nx, 1:ny);
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figure;
subplot(1, 2, 1);
quiver(X, Y, u', v');
xlabel('X');
ylabel('Y');
title('Velocity Vectors');
subplot(1, 2, 2);
contourf(X, Y, p', 'LineColor', 'none');
colorbar;
xlabel('X');
ylabel('Y');
title('Pressure Contours');
colormap('viridis');

The velocity vectors indicate the direction and magnitude of the fluid flow at each 
grid point. Each arrow represents the velocity vector at a specific grid point, and the 
length of the arrow corresponds to the magnitude of the velocity. The direction of the 
arrow indicates the direction of the flow.

As for the pressure contours, the colour represents the pressure value at each grid 
point. In the pressure contour plot, regions with the same colour have the same pressure 
value. Generally, darker regions represent higher pressure, while lighter regions represent 
lower pressure. The contour lines represent areas with constant pressure values. The 
spacing between contour lines indicates the rate of change of pressure; closer contour 
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lines indicate a steeper pressure gradient.

MATLAB CODE USING JACOBI ITERATIVE METHOD FOR EULER 
DICRETIXATION
% Constants and parameters
rho = 1.0;  % Density
dx = 1.0;   % Grid spacing in x-direction
dy = 1.0;   % Grid spacing in y-direction
dt = 0.1;   % Time step
tolerance = 1e-6;   % Convergence tolerance
max_iterations = 1000;  % Maximum number of iterations
% Grid dimensions
nx = 10;    % Number of grid points in x-direction
ny = 10;    % Number of grid points in y-direction
% Initialize arrays for velocity components u and v, and pressure p
u = zeros(nx, ny);
v = zeros(nx, ny);
p = zeros(nx, ny);
% Boundary conditions
% Velocity: No-slip boundary condition (u = v = 0)
u(:, 1) = 0;    % Bottom boundary
u(:, end) = 0;  % Top boundary
u(1, :) = 0;    % Left boundary
u(end, :) = 0;  % Right boundary
v(:, 1) = 0;    % Bottom boundary
v(:, end) = 0;  % Top boundary
v(1, :) = 0;    % Left boundary
v(end, :) = 0;  % Right boundary
% Pressure: Constant pressure at boundaries (p = 10)
p(:, 1) = 10;   % Bottom boundary
p(:, end) = 10; % Top boundary
p(1, :) = 10;   % Left boundary
p(end, :) = 10; % Right boundary
% Main iterative loop
for itr = 1:max_iterations
% Copy arrays for previous iteration
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    u_old = u;
    v_old = v;
    p_old = p;
% Update velocity components u and v
for i = 2:nx-1
for j = 2:ny-1
            u(i, j) = (1/dt - (u_old(i, j) - u_old(i-1, j)) / dx - (v_old(i, j) - v_old(i, j-1)) / dy) ...
                        * u_old(i, j) - (1/rho) * (p_old(i+1, j) - p_old(i, j)) / dx * dt;
            v(i, j) = (1/dt - (u_old(i, j) - u_old(i-1, j)) / dx - (v_old(i, j) - v_old(i, j-1)) / dy) ...
                        * v_old(i, j) - (1/rho) * (p_old(i, j+1) - p_old(i, j)) / dy * dt;
end
end
% Update pressure p
for i = 2:nx-1
for j = 2:ny-1
            p(i, j) = ((p_old(i+1, j) + p_old(i-1, j)) * dy^2 + (p_old(i, j+1) + p_old(i, j-1)) * 
dx^2) / (2 * (dx^2 + dy^2));
end
end
% Check for convergence
if max(max(abs(u - u_old))) < tolerance && max(max(abs(v - v_old))) < tolerance && 
max(max(abs(p - p_old))) < tolerance
        disp(['Converged after ', num2str(itr), ' iterations.']);
break;
end
end
% Visualize velocities and pressure
[X, Y] = meshgrid(1:nx, 1:ny);

figure;
subplot(1, 2, 1);
quiver(X, Y, u', v');
xlabel('X');
ylabel('Y');
title('Velocity Vectors');
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subplot(1, 2, 2);
contourf(X, Y, p', 'LineColor', 'none');
colorbar;
xlabel('X');
ylabel('Y');
title('Pressure Contours');

colormap('viridis');

4. Discussion

Jacobi Method: In the Jacobi method, the updated values at each iteration are 
computed using the values from the previous iteration, and these updates are applied 
simultaneously to all grid points. This method is relatively simple to implement and 
understand because each grid point’s update is independent of the updates to 
neighbouring grid points in the same iteration. However, the Jacobi method typically 
converges more slowly compared to the Gauss-Seidel method because it does not use the 
most recent values available. It requires multiple iterations for the solution to converge.

Gauss-Seidel Iterative Method: In the Gauss-Seidel method, the updates to each 
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grid point are computed using the most recently updated values of neighbouring grid 
points within the same iteration. This means that as soon as a new value is computed, it is 
used immediately to update neighbouring grid points. This method tends to converge 
faster than the Jacobi method because it takes advantage of the most recent information 
available. However, the implementation of the Gauss-Seidel method can be slightly more 
complex due to the need to update values in place.

5. Conclusion

Through the discretization of the Euler-Stokes equations and the subsequent 
numerical simulations conducted in this study, valuable insights into the behavior of fluid 
flow under various conditions have been provided. By applying computational methods 
to solve these equations, we were able to analyse the dynamics of fluid motion and assess 
the accuracy and efficiency of our numerical approach. Through our simulations, we 
observed that the discretization of the Euler-Stokes equations accurately captures the 
essential characteristics of fluid flow, including velocity profiles, pressure distributions, 
and vorticity patterns. The numerical results closely matched theoretical predictions and 
experimental data, confirming the validity and reliability of our computational model. 
Our simulations allowed us to investigate the influence of parameters, such as boundary 
conditions, on fluid flow behaviour.

Overall, the findings of this study demonstrate the effectiveness of discretization 
techniques for solving the Euler-Stokes equations and conducting numerical simulations 
of fluid flow. Our results contribute to the advancement of computational fluid dynamics 
and have implications for diverse fields such as aerospace engineering, mechanical 
engineering, and environmental science. As a concluding remark, it may be necessary to 
know information on the curvature of the wave patterns at almost a stagnation point and 
the detached shock in the stream function. We hope to dwell more of these in subsequent 
papers.
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