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Abstract 

In this paper, we establish some applications of first order differential subordination and 

superordination results involving Hadamard product for a certain class of analytic 

functions with differential operator defined in the open unit disk. These results are applied 

to obtain sandwich results. 

1. Introduction and Preliminaries 

Let H  indicate the family of analytic functions in the open unit disk 

{ }1: <∈= zzU C  and let [ ]pa,H  be the subclass of H  consisting of functions of 

the form: 

( ) { }( )....,2,1,,1
1 =∈∈+++= +

+ NC pazazaazf
p

p
p

p ⋯  

Also, let A  denote the subclass of H  consisting of functions of the form: 

 ( ) ∑
∞

=
+=

2

,

n

n
nzazzf   (1.1) 
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Let ., H∈gf  The function f is said to be subordinate to g, or g is said to be 

superordinate to f, if there exists a Schwarz function w analytic in U with ( ) 00 =w  and 

( ) ( )Uzzw ∈< 1  such that ( ) ( )( ).zwgzf =  This subordination is denoted by gf ≺  

or ( ) ( ) ( ).Uzzgzf ∈≺  It is well known that, if the function g is univalent in U, we 

have the following equivalence (see [12]): 

( ) ( ) ( ) ( ) ( ).,00 UgUfgfUzgf ⊂=⇔∈≺  

Let H∈hk,  and ( ) .:;,,
3

CC →×ψ Uztsr  If k and ( ( ) ( ) ( ) )zzkzzkzzk ;,,
2 ′′′ψ  

are univalent functions in U and if k satisfies the second-order differential 

superordination: 

 ( ) ( ( ) ( ) ( ) ),;,, 2
zzkzzkzzkzh ′′′ψ≺   (1.2)  

then k is called a solution of the differential superordination (1.2). (If f is subordinate to 

g, then g is superordinate to f ). An analytic function q is called a subordinant of (1.2), if 

kq ≺  for all k satisfying (1.2). A univalent subordinant q~  that satisfies qq ~≺  for all 

the subordinants q of (1.2) is called the best subordinant. 

For the functions A∈f  given by (1.1) and A∈g  defined by 

( ) ∑
∞

=
+=

2

,

n

n
nzbzzg  

we define the Hadamard product (or convolution) gf ∗  of the functions f and g (as 

usual) by  

( ) ( ) ( ) ( ).
2

zfgzbazzgf

k

n
nn ∗=+=∗ ∑

∞

=

 

For { },00 ∪NN =∈m  ,0, ≥λρ  0,, >δνµ  and ,ν≠ρ  we consider the 

differential operator ( ) ,:,,, AA →δρλνµ
m

A  introduced by Amourah and Darus [2], 

where 

 ( ) ( ) ( ) ( )[ ]
.

1
1,

2

,,
n

n

m

n

m
za

nn
zzfA ∑

∞

=
λνµ 









ν+µ
λ+δρ−ν−++=δρ   (1.3) 
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It is readily verified from (1.3) that 

( ( ) ( ))
( )

( ) ( )zfA
n

zfAz
mm δρ

λ+δρ−ν
ν+µ=′δρ +

λνµλνµ ,, 1
,,,,  

( )
( ) ( ) .,1 ,, zfA

n

m δρ








λ+δρ−ν
ν+µ−− λνµ  (1.4) 

Would like to point out here that some of the special cases of the operator defined by 

(1.3) can be found in [1, 4, 11, 13]. 

Recently several authors, Goyal et al. [5], Murugusundaramoorthy and Magesh [9, 

10], Magesh et al. [7], Ibrahim and Darus [6], Wanas [14, 15], Wanas and Joudah [16] 

and Wanas and Majeed [17] have obtained sandwich results for certain classes of 

analytic functions. 

The main object of the present investigation is to find sufficient condition for certain 

normalized analytic functions f in U such that ( ) ( ) 0≠Ψ∗ zf  and f  to satisfy 

( )
( ) ( ) ( )
( ) ( ) ( )

( ) ,
,

,
2

,,

1
,,

1 zq
zfA

zfA
zq

m

m

≺≺

γ

λνµ

+
λνµ















Ψ∗δρ

Φ∗δρ
 

where 1q  and 2q  are given univalent functions in U with ( ) ( ) 100 21 == qq  and 

( ) ,
2∑

∞
=+=Φ

n
n

nzrzz  ( ) ∑
∞

=+=Ψ
2n

n
nzezz  are analytic functions in U with 

,0≥nr  .0≥ne  

To establish our main results, we need the following definition and lemmas. 

Definition 1.1 [8]. Denote by Q the set of all functions f that are analytic and 

injective on ( ),\ fEU  where  

( ) ( )






 ∞=∂∈ζ=

ζ→
zfUfE

z
lim:  

and are such that ( ) 0≠ζ′f  for ( ).\ fEU∂∈ζ   

Lemma 1.1 [8]. Let q be univalent in the unit disk U and let θ  and φ  be analytic in 

a domain D containing ( )Uq  with ( ) 0≠φ w  when ( ).Uqw ∈  Set ( ) ( ) ( )( )zqzqzzQ φ′=  

and ( ) ( )( ) ( ).zQzqzh +θ=  Suppose that 
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(1) ( )zQ  is starlike univalent in U, 

(2) 
( )
( )

0Re >






 ′

zQ

zhz
 for .Uz ∈  

If k is analytic in U, with ( ) ( ) ( ) DUkqk ⊂= ,00  and 

 ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ),zqzqzzqzkzkzzk φ′+θφ′+θ ≺   (1.5) 

then qk ≺  and q is the best dominant of (1.5). 

Lemma 1.2 [3]. Let q be convex univalent in the unit disk U and let θ  and φ  be 

analytic in a domain D containing ( ).Uq  Suppose that 

(1) 
( )( )
( )( )

0Re >








φ
θ′

zq

zq
 for ,Uz ∈  

(2) ( ) ( ) ( )( )zqzqzzQ φ′=  is starlike univalent in U. 

If ( )[ ] ,1,0 Qqk ∩H∈  with ( ) ,DUk ⊂  ( )( ) ( ) ( )( )zkzkzzk φ′+θ  is univalent in U and 

 ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ),zkzkzzkzqzqzzq φ′+θφ′+θ ≺   (1.6)  

then kq ≺  and q is the best subordinant of (1.6). 

2. Main Results 

Theorem 2.1. Let ,, A∈ΨΦ  ,,, C∈τβα  { }0\, C∈γη  and let q be convex 

univalent in U with ( ) 10 =q  and assume that q satisfies: 

 
( ) ( ) ( ) ( )

( )
( )

( )
.01

1
1Re >









′
′′

+
′

−τ+
η
+τβ+

η
ατ+

zq

zqz

zq

zqz
zq   (2.1) 

Suppose that ( )( ) ( )zqzqz ′−τ 1
 is starlike univalent in U. If pf A∈  satisfies the 

differential subordination: 

( )zmf ;,,,,,,,,,,,,,1 λνµδργητβαΨΦϕ  

( )( ) ( )( ) ( )( ) ( ),1
zqzqzzqzq ′η+β+α −ττ

≺  (2.2) 
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where 

( )zmf ;,,,,,,,,,,,,,1 λνµδργητβαΨΦϕ  

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( )1

,,

1
,,

,,

1
,,

,

,

,

,
+τγ

λνµ

+
λνµ

γτ

λνµ

+
λνµ















Ψ∗δρ

Φ∗δρ
β+















Ψ∗δρ

Φ∗δρ
α=

zfA

zfA

zfA

zfA

m

m

m

m

 

( )
( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )







Φ∗δρ

Φ∗δρ














Ψ∗δρ

Φ∗δρ
λ+δρ−ν

ν+µγη+ +
λνµ

+
λνµ

γτ

λνµ

+
λνµ

zfA

zfA

zfA

zfA

n m

m

m

m

,

,

,

,

1
,,

2
,,

,,

1
,,

 

( ) ( ) ( )
( ) ( ) ( )

,
,

,

,,

1
,,








Ψ∗δρ

Ψ∗δρ
−

λνµ

+
λνµ

zfA

zfA

m

m

  (2.3) 

then 

( ) ( ) ( )
( ) ( ) ( )

( )zq
zfA

zfA

m

m

≺

γ

λνµ

+
λνµ















Ψ∗δρ

Φ∗δρ

,

,

,,

1
,,

 

and q is the best dominant of (2.2). 

Proof. Let the function k be defined by 

 ( )
( ) ( ) ( )
( ) ( ) ( )

( ).,
,

,

,,

1
,,

Uz
zfA

zfA
zk

m

m

∈














Ψ∗δρ

Φ∗δρ
=

γ

λνµ

+
λνµ

  (2.4) 

Then the function k is analytic in U and ( ) .10 =k  

A simple computation using (2.4) gives 

( )
( )

( ( ) ( ) ( ))
( ) ( ) ( )

( ( ) ( ) ( ))
( ) ( ) ( )

.
,

,

,

,

,,

,,

1
,,

1
,,















Ψ∗δρ

′Ψ∗δρ
−

Φ∗δρ

′Φ∗δρ
γ=

′

λνµ

λνµ
+

λνµ

+
λνµ

zfA

zfAz

zfA

zfAz

zk

zkz

m

m

m

m

 

In view of (1.4), we obtain 

( )
( )

( )
( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

.
,

,

,

,

,,

1
,,

1
,,

2
,,















Ψ∗δρ

Ψ∗δρ
−

Φ∗δρ

Φ∗δρ
λ+δρ−ν

ν+µγ=
′

λνµ

+
λνµ

+
λνµ

+
λνµ

zfA

zfA

zfA

zfA

nzk

zkz

m

m

m

m
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Also, we find that 

( )( ) ( )( ) ( )( ) ( )zkzkzzkzk ′η+β+α −ττ 1  

( ),;,,,,,,,,,,,,,1 zmf λνµδργητβαΨΦϕ=   (2.5) 

where ( )zmf ;,,,,,,,,,,,,,1 λνµδργητβαΨΦϕ  is given by (2.3). 

By using (2.5) in (2.2), we have 

( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( ).11
zqzqzzqzqzkzkzzkzk ′η+β+α′η+β+α −ττ−ττ

≺  

By setting 

( ) ( ) τβ+α=θ www  and ( ) ,0,
1 ≠η=φ −τ

www  

it can be easily observed that ( )wθ  is analytic in ,C  ( )wφ  is analytic in { }0\C  and that 

( ) ,0≠φ w  { }.0\C∈w  Also, we get 

( ) ( ) ( )( ) ( )( ) ( )zqzqzzqzqzzQ ′η=φ′= −τ 1  

and 

( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( ).1
zqzqzzqzqzQzqzh ′η+β+α=+θ= −ττ  

In light of the hypothesis of Theorem 2.1, we see that ( )zQ  is starlike univalent in U and 

( )
( )

( ) ( ) ( ) ( )
( )

( )
( )

.01
1

1ReRe >








′
′′

+
′

−τ+
η
+τβ+

η
ατ+=







 ′

zq

zqz

zq

zqz
zq

zQ

zhz
 

Hence the result now follows by an application of Lemma 1.1. 

By taking ( ) ( )11
1

1 ≤<≤−
+
+= AB

Bz

Az
zq  in Theorem 2.1, we obtain the 

following corollary: 

Corollary 2.1. Let ,, A∈ΨΦ  ,,, C∈τβα  { },0\, C∈γη  11 ≤<≤− AB  and 

assume that 

( ) ( )
( )

( )
( ) ( )

,0
11

1

1

11
Re

2

>












++
−−τ++

+η
++τβ+

η
ατ

BzAz

ABzzBA

Bz

Az
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If A∈f  satisfies the differential subordination: 

( )zmf ;,,,,,,,,,,,,,1 λνµδργητβαΨΦϕ  

 
( ) ( )

( )
,

1

1

1

1

1

1
1

1

+τ

−ττ

+
+−η+








+
+

















+
+β+α

Bz

zAzBA

Bz

Az

Bz

Az
≺   (2.6) 

where ( )zmf ;,,,,,,,,,,,,,1 λνµδργητβαΨΦϕ  is given by (2.3), then 

( ) ( ) ( )
( ) ( ) ( ) Bz

Az

zfA

zfA

m

m

+
+















Ψ∗δρ

Φ∗δρ
γ

λνµ

+
λνµ

1

1

,

,

,,

1
,,

≺  

and ( )
Bz

Az
zq

+
+=

1

1
 is the best dominant of (2.6). 

By fixing ( ) ( )
z

z
zz

−
=Ψ=Φ

1
 in Theorem 2.1, we obtain the following corollary: 

Corollary 2.2. Let ,,, C∈τβα  { }0\, C∈γη  and let q be convex univalent in U 

with ( ) 10 =q  and assume that (2.1) holds true. Suppose that ( )( ) ( )zqzqz ′−τ 1  is starlike 

univalent in U. If A∈f  satisfies the differential subordination: 

( ) ( )( ) ( )( ) ( )( ) ( ),;,,,,,,,,,,,
1

2 zqzqzzqzqzmf ′η+β+αλνµδργητβαϕ −ττ
≺  (2.7) 

where 

( )zmf ;,,,,,,,,,,,2 λνµδργητβαϕ  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )1

,,

1
,,

,,

1
,,

,

,

,

,
+τγ

λνµ

+
λνµ

γτ

λνµ

+
λνµ















δρ

δρ
β+















δρ

δρ
α=

zfA

zfA

zfA

zfA

m

m

m

m

 

( )
( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

,
,

,

,

,

,

,

,,

1
,,

1
,,

2
,,

,,

1
,,








δρ

δρ
−








δρ

δρ














δρ

δρ
λ+δρ−ν

ν+µγη+
λνµ

+
λνµ

+
λνµ

+
λνµ

γτ

λνµ

+
λνµ

zfA

zfA

zfA

zfA

zfA

zfA

n m

m

m

m

m

m

 (2.8) 

then 

( ) ( )
( ) ( )

( )zq
zfA

zfA

m

m

≺

γ

λνµ

+
λνµ















δρ

δρ

,

,

,,

1
,,

 

and q is the best dominant of (2.7). 
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Theorem 2.2. Let ,, A∈ΨΦ  ,,, C∈τβα  { }0\, C∈γη  and let q be convex 

univalent in U with ( ) 10 =q  and assume that q satisfies:  

 ( ) ( ) ( ) ( ) .0
1

Re >






 ′

η
+τβ+′

η
ατ

zqzqzq    (2.9) 

Suppose that ( )( ) ( )zqzqz ′−τ 1  is starlike univalent in U. Let A∈f  satisfy 

( ) ( ) ( )
( ) ( ) ( )

( )[ ] Qq
zfA

zfA

m

m

∩1,0
,

,

,,

1
,,

H∈














Ψ∗δρ

Φ∗δρ
γ

λνµ

+
λνµ

 

and ( )zmf ;,,,,,,,,,,,,,1 λνµδργητβαΨΦϕ  as defined by (2.3) be univalent in U. 

If 

( )( ) ( )( ) ( )( ) ( )zqzqzzqzq ′η+β+α −ττ 1  

 ( ),;,,,,,,,,,,,,,1 zmf λνµδργητβαΨΦϕ≺  (2.10) 

then 

( )
( ) ( ) ( )
( ) ( ) ( )

γ

λνµ

+
λνµ















Ψ∗δρ

Φ∗δρ

zfA

zfA
zq

m

m

,

,

,,

1
,,

≺  

and q is the best subordinant of (2.10). 

Proof. Let the function k be defined by (2.4). 

In view of (1.4), the superordination (2.10) becomes 

( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( ).11
zkzkzzkzkzqzqzzqzq ′η+β+α′η+β+α −ττ−ττ

≺  

By setting ( ) ( ) τβ+α=θ www  and ( ) ,0,
1 ≠η=φ −τ

www   it is easily observed that 

( )wθ  is analytic in ,C  ( )wφ   is analytic in { }0\C  and that ( ) ,0≠φ w  { }.0\C∈w  

Also, we get 

( ) ( ) ( )( ) ( )( ) ( ).1
zqzqzzqzqzzQ ′η=φ′= −τ  

It is clear that ( )zQ  is starlike univalent in U and  
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( )( )
( )( )

( ) ( ) ( ) ( ) .0
1

ReRe >






 ′

η
+τβ+′

η
ατ=









φ
θ′

zqzqzq
zq

zq
 

Now Theorem 2.2 follows by applying Lemma 1.2. 

By fixing ( ) ( )
z

z
zz

−
=Ψ=Φ

1
 in Theorem 2.2, we obtain the following corollary: 

Corollary 2.3. Let ,,, C∈τβα  { }0\, C∈γη  and let q be convex univalent in U 

with ( ) 10 =q  and assume that (2.9) holds true. Suppose that ( )( ) ( )zqzqz ′−τ 1
 is starlike 

univalent in U. Let A∈f  satisfy 

( ) ( )
( ) ( )

( )[ ] Qq
zfA

zfA

m

m

∩1,0
,

,

,,

1
,,

H∈














δρ

δρ
γ

λνµ

+
λνµ

 

and ( )zmf ;,,,,,,,,,,,2 λνµδργητβαϕ  as defined by (2.8) be univalent in U. If  

( )( ) ( )( ) ( )( ) ( ) ( ),;,,,,,,,,,,,2
1

zmfzqzqzzqzq λνµδργητβαϕ′η+β+α −ττ
≺ (2.11) 

then 

( )
( ) ( )
( ) ( )

γ

λνµ

+
λνµ















δρ

δρ

zfA

zfA
zq

m

m

,

,

,,

1
,,

≺  

and q is the best subordinant of (2.11). 

Concluding the results of differential subordination and superordination, we arrive at 

the following "sandwich results". 

Theorem 2.3. Let 1q  and 2q  be convex univalent in U with ( ) ( ) ,100 21 == qq   

,,, C∈τβα  { }.0\, C∈γη  Suppose 2q  satisfies (2.1) and 1q  satisfies (2.9) such that 

( )( ) ( )zqzqz ′−τ 1
 is starlike univalent in U. For ,,, A∈ΨΦf  let 

( ) ( ) ( )
( ) ( ) ( )

[ ] Q
zfA

zfA

m

m

∩1,1
,

,

,,

1
,,

H∈














Ψ∗δρ

Φ∗δρ
γ

λνµ

+
λνµ

 

and ( )zmf ;,,,,,,,,,,,,,1 λνµδργητβαΨΦϕ  as defined by (2.3) be univalent in U. 
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If 

( )( ) ( )( ) ( )( ) ( )zqzqzzqzq 1
1

111 ′η+β+α −ττ
 

( )zmf ;,,,,,,,,,,,,,1 λνµδργητβαΨΦϕ≺  

( )( ) ( )( ) ( )( ) ( ),2
1

222 zqzqzzqzq ′η+β+α −ττ
≺  

then  

( )
( ) ( ) ( )
( ) ( ) ( )

( )zq
zfA

zfA
zq

m

m

2

,,

1
,,

1
,

,
≺≺

γ

λνµ

+
λνµ















Ψ∗δρ

Φ∗δρ
 

and 21, qq  are respectively the best subordinant and the best dominant. 

By making use of Corollaries 2.2 and 2.3, we obtain the following corollary: 

Corollary 2.4. Let 1q  and 2q  be convex univalent in U with ( ) ( ) ,100 21 == qq  

,,, C∈τβα  { }.0\, C∈γη  Suppose 2q  satisfies (2.1) and 1q  satisfies (2.9) such that 

( )( ) ( )zqzqz ′−τ 1
 is starlike univalent in U. For ,A∈f  let 

( ) ( )
( ) ( )

[ ] Q
zfA

zfA

m

m

∩1,1
,

,

,,

1
,,

H∈














δρ

δρ
γ

λνµ

+
λνµ

 

and ( )zmf ;,,,,,,,,,,,2 λνµδργητβαϕ  as defined by (2.8) be univalent in U. If  

( )( ) ( )( ) ( )( ) ( )zqzqzzqzq 1
1

111 ′η+β+α −ττ
 

( )zmf ;,,,,,,,,,,,2 λνµδργητβαϕ≺  

( )( ) ( )( ) ( )( ) ( ),2
1

222 zqzqzzqzq ′η+β+α −ττ
≺  

then 

( )
( ) ( )
( ) ( )

( )zq
zfA

zfA
zq

m

m

2

,,

1
,,

1
,

,
≺≺

γ

λνµ

+
λνµ















δρ

δρ
 

and ,1q 2q  are respectively the best subordinant and the best dominant. 



Differential Sandwich Theorems for a Certain Class of Analytic Functions … 

Earthline J. Math. Sci. Vol. 1 No. 2 (2019), 209-220 

219 

References 

  [1]  F. M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Int. 

J. Math. Math. Sci. 27 (2004), 1429-1436. 

 [2]  A. Amourah and M. Darus, Some properties of a new class of univalent functions 

involving a new generalized differential operator with negative coefficients, Indian J. Sci. 

Tech. 9(36) (2016), 1-7. 

 [3]  T. Bulboacă, Classes of first-order differential superordinations, Demonstratio Math. 

35(2) (2002), 287-292. 

 [4]  M. Darus and R. W. Ibrahim, On subclasses for generalized operators of complex order, 

Far East J. Math. Sci. (FJMS) 33(3) (2009), 299-308. 

 [5]  S. P. Goyal, P. Goswami and H. Silverman, Subordination and superordination results for 

a class of analytic multivalent functions, Int. J. Math. Math. Sci. 2008, Art. ID 561638, 12 

pp. 

 [6]  R. W. Ibrahim and M. Darus, On a univalent class involving differential subordination 

with applications, J. Math. Statistics 7(2) (2011), 137-143. 

 [7]  N. Magesh, G. Murugusundaramoorthy, T. Rosy and K. Muthunagai, Subordination and 

superordination for analytic functions associated with convolution structure, Int. J. Open 

Problems Complex Analysis 2(2) (2010), 67-81. 

 [8]  S. S. Miller and P. T. Mocanu, Differential subordinations: theory and applications, Series 

on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel 

Dekker, Inc., New York and Basel, 2000. 

 [9]  G. Murugusundaramoorthy and N. Magesh, Differential sandwich theorems for analytic 

functions defined by Hadamard product, Ann. Univ. Mariae. Curie-Sklodowska Sect. A 61 

(2007), 117-127. 

 [10]  G. Murugusundaramoorthy and N. Magesh, Differential subordinations and 

superordinations for analytic functions defined by convolution structure, Stud. Univ. 

Babeş-Bolyai Math. 54(2) (2009), 83-96. 

 [11]  G. S. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math., 1013, Springer 

Verlag, Berlin, 1983, pp. 362-372. 

 [12]  H. Srivastava and S. S. Eker, Some applications of a subordination theorem for a class of 

analytic functions, Appl. Math. Letters 21(4) (2008), 394-399. 

 [13]  S. R. Swamy, Inclusion properties of certain subclasses of analytic functions, Int. Math. 

Forum 7(36) (2012), 1751-1760. 



Abbas Kareem Wanas and Hala Abbas Mehai  

Earthline J. Math. Sci. Vol. 1 No. 2 (2019), 209-220 

220 

 [14]  A. K. Wanas, Differential sandwich theorems for integral operator of certain analytic 

functions, Gen. Math. Notes 15(1) (2013), 72-83. 

 [15]  A. K. Wanas, On sandwich theorems for higher-order derivatives of multivalent analytic 

functions associated with the generalized Noor integral operator, Asian-Eur. J. Math. 8(1) 

(2015), 1450024, 14 pp. 

 [16]  A. K. Wanas and A. S. Joudah, Sandwich theorems for certain subclasses of analytic 

functions defined by convolution structure with generalized operator, An. Univ. Oradea 

Fasc. Mat. 21(1) (2014), 183-190. 

 [17]  A. K. Wanas and A. H. Majeed, Differential sandwich theorems for multivalent analytic 

functions defined by convolution structure with generalized hypergeometric function, An. 

Univ. Oradea Fasc. Mat. 25(2) (2018), 37-52. 

 


