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Abstract

Given a partition λ of integer n > 0, there exists a diagram (called Young diagram

Yλ) associated with λ. The filling of such diagram from [n] such that the

entries increase from top to bottom and from left to right is called the standard

Young tableaux (SY T ) of shape λ. In this paper, we associate an invariant

with each standard Young tableau of shape λ, and provide some combinatorial

interpretations of these invariants.

1 Introduction

Let V be an n−dimensional vector space over C, by a flag, we mean a sequence of

subspaces (Vi )i=1,··· ,n ordered by inclusions V• = V1 ⊂ V2 ⊂ ·· · ⊂ Vn = V = Cn , such

that di mCVi = i . The collection of all such flags is called full flag variety denoted by

F`n(C) = {V• : V1 ⊆ V2 ⊆ ·· · ⊆ Vn = Cn}. The set of flags stabilized by a nilpotent

operator X (of Jordan type λ) is known as the Springer variety (Sprλ). T.A. Springer

noted that the cohomology ring of this variety carries a symmetric group action and

provided a thorough geometric formulation of this action. After a decade, Garsia

and Procesi [3], presented the cohomology ring as a graded quotient of a polynomial
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ring, which improved the clarity and accessibility of Springer’s work. In [9], Tymoczko

use fillings of Young tableaux to characterize these affine pieces of Springer varieties,

and demonstrate that the dimension of the affine piece can be calculated using

combinatorial techniques that extend the concept of Eulerian numbers. The study

of Springer varieties by Garsia and Procesi was expanded to include a two-parameter

generalization of Springer varieties known as Hessenberg varieties in [5].

In her study of the connection between Springer fibers and Schubert varieties,

Tymoczko in [8] introduces certain invariants of standard tableaux (SY T ) . These are

used to construct indexing permutation wT , called the Schubert point, of Schubert

varieties whose union has Betti numbers as a certain Springer fiber in [6].

Using the algorithm through which a permutation was attached to each standard

tableau of shape λ, we introduce an invariant, called Tymoczko codes, denoted

by (codT). We studied the combinatorial properties of these codes and provided

combinatorial interpretations. Finally, using the weight associated with the codes, we

realize the Bruhat graph of the Schubert variety associated with the set of all standard

tableaux of partitions λ of n.

In Section 2, we review some basic properties of the symmetric group Sn ,

partitions, and composition of integers, as relevant to our discussion. In section three,

we present and study the combinatorial properties of the Tymoczko code. In section

four, we characterize the reduced words associated with each Tymozcko code.

2 Symmetric Group and Integer Partitions

The symmetric group Sn is generated by the set S = {s1, s2, · · · , sn−1} of adjacent

transpositions si , (1 ≤ i ≤ n −1) such that it swaps i and i +1 and fixes other elements

of [n], subject to braid relations. The length of w , denoted by `(w) is the smallest

integer k ≥ 0 such that, w can be written as a product of k elements of S (i.e. w =
sc1 sc2 · · · sck ∈ Sn), then, this expression is called the reduced decomposition of w and

we say k is the length of w and we write `(w) = k. The string of subscripts c1c2 · · ·ck
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is the word ω of w , (neither is necessarily unique). We denote the set of all possible

reduced word of w ∈ Sn by R(w). For details on this topic, readers are encouraged to

consult [2], [7] and [4].

A lattice word is a string of integers ai > 0, in which every subword contains at least

many ai as ai +1.

A Yamanouchi word is a string of positive integers whose reversal is a lattice word.

For instance, string 22233232 is a lattice word, and 23233222 is a Yamanouchi

word. Following [1], an increasing factorization for ω, partitions ω into blocks, such

that the entries starting from the left increases from left to right within each block.

For instance, the word ω = 345231 is an increasing factorization since it can be

factored into blocks 345|23|1 with each block from the left increases from left to right.

For any w ∈ Sn a reduced factorization for w is an increasing factorization of a

reduced word for w.

2.1. The Bruhat order is a partial order ≤ defined on Sn . For any σ,τ ∈ Sn , we say σ≤ τ
in Bruhat order if τ can be obtained from σ via a sequence of transpositions. In other

words, we say σ ≤ τ if and only if the reduced word of σ is a subword of the reduced

word of τ.

2.2. A partition λ of non negative integer n written as λ ` n, is a sequence λ= (λi )k
i=1

of integers such that λ1 ≥λ2 ≥ ... ≥λk and
∑k

i=1λi = n. Each λi is called part of λ. The

number of parts is called the length of λ denote by `(λ), and the sum of parts is the

weight of λ denoted by |λ| = λ1 +λ2 +λ3 + ...+λk . Similar to partition of integers, is a

sequence (ai )k
i=1 of nonnegative integers such that

∑k
i=1 ai = n is called composition

of nonnegative integer n.

For example, let n = 4, the following are all compositions of 4

(4), (3,1), (1,3), (2,2), (2,1,1), (1,2,1), (1,1,2), (1,1,1,1)

We consider (1,3) and (3,1) as different composition but they are the same as partition.

Earthline J. Math. Sci. Vol. 14 No. 6 (2024), 1173-1193



1176 Felemu Olasupo and Praise Adeyemo

2.3. For any partition λ of an integer n > 0, there corresponds a diagram called Young

diagram (Yλ) which gives an interesting and pictorial way of visualizing partitions. It

is a collection of cells (boxes) arranged in left justified rows such that the number of

cells in i th row corresponds to the size of a part λi in λ, and is weakly decreasing from

top to bottom.

For instance, the Young diagram of λ= (3,2,1) is shown in figure below.

Table 1: Young diagram of shape λ= 3,2,1.

. .

.

We adopt matrix notation in labeling each cell of Yλ, and we write (i , j ) to denote a

cell in the i th row and j th columns of Yλ.

We call the filling of Yλ a row strict tableau (r st ) if the filling is such that the entries

strictly increase from left to right along the row,with no condition on the columns.

Table 2: Row strict tableau.

1 4 6 8 9 10

3 12 13 14 16

2 5 15

7 11

We denote by (r st )λ the set of row strict tableaux of shape λ = (λ1, λ2, · · · , λk ). The

size of (r st )λ denoted by #(r st )λ is given by the multinomial coefficient. That is,
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#(r st )λ = n!∏k
i=1λi !

.

If the filling of Young diagram of shape λ is such that the integers from 1 to n appears

exactly once and that its entries are increasing across each row and column, then such

a filling is call standard Young tableaux.

Table 3: standard tableau

1 2 5 6 11 15

3 7 8 12 14

4 9 16

10 13

Remark 2.1. We shall henceforth denote the collection of all standard Young tableaux

of shape λ` n by STλ(n), and by ST (Pλ(n)) the set of all standard Young tableau of all

Shapes λ ∈ P (n).

Hook length formula (Frame, Robinson, and Thrall). If λ is a Young diagram with n

boxes, then the number #STλ(n) of standard tableaux with shape λ is given as

#STλ(n) = n!∏
(i , j )∈λhi , j

,

where hi , j is the number of cells directly to the right and directly bellow the cell in

(i , j )th position including the cell.

3 Tymoczko Codes and their Combinatorial Properties

In what follows, we discuss Tymoczko’s procedure of associating a permutation to each

standard tableaux and then associate a code to this procedure.
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Definition 3.1. Let di (1 ≤ i ≤ n), be the number of row(s) above i in T ∈ STλ(n), and

wi denote the increasing product of simple transpositions

wi = si−di si−di+1si−di+2 · · · si−2si−1

where each si = (i , i +1). If di = 0, then wi = e is the identity. Then the Schubert point

associated to T is the permutation wT = wn wn−1wn−2 · · ·w2 [8].

Example 3.2. Let n = 6. Consider a partition λ = (3,2,1) with standard tableaux
1 2 3

4 5

6

d1 = 0, d2 = 0, d3 = 0, d4 = 1, d5 = 1, d6 = 2 with w6 = s4s5, w5 = s4, w4 = s3, w3 = e,

w2 = e, w1 = e, then wT = s4s5s4s3. Arranging the values of the d ′
i s in a natural order of

i ′s we obtain an n−turple and called it Tymoczko code (denoted by codT ) for wT . For

instance, the Tymoczko code in the above example is given as (d1, d2, d3, d4, d5, d6) =
(0, 0, 0, 1 , 1, 2) = cod(T ). Let ST (Pλ(n))n>2 be the set of all the standard tableaux

associated with shapes λ where λ are the partitions of n.

Define a map

φ : ST (Pλ(n)) −→Zn

by

T 7→ cod(T ).

Which takes the standard tableaux T to the n−tuple (d1, · · · ,dn) of integer vectors,

where di is the number rows strictly above i in T, and denote it by cod(T ). We call

(d1, · · · ,dn) the Tymoczko code associated to T .

Example 3.3. Let n = 6 and T ∈ ST (P (6)) such that T is of shape λ= (3,2,1). There are

five of such T ∈ ST (P (6)). Consider T = 1 4 6

2 5

3

then codT = (0,1,2,0,1,0).

We attach a word to codeT denoted by ω(T ) by eliminating the brackets and comas

between the coordinates of codT. In the above example, we have ω(T ) = 012010.
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Theorem 3.4. Let Ar be the collection of the integer coordinates di in codT such that

di = r and let λ= (λ1, · · · ,λ`(λ)) be the shape of T . Then

i) Ar is either a singleton set or multiset.

ii) The size of Ar is λ1+r , r ∈ [0, `(λ)−1].

Proof.

i) Since Ar is the collection of all di such that di = r and di is the number of rows

strictly above i in T , then the size of Ar will definitely be one, if it happens that

i is the only entry in the (r +1)th row, otherwise it is a multiset.

ii) We show the second part of the theorem is true by induction on r starting from

r = 0.

For r = 0, we have

A0 = {di | di = 0}.

The implication of this is that, all i ′s such that di = 0 appear in the cells of the

first row of T from the top, and the number of cells in this first row is determined

by λ1. Hence #A0 =λ1+0 =λ1.

For r = 1.

Here,

A1 = {di | di = 1}.

As it is in the case of r = 0, the number of rows strictly above i is 1. This implies

that all i ′s such that di = 1 are in the second row of T (since T is a standard

tableaux) and the number of entries in the second row of T is determined by λ2.

Therefore, #A1 =λ2 =λ1+1.

Now, for an arbitrary value of r = k > 0, we have

Ak = {di : di = k}

The number of rows strictly above i is k and all such i ′s are in the (k +1)th row

of T, where the number of entries in that row is determined by λ1+k .

Hence #Ak =λ1+k =λ1+k .
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Finally, we consider the case of r = `(λ)−1 where we have

A`(λ)−1 = {di | di = `(λ)−1}.

Entries i that satisfy the condition in A`(λ)−1 appear in the last row (bottom) of

T . We know that the number of such entries are determined by λ`(λ) and the

number of rows strictly above those entries is determined by `(λ)−1. Then we

have

#A`(λ)−1 =λ`(λ) =λ1+`(λ)−1.

Example 3.5. Let n = 7 and λ= (3,2,2), `(λ) = 3. Consider

T = 1 4 7

2 5

3 6

with d1 = 0, d2 = 1, d3 = 2, d4 = 0, d5 = 1, d6 = 2, d7 = 0, then, A0 = {d1, d4, d7}, #A0 =
3 =λ1, A1 = {d2, d5}, #A1 = 2 =λ2, and A2 = {d3, d6}, #A2 = 2 =λ3.

Remark 3.6. So, given a partition λ = (λ1, · · · , λ`(λ)) of n, the Tymoczko code (codT )

associated with the standard tableau T of shape λ, has λi integer coordinates i − 1

where 1 ≤ i ≤ k. It turns out that the values of the coordinate of codT encodes the

partition λ.

Lemma 3.7. Tymoczko code associated to a standard tableau is a lattice word.

Proof. We recall that a Young diagram (Yλ) of shape λ is a pictorial view of partition

λ=λ1 ≥ ·· · λk , and we are considering T ∈ ST (Pλ(n)).

Therefore, the number of di = 0, 1, · · · , k − 1, are respectively determine by

λ1, · · · ,λk .

Since λ1 ≥ λ j , 2 ≤ j ≤ k and di = 0, implies that there are λ1 0′s in ω(T ), hence

there will be at least many 0′s in any subword of ω(T ) as 1′s.
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Also, since λ2 ≥λl , 3 ≤ l ≤ k and di = 1, implies that there are λ2 1′s inω(T ), hence

there will be at least many 1′s in any subword of ω(T ) as 2′s.

In general, for any v ≥ 1, λv ≥ ·· · ≥λk , di = v −1 implies that the number of (v −1)

in ω(T ) is λv , and this leads to at least many occurrence of (v −1)′s as v ′s.

Hence ω(T ) is a lattice word.

In what follows, we use the weight associated to each code of T ∈ ST (Pλ(n)) to

realize the Bruhat graph of the Schubert points associated with the set of all standard

Young tableaux of all shapes λ ∈ P (n).

It will be noticed from the graph that for n ≥ 2, the number of T ∈ ST (Pλ(n))

with minimal weight (0) is one, the number of T ∈ ST (Pλ(n)) with maximal weight

is also one. Of important interest to us at this point, is the number of T ∈ ST (Pλ(n))

with weight one and there are n −1 of such T ∈ ST (Pλ(n)). These happens to be the

generators of codT of other weights. For instance, consider n = 5, below is a table of

all T ∈ ST (Pλ(5)) and the corresponding weight.

Earthline J. Math. Sci. Vol. 14 No. 6 (2024), 1173-1193
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Table 4: Standard Tableaux of all Partition of 5 and their Corresponding Weight.

w t (T ) T ∈ ST (Pλ(5))

10 1

2

3

4

5

6 1 2

3

4

5

1 3

2

4

5

1 4

2

3

5

1 5

2

3

4

4 1 2

3 4

5

1 3

2 4

5

1 4

2 5

3

1 2

3 5

4

1 3

2 5

4

3 1 2 3

4

5

1 2 4

3

5

1 2 5

3

4

1 3 4

2

5

1 3 5

2

4

1 4 5

2

3

2 1 2 3

4 5

1 2 4

3 5

1 3 4

2 5

1 3 5

2 4
; 1 2 5

3 4

1 1 2 3 4

5

1 2 3 5

4

1 2 4 5

3

1 3 4 5

2

0 1 2 3 4 5

Proposition 3.8. For any T ∈ ST (Pλ(n)), codT can be uniquely expressed as a linear

combination of codes with weight one.

Proof. Given any T ∈ ST (Pλ(n)), there are n coordinates in codT with the first

coordinate always equal to zero. Therefore, there are n−1 coordinates which are either

zero or a, 1 ≤ a ≤ `(λ)−1.
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For T with weight one, there are n −1 of them with codT = ei , 2 ≤ i ≤ n, where ei

is an n−tuple with 1 in i th position and zero elsewhere. Hence, the result follows from

the elementary linear algebra that every x ∈ Rn can be uniquely expressed as a linear

combination of ei .

Example 3.9. Let n = 5 and λ= (2,2,1). Consider T ∈ ST (Pλ(5)), such that T = 1 2

3 4

5

.

Then

codT = (0,0,1,1,2) = 0(0,0,0,0)+0(0,1,0,0,0)+1(0,0,1,0,0)+1(0,0,0,1,0)+2(0,0,0,0,1).

The polynomial corresponding to the weights of cod(T ) for all T ∈ ST (Pλ(5)) in

Table 3 is

P (w t (T ), x) = 1+4x +5x2 +6x3 +5x4 +4x6 +x10.

The coefficients of each term is the number of T ∈ ST (Pλ(n)) whose weights give

the index of x in the term. For 1 ≤ n ≤ 6, the associated polynomial P (w t (T ), x) is

palindromic, this we display in the table below.

Table 5: Table of polynomials corresponding to the weights all T ∈ ST (Pλ(n))

n P (w t (T ), x)

1 1

2 1+x

3 1+2x +x3

4 1+3x +2x2 +3x3 +x6

5 1+4x +5x2 +6x3 +5x4 +4x6 +x10

6 1+5x +9x2 +15x3 +16x4 +15x6 +9x7 +5x10 +x15

7 1+6x +14x2 +29x3 +35x4 +21x5 +41x6 +35x7 +14x9 +15x10 +14x11 +6x15 +x21

Earthline J. Math. Sci. Vol. 14 No. 6 (2024), 1173-1193
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4 Characterization of Schubert Points wT Associated to

Standard Young Tableaux

Here, we study the composition structure of the reduced word of Schubert points wT

and describe its standard form for any λ. this is displayed in our next result present

the canonical form for the structure of the reduced word of wT

Proposition 4.1. Let wT be the Schubert point associated to T ∈ STλ(n) of any shape,

with codT = (d1,d2, · · · ,dn). Then, the standard form for the composition structure of

the reduced word of wT is given as

a1(a1 +1)(a1 +2) · · · (a1 +k1)|a2(a2 +1)(a2 +2) · · · (a2 +k2)| · · · |ar (ar +1)(ar +2)

· · · (ar +kr )|,
where a j = (i −di ), k j = di −1 and j = n − i +1, 1 ≤ j ≤ r , r is the number of di such

that di 6= 0, 1 ≤ i ≤ n.

Proof. Let wT ∈ STλ(n) such that T is of any shape λ.

Let j = n− i +1. Suppose di = 0, then there is nothing to proof since wi , (2 ≤ i ≤ n)

is always an identity (from the definition of wi ). Now, suppose di 6= 0 and i = n. Then

j = n −n +1 which implies that a1 = (n −dn).

Since dn 6= 0, let us assume dn = q, 1 ≤ q ≤ `(λ)−1.

From the theorem, let j = n − i + 1. Suppose di = 0, then there is nothing to

prove since wi , (2 ≤ i ≤ n) is always an identity (from the definition of wi in [8],

wn = sn−q sn−q+1sn−q+2 · · · sn−2sn−1, then the first block from the left is written as

|(n −q)(n −q +1)(n −q +2) · · · (n −2)(n −1)|

By replacing n with i and q with di in the above, we have

|(i −di )(i −di +1)(i −di +2) · · · (i −di +di −2)(i −di +di −1)|

with a j = (i −di ) and k j = di −1, then the above equation becomes

|a j (a j +1)(a j +2) · · · (a j +k j −1)(a j +k j )|

http://www.earthlinepublishers.com
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Also, we have from the theorem that j = n − i +1 which implies that j = 1 (since i = n

by hypothesis ). Hence, we have |a1(a1 +1)(a2 +2) · · · (a1 +k1 −1)(a +k1)| as the first

block of the composition structure of wT provided dn 6= 0.

By mimicking the proof of the first block we obtain the structure of the remaining

blocks.

Example 4.2. Let codT = (0,0,0,1,1,2) be a code of a certain Schubert point. It is easy

to see that the shape of the associated partition is λ = (3,2,1) with n = 6. From the

statement of the theorem, we have that; j = n−i +1, 1 ≤ j ≤ 3, a j = (i −di ), k j = di −1.

Now, when i = n = 6, then j = 1 =⇒ , a1 = 4 also, k1 = 1. Therefore we have a1(a1 +
k1)| = 45|. This give the first block. For the second and third block, we respectively

have i = 5 and i = 4, a2 = 4, k2 = 0 which implies that 4 is the only element in the

second block. and for the third block a3 = 3. Hence a1(a1 + 1)|a2|a3 = 45|4|3 is the

composition structure of the given code. We confirm this by computing the Schubert

point wT = s4s5s4s3 of the standard tableau

T = 1 2 3

4 5

6

associated to the given code.

Theorem 4.3. Let `(αcT ) be the length of the partition associated to the composition

structure of Schubert point wT identified with standard tableau of shape λ. Then

(i) `(λ) = `(αcT )+1 if λ= (n −k, 1k ), k ≥ 2.

(ii) `(λ) = `(αcT ) if λ= (n − (k +2),2,1k ), n ≥ 4, 0 ≤ k ≤ n −4.

Proof. (i) In this case, the corresponding Young diagram is either of the form

· · ·
...

Earthline J. Math. Sci. Vol. 14 No. 6 (2024), 1173-1193
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or

...

depending on either 2 ≤ k < n or k = n respectively. For each T ∈ STλ(n), we

define DT = {di | di 6= 0}.

Obviously, #DT = `(λ)−1, since di = 0 for all i in the first row of T (from the top).

Recall that each di 6= 0 determines a block in the reduced word of wT .

This implies that

`(αcT ) = #DT

and

`(αcT ) = `(λ)−1.

Hence

`(αcT )+1 = `(λ).

(ii) Here, the corresponding Young diagram is either of the form

if n = 4 and k = 0 or

...

if n > 5 and k increases with the value of n. Now, suppose the length of the first

column is r , thenαcT = (r −1,r −2, · · · ,1,1). Which implies `(αcT ) = (r −1)+1 = r.

We recall that the length of the first column of a Young diagram of shape λ is

equal to `(λ). In other words, `(λ) = r. Hence `(λ) = `(αcT ).
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Theorem 4.4. Let αcT = (c1, c2, · · · , ck ) be the composition structure associated with

wT . Then ck = 1 for all T ∈ STλ(n).

Proof. It is known from [8] that each wT ∈ Sn is of the form wT = wn wn−1wn−2 · · ·w2

where each wi = si−di si−di+1 si−di+2 · · · si−2si−1, 2 ≤ i ≤ n. The reduced word of each wi

gives a block (since the subscripts are increasing in a natural order),and hence forms

a part in αcT .

Assume i = 2, then w2 = s2−d2 . In this case d2 = 1, this implies w2 = s1. Hence

ck = 1.

If d2 = 0, then 2 must be in the first row of T and wT becomes wT =
wn wn−1wn−2 · · ·w3 with d3 = 1 or 2. If d3 = 2 then 1 and 2 must be above 3 in the

same column which implies that d2 = 1, otherwise d3 = 1 and w3 = s2 which implies

that ck = 1.

Finally, assume wT = wn wn−1wn−2 · · ·wr , r > 3, then wr =
sr−dr sr−dr+1 sr−dr+2 · · · sr−2sr−1 which implies that there are some q < r above r

in the same column which in not possible.

Therefore, wr = sr−dr with dr = 1. Hence ck = 1.

Lemma 4.5. Let λ be a partition of n > 0 such that λ= 1n . Consider the Schubert point

wT of standard Young tableau of shape λ with αcT = (c1,c2 · · ·ck ) being the partition

associated to the composition structure of wT ∈ Sn . Then αcT is always a staircase

partition with ci = n − i and
∑n−1

i=1 ci =
(n

2

)
.

Proof. Let λ = 1n , n ≥ 2, there is only one standard tableau in this case, and is of the

form
1

2
...

n

Earthline J. Math. Sci. Vol. 14 No. 6 (2024), 1173-1193
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with wT of the form wT = s1s2 · · · sn−1s1s2 · · · sn−2 · · · s1s2s1 with the word (string of

subscript) (123 · · ·n−1)(123 · · ·n−2) · · · (12)(1), arranging the cardinalities of the blocks

in descending order, we have αcT = (n −1,n −2, · · · ,2,1).

To show that
∑n−1

i=1 ci =
(n

2

)
. We note that

n−1∑
i=1

ci = (n −1)+ (n −2)+·· ·+ (n − (n −1))

= (n −1)+ (n −2)+·· ·+1

= n(n −1)− (1+2+3+·· ·+ (n −1)).

Recall that the sum of the first n −1 natural numbers is given as n(n−1)
2 . Therefore,

equation 4.22 becomes

= n(n −1)− n(n −1)

2
= n(n −1)

2
=

(
n

2

)
.

Since our dear Schubert points wT , T ∈ ST (Pλ(n)) are always elements of Sn ,

expressed in its reduced decompositions (which are not unique). A big question

begging for answer here is that, which of the reduced decompositions of w ∈ Sn gives

wT ? We give answer to this question in our next remark

Remark 4.6. Let wT ∈ Sn , for any v ∈ R(wT ) to be a Schubert point. It must satisfies

the following conditions:

i) v must be a reduced factorization.

ii) v should be able to generate a code such that its first coordinate is zero.

iii) v should be able to generate a tableaux such that the number of di = r, (0 ≤ r ≤
`(λ)−1,1 ≤ i ≤ n) must be equal to λr+1.

Below is the sage command for :

http://www.earthlinepublishers.com
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1. generating the code of any standard Young tableau with its weight and

command for generating the associated Standard Young tableau given any code.

2. computing the polynomial associated to the set of standard tableaux of all

partitions of n > 0.

3. determining the degree of the polynomials in 2.

5 Conclusion

Springer varieties (Sprλ), also known as Springer fibers, where λ is a partition of

integer n > 0, are subvarieties of the full flag varieties FV . The geometry and

combinatorics of Springer varieties has been an active area of research over decades.

In the study of the connection between Springer varieties and another subvarieties

of F`nC called Schubert varieties, Tymoczko in [8] introduces certain algorithm

through which she attached a permutation wT , called the Schubert point, to each

row-strict tableaux of shape λ, whose union has Betti numbers as a certain Springer

varieties in [6]. The length `(wT ) of these permutations turns out to be equal to the

dimension of T which was equally introduced by Tymoczko in [9]

Through the algorithm introduce in [8], invariants were attached to a set of row-

strict tableaux of shape λ, the attached invariants were studied, investigated and give

some combinatorial properties of these invariants and re-interpret some of the results

in [8] and [6] in terms of these properties. Lastly, using the weight associated with

the codes, Bruhat graph of the Schubert variety associated with the set of all standard

tableaux of the partitions λ of n was realised.
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In [1]: sage: def code_to_Tableau(C): # This function the Standard tableaux of a given code.
....: L =[]
....: T = []
....: for i in C:
....: if (i in L)==False:
....: L.append(i)
....: for j in L:
....: H = []
....: t =0
....: for k in C:
....: t = t+1
....: if j==k:
....: H.append(t)
....: T.append(H)
....: return Tableau(T)
....:
....: def code_weight(C): # This function returns the weight of a given code
....: return sum(C)
....:
....: def tableau_to_Code(T): # This function return the code of a given code
....: C = range(sum(T.shape()))
....: for i in range(len(T)):
....: for j in T[i]:
....: C[j-1] = i
....: return (C)

In [2]: sage: T = Tableau([[1,3,5],[2,6],[4]])
sage: T1 = Tableau([[1,3,5],[2,6],[4]])
sage: C1 = tableau_to_Code(T1)
sage: C1

Out[2]: [0, 1, 0, 2, 0, 1]

In [3]: sage: code_weight(C1)

Out[3]: 4

In [4]: sage: code_to_Tableau(C1)

1

FIGURE 1. Sage Implementation.



Out[4]: [[1, 3, 5], [2, 6], [4]]

In [8]: sage: T= Tableau([[1,2,3,4],[5,6,7],[8]])
sage: T2= Tableau([[1,2,3,4],[5,6,7],[8]])
sage: C2= tableau_to_Code(T2)
sage: C2

Out[8]: [0, 0, 0, 0, 1, 1, 1, 2]

In [10]: sage: code_weight(C2)

Out[10]: 5

In [11]: sage: code_to_Tableau(C2)

Out[11]: [[1, 2, 3, 4], [5, 6, 7], [8]]

In [12]: def tableau_weight(T):
weight =0
for i in range(len(T)):

weight += i*T[i]
return weight

def weight_poly(n):
P =Partitions(n)
R.<x> = PolynomialRing(QQ, order='lex')
poly = 0
for i in list(P):

coef =StandardTableaux(i).cardinality()
exp = tableau_weight(i)
poly += coef*x^exp

return poly

In [13]: weight_poly(1)

Out[13]: 1

In [14]: weight_poly(2)

Out[14]: x + 1

In [15]: weight_poly(3)

Out[15]: xˆ3 + 2*x + 1

In [16]: weight_poly(4)

Out[16]: xˆ6 + 3*xˆ3 + 2*xˆ2 + 3*x + 1

In [17]: weight_poly(5)

2



Out[17]: xˆ10 + 4*xˆ6 + 5*xˆ4 + 6*xˆ3 + 5*xˆ2 + 4*x + 1

In [18]: weight_poly(6)

Out[18]: xˆ15 + 5*xˆ10 + 9*xˆ7 + 15*xˆ6 + 16*xˆ4 + 15*xˆ3 + 9*xˆ2 + 5*x + 1

In [5]: def poly_deg(n):
deg=binomial(n,2)
return deg

In [6]: poly_deg(1)

Out[6]: 0

In [7]: poly_deg(2)

Out[7]: 1

In [8]: poly_deg(3)

Out[8]: 3

In [9]: poly_deg(4)

Out[9]: 6

In [10]: poly_deg(5)

Out[10]: 10

In [11]: poly_deg(6)

Out[11]: 15

In [13]: poly_deg(7)

Out[13]: 21

In [14]: poly_deg(8)

Out[14]: 28

In [ ]:

3
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