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Abstract 

Residue Number System has emerged as an alternative number system with advantages 

in many real-life systems including in digit signal processing devices. Computational 

systems built on residue number system require both forward and reverse conversion 

processes. These converters respectively convert a given integer into its corresponding 

residues and calculate the original integer from its residues. While forward conversion is 

pretty straight forward, reverse conversion poses challenges often requiring difficult 

procedures. Much of residue number system research has therefore been devoted to 

design and implementation of efficient reverse conversion algorithm. The Chinese 

Reminder Theorem and the Mixed-Radix Conversion are the two popular ones. The 

Chinese Reminder Theorem results in complex circuitry that requires difficult 

computation involving large modulo-M values. The Mixed-Radix Conversion offers 

simplicity in designs although its steps are sequential. This paper proposes a generalized 

reverse conversion algorithm tailored for a six-moduli set with a large dynamic range. 

This innovative algorithm minimises the difficult multiplicative inverse operations found 

in the traditional reverse conversion methods paving the way for a more efficient reverse 

conversion processes for systems that requires high dynamic ranges. The new algorithm 

has been meticulously evaluated numerically on a proposed six-moduli set �2��� −
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1, 2	� + 1, 2	��� − 1, 2�� + 1, 2���� − 1, 2�� + 1
 for even values of �, to ensure its 

correctness and simplicity. The approach holds great promise for enhancing the 

development of reverse converters allowing the expansion of the landscape of residue 

number system. 

1. Introduction 

There has been renewed interest in residue number system (RNS) over the past six 

decades due to its discovered beneficial features and its ability to design systems that 

require fast processing speed and high levels of fault tolerance. The residue number 

system is an alternative number system to conventional number systems such as the 

decimal and binary number systems that represents a given integer into a set of smaller 

residues by performing a modulo operation on the given integer with respect to a chosen 

moduli set. The residues (remainders) resulting from such operation represents the integer 

in the residue number system. 

RNS has been successfully used in applications such as in digital filtering, 

convolution, communication technologies, cryptography, image and speed processing, 

stenographic and cryptographic methodologies, wireless sensor networks, rain fade 

mitigation and more [1]. The realization of RNS’s widespread use especially in general-

purpose computing is however challenged by a number of bottlenecks. Reverse 

conversion is one of the first arithmetic limitations of residue number system to be 

studied [2, 3]. The reverse conversion procedure is an essential block in an RNS 

processor which takes a given set of residues and a given set of moduli set and calculates 

the binary or decimal equivalent [4]. Current procedures for reverse conversion are 

computationally intensive. The Chinese Remainder Theorem (CRT) for instance rely on 

the use of a large Modulo-M during the conversion process adding to its computational 

load. Similarly, the Mixed Radix Conversion (MRC) is time consuming because of its 

sequential computational process, which could additionally lead to error propagation 

from one mixed radix digit to another [5, 6]. These challenges militate against the 

seamless integration of RNS for digital processor technologies [7]. Consequently, there is 

the need to develop RNS reverse converters that offers efficient RNS processors to 

address the computational burdens associated with existing methods. 

This paper extends the algorithm proposed in [7] by presenting a reverse conversion 

algorithm for a six-moduli set. The algorithm particularly delves into dealing with the 

complexity that arise when performing reverse conversion using the Chinese Remainder 
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Theorem (CRT) which requires large Modulo-M operations as well as the sequential 

processing steps characteristic of the Mixed Radix Conversion (MRC) technique. The 

paper also proposes a six-moduli set, �2��� − 1, 2	� + 1, 2	��� − 1, 2�� + 1, 2���� −1, 2�� + 1
 with a larger dynamic range than those presented in [7] and [8]. This ensures 

that the resulting RNS implementation is able to handle a large range of numbers. 

2. The Concept of Residue Number System 

The idea of residue number system first appeared in the ancient manuscript of Sun 

Tzu [9, 10]. Its practical use however gained momentum in the 1950s emerging as a 

viable number system number system for applications requiring fast processing and for 

fault-tolerant operations [11]. In the residue number system, numbers are encoded as 

small residues relative to a given set of co-prime numbers. RNS’s boost of many inherent 

features making it advantageous for specialized computational tasks. Notably, the lack of 

carry propagation, enables addition and multiplication in RNS to be done without need 

for inter-digits interactions. This feature results in fast arithmetic operations than in 

conventional numbers systems [1]. Additionally, there is the lack of error propagation 

from one residue position to another making it suitable for identifying and correcting 

errors in digital processing devices [1, 11-13] and many others. 

Mathematically, a residue number system is defined by a set of co-prime integers 

known as moduli set. A moduli set is defined by the set ���,  �	, . . . , ��
, � =  1, . . . , �, 

such that ���(�� , ��  )  =  1, for � ≠ �, where ������ , ��� denotes the greatest 

common divisor of ��  and ��. An integer in an RNS can therefore be encoded as a set of 

residues denoted as �"�, "	, . . . , "�
, where "� is the �#ℎ residue derived from Equation (1) 

 "� = % �&' ��.            (1) 

The residues of the integer, 17 with respect to the moduli set  �7, 15, 16, 17, 31
, will be �3, 2, 1, 0, 14
 using Equation (1). 

The dynamic range of a given RNS defines the representable range of all legitimate 

integers [14]. The dynamic range of the moduli set ���,  �	, . . . , ��
, � =  1, . . . , �, is 

given in Equation (2). It ensures the valid representation of all positive numbers between 0 and . − 1 in the given RNS. 

 . =  / ��
�

�0� . (2) 
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An RNS processor is shown in Figure 1.  

 

Figure 1. The general makeup of an RNS processor [4]. 

The function of the RNS processor is in two-folds. At the forepart, the forward 

converter takes a number (either in binary or decimal) and converts it into its equivalent 

residues. At the opposite end, a reverse converter takes the residues and computes the 

original integer value relative to a chosen moduli set. The forward conversion is often 

simple compared with the reverse conversion which requires complicated computation 

steps. There are numerous reverse conversion techniques, popular of which are the 

Chinese Remainder Theorem and the Mixed Radix Conversion [7, 8, 5]. 

3. Related Algorithms 

Numerous RNS research endeavors have been dedicated to reverse conversion 

methodologies. In the following section, we present the reverse conversion algorithms 

that bear relevance to the algorithm presented in this paper. 

3.1. The Chinese Remainder Theorem 

Definition 1. Given the moduli set ���
 � 0 �,…,�, a legitimate integer, % can be 

calculated from its residues set �"�, "	, . . . , "2
, using the CRT (Agbedemnab et al. 

[15]) as follows: 

 % =  34 "�5.�6�578.�
�

�0� 3
9

 (3) 
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. is the dynamic range computed as in Equation (2), .�6� is the multiplicative inverse of .� with respect to ��. Each .� is computed as 
978. 

3.2. The Mixed Radix Conversion 

The Mixed Radix Conversion is a reverse conversion technique in RNS which 

sequentially determines a decimal number from its residues and a set of moduli [4] 

Definition 2. Given the moduli set ���
 � 0 �,…,�, a legitimate integer, % can be 

determined from its residues set �"�, "	, . . . , "2
,  using the MRC [15] as follows: 

 % = :� + :	�� + :����	 + ⋯ + :2���	�� … . �26�, (4) 

where �:�
 � 0 �,…,�,  are the mixed radix digits sequentially computed using the Equations 

below: 

:�  =  "�, 
:	 = <("	 − :�)5��6�57=<7= , 

:� = >?@AB("� − :�)5��6�57CD − :	EFG 5�	6�57C>
7C

, 
⋮ 

:� = <((((("� − :�)|��6�|7J) − :	)5�	6�57J)) … − :�6�)5��6�6� 57J<7J .    (5) 

3.3. The Algorithm in Salifu [7] and Asiedu and Salifu [8] 

The proposed reverse conversion algorithm in this paper is motivated by the 

contributions of [7] as well as in [8]. Salifu in [7] presented a reverse conversion 

technique for both four-moduli set and five-moduli set extending the groundwork laid by 

Asiedu and Salifu in [8]. The initial concept was introduced by [8] with a proposed 

reverse conversion for a two-moduli set and three-moduli set providing the foundational 

framework for the subsequent extension in the work of [7] and for that matter the 

extension in this paper. 

4. Proposed Reverse Conversion for Six-Moduli Set 

The proposed reverse conversion algorithm is presented next. 
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Theorem. Consider the six-moduli set ���,  �	,  ��,  �� ,  ��, �K
, and the residue 

set �L�,  L	, L� , L�, LM, LK
.  The general decimal equivalent of any six-moduli set is given 

as: 

 
 % =  ���	�����MN+ ���	�����|(LM − O)(���	����)6�)|7P� + O, (6) 

where Q ∈ S0, LKT, O = ���	���|L� − (� + �)(���	��)6�|7U + � + �� 

� = (���	 V(L� − AB��5(L	 −  L�)��6�57=D + L�E)(���	)6�V7C
, 

� =   ��5(L	 −  L�)��6�57=) +  L�. 
Proof. Given the six-moduli set ���,  �	,  ��,  �� ,  ��, �K
, and the residue set �L�,  L	, L� , L�, LM, LK
. The following congruences holds true. 

 % ≡ L��&'�� (7) 

 % ≡ L	�&'�	 (8) 

 % ≡ L��&'�� (9) 

 % ≡ L��&'�� (10) 

 % ≡ LM�&'�M (11) 

 % ≡ LK�&'�K. (12) 

Equation (6) can be expressed as: 

 % = ��X + L�. (13) 

Equation (12) must satisfy Equation (7) such that: 

��X + L� =  L	 �&'�	 ��X = (L	 −  L�)�&' �	 

X =  (L	 −  L�)��6��&' �	 

X =  �	Y + (L	 −  L�)��6��&' �	. 
Therefore, Equation (12) can be simplified as: 

 
% =  ��(�	Y + (L	 −  L�)��6��&' �	) +  L� % =  ���	Y + ��(L	 − L�)��6��&' �	) +  L�. (14) 
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Now, Equation (13) must satisfy Equation (8) 

 

���	Y + ��(L	 −  L�)��6��&' �	) +  L� =  L��&'�� 

���	Y =  L� − B(��5(L	 −  L�)��6�57=) +  L�D �&'�� 

Y =  (L� − AB��5(L	 −  L�)��6�57=D + L�E)(���	)6��&'�� 

Y =  ��Z + V(L� − AB��5(L	 − L�)��6�57=D +  L�E)(���	)6�V7C
. 

 

 

 

 

(15) 

Therefore, Equation (13) can be simplified further as; 

% =  ���	(��Z + V(L� − AB��5(L	 −  L�)��6�57=D + L�E)(���	)6�V7C
)

+  ��5(L	 − L�)��6�57=) + L�, 
% =  ���	��Z + ���	 V(L� − AB��5(L	 − L�)��6�57=D +  L�E)(���	)6�V7C

)
+  ��5(L	 −  L�)��6�57=) +  L�. 

(16) 
Equation (15) must satisfy Equation (9): 

���	��Z + ���	 V(L� − AB��5(L	 −  L�)��6�57=D +  L�E)(���	)6�V7C
)

+  ��5(L	 − L�)��6�57=) +  L� =  L��&'�� 

���	��Z = L� − ( ���	 V(L� − AB��5(L	 − L�)��6�57=D + L�E)(���	)6�V7C
)

+   ��5(L	 − L�)��6�57=) +  L�)�&'�� 

(17) 

Z =  3(L� − ( ���	 V(L� − AB��5(L	 − L�)��6�57=D +  L�E)(���	)6�V7C
)

+   ��5(L	 − L�)��6�57=) +  L�))(���	��)6�V7U
, 
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Z =  ��[ + 3(L� − ( ���	 V(L� − AB��5(L	 −  L�)��6�57=D +  L�E)(���	)6�V7C
)

+   ��5(L	 − L�)��6�57=) +  L�))(���	��)6�V7U
. 

Equation (15) can be simplified further as; 

% =  ���	��(��[ +
3(L� − ( ���	 V(L� − AB��5(L	 − L�)��6�57=D +  L�E)(���	)6�V7C

) +  ��5(L	 −
 L�)��6�|7=) +  L�))(���	��)6�V7U

) + ���	 V(L� − AB��5(L	 −  L�)��6�57=D +
 L�\)(���	)6�V7C

) +  ��5(L	 − L�)��6�57=) + L�, 
% =  ���	����[ + ���	��(3(L� − ( ���	 V(L� − AB��5(L	 −  L�)��6�57=D +
 L�\)(���	)6�V7C

) +   ��5(L	 − L�)��6�57=) + L�))(���	��)6�V7U
) + ���	 V(L� −

AB��5(L	 −  L�)��6�57=D + L�E)(���	)6�V7C
) +  ��5(L	 − L�)��6�57=) +  L�. 

∴ % =  ���	����[ + ���	���|L� − ((� + �)(���	��)6�)|7U� + � + �,    (18) 

where; 

� = ( ���	 V(L� − AB��5(L	 −  L�)��6�57=D +  L�E)(���	)6�V7C
                 (19) 

� =   ��5(L	 −  L�)��6�57=) +  L�.                                     (20) 

Equation (17) must satisfy Equation (10). That is, 

���	����[ + ���	���|L� − (� + �)(���	��)6�|7U� + � + � =  LM�&'�M, 
���	����[ = LM − ����	���|L� − (� + �)(���	��)6�|7U� + � + ���&'�M, (21) 
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[ = 5(LM − (���	���|(L� − (� + �))(���	��)6�|7U� + � + �)(���	����)6�) 7P5. 
[ can be rewritten as: [ = �MQ + 5(LM − (���	���|(L� − (� + �))(���	��)6�|7U� + �+ �)(���	����)6�) 7P5. 
Equation (17) can be simplified as: % =  ���	������MQ+ 5(LM − (���	���|L� − (� + �)(���	��)6�|7U� + �+ �)(���	����)6�) 7P5�+ ����	���|L� − (� + �)(���	��)6�|7U� + � + ��, 

% =  ���	�����MN + ���	�����5(LM − O)(���	����)6�) 7P5� + O,    (22) 

where; O = ���	���|(L� − (� + �))(���	��)6�|7U + � + ��.                (23) 

Equation (21) is the general form that satisfies Equation (11) such that, 

% =  ���	�����MN + ���	���� B<(LM − O)(���	����)6�7P<D + O = LK,    (24) 

where Q ∈ S0, LKT, O is defined in Equation (23), � and � are defined in Equation (19) and 

(20) respectively. 

Note that if |O|7` =  LK, then the decimal value of the given residue number is O. 

Otherwise, Equation (22) is evaluated in its entirety. 

This completes the proof. 

5. Numerical Illustrations  

In order to ascertain the correctness of the proposed algorithm, we will consider two 

examples using the six-moduli set �2��� − 1, 2	� + 1, 2	��� − 1, 2�� + 1, 2���� −1, 2�� + 1
, for even values of �. 

Example 1. Find the decimal equivalent of the residue set �2, 24, 24, 0, 12, 6
 with 

respect to the moduli set �2��� − 1, 2	� + 1, 2	��� − 1, 2�� + 1, 2���� − 1, 2�� + 1
 for � = 2. 
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Solution. A decimal value equivalent of a residue number can be calculated using 

Equation (22). Therefore,  

% =  ���	�����MN + ���	�����5(LM − O)(���	����)6�) 7P5� + O = LK. 
The moduli set �2��� − 1, 2	� + 1, 2	��� − 1, 2�� + 1, 2���� − 1, 2�� + 1
 for � = 2, 

reduces to �7, 16, 31, 65, 127, 257
 

% = (7 × 16 × 31 × 65 × 127)N+ (7 × 16 × 31 × 65)�5(12 − O)(7 × 16 × 31 × 65)6�) 7P5� + O = 6. 
But, 

O = ���	���|(L� − (� + �))(���	��)6�|7U + � + ��, 
where � = ( ���	 V(L� − AB��5(L	 −  L�)��6�57=D +  L�E)(���	)6�V7C

; 
� = 7 × 165(24 − �(7|(24 −  2)76�|�K) +  2�)(7 × 16)6�5��, 

� = 1125(24 − �(7|(24 −  2)7|�K) +  2�)185��, 
� = 112|(24 − 72)18|��, 

� = 112 × 4, 
� = 448. 

 

� =   ��5(L	 −  L�)��6�57=) +  L�, 
� = 7|(24 − 2)76�|�K) +  2, 

� =  7|(22) × 7|�K) +  2, 
� = 7(10) + 2, 

� = 72. 
Therefore,  

O = 7 × 16 × 31(|(0 − (448 + 72))(7 × 16 × 31)6�|KM + 448 + 72), 
O = 3472(|520(21)|KM) + 520), 
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O = 3472(0) + 520), O = 520. 
Since |O|7` =  LK, it implies that decimal value of the residue set �2, 24, 24, 0, 12, 6
 

with respect to the moduli set �2��� − 1, 2	� + 1, 2	��� − 1, 2�� + 1, 2���� − 1, 2�� +1
 for � = 2 is 520. 

End of example. 

Example 2. Find the decimal equivalent of the residue set �0, 14, 46,6,18,13
 with 

respect to the moduli set �2��� − 1, 2	� + 1, 2	��� − 1, 2�� + 1, 2���� − 1, 2�� + 1
 for � = 4. 
Solution. A decimal value equivalent of a residue number can be calculated using 

Equation (22). Therefore,  

% = ���	�����MN + ���	�����5(LM − O)(���	����)6�) 7P5� + O = LK. 
The moduli set �2��� − 1, 2	� + 1, 2	��� − 1, 2�� + 1, 2���� − 1, 2�� + 1
 for � = 4, 

reduces to �31, 256, 511, 4097, 8191, 65537
 

% =  ���	�����MN + ���	���� B<(LM − O)(���	����)6�7P<D + O = LK 

But, O = ���	���|(L� − (� + �))(���	��)6�|7U + � + ��, 
where � = ( ���	 3@L� − AB��5(L	 −  L�)��6�57=D +  L�EF (���	)6�3

7C
; 

 � = 31 × 2565(132 − �(31|(4 −  6)316�|	MK) +  6�)(31 × 256)6�5M��, 
� = 79365(132 − �(31|(−2)223|	MK) +  6�)79366�5M��, 

� = 79365(132 − �(31 × 66) +  6�)665M��, 
� = 7936|(132 − 2052)66|M��, 

� = 7936|−126720|M��, 
� = 7936 × 8, 

� = 63488. 
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� =  ��5(L	 −  L�)��6�57=) +  L�, 
� = 31|(4 − 6)316�|	MK) +  6, 
� =  31|(−2) × 223|	MK) +  6, 

� =  31|−446|	MK) +  6, 
� = 3(66) + 6, 

� = 2052. 
Therefore,  

O = 31 × 256 × 511(|4085 − (63488 + 2052)(7 × 16 × 31)6�|�cde + 63488 + 20522), 
O = 4055296|(4085 − 65540) × 0|�cde) + 65540, 
O = 0 + 65540, 
O = 65540. 
Since |O|7` =  LK, it implies that the decimal value of the residue set �0, 14, 46,6,18,13
 

with respect to the moduli set �2��� − 1, 2	� + 1, 2	��� − 1, 2�� + 1, 2���� − 1, 2�� +1
 for � = 4 is 65540. 

End of example. 

6. Conclusion 

Reverse conversion is an essential process in the full realization of residue number 

systems. This paper presented a new reverse conversion algorithm for a six-moduli set, �2��� − 1, 2	� + 1, 2	��� − 1, 2�� + 1, 2���� − 1, 2�� + 1
, for even values on �, that 

aims at simplifying the computation overhead inherent in the traditional methods. 

Through several numerical evaluations, the proposed method has demonstrated to be 

correct and offers a reduction in the reliance on complex multiplicative inverses as 

pertains with other methods. An interesting advantage of the choice of the six-moduli set 

is the offer of a larger dynamic range as compared to related algorithms. This work 

contributes to expanding the frontiers of residue number system research including its 

widespread practical use. The actual hardware implementation of this new algorithm will 

be an interesting avenue for further research. 
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