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Abstract 

The aim of this article is to extend the convergence region of certain multi-step 

Chebyshev-Halley-type schemes for solving Banach space valued nonlinear equations. In 

particular, we find an at least as small region as the region of the operator involved 

containing the iterates. This way the majorant functions are tighter than the ones related to 

the original region, leading to a finer local as well as a semi-local convergence analysis 

under the same computational effort. Numerical examples complete this article. 

1. Introduction 

Let 21: BB →⊂DF  be a twice continuously differentiable operator in the sense 

of Fréchet, where ,1B  2B  are Banach spaces and D is a nonempty and open set. We 

shall denote by ( )21, BBL  the space of bounded linear operators from 1B  into 2B . 

Numerous problems in mathematical, scientific and engineering computing [1-19] 

are usually formulated like an equation of the form 

 ( ) .0=xF  (1.1) 
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However, a solution ∗x  of equation (1.1) can rarely be found in closed form. Therefore, 

researchers and practitioners resort to iterative schemes to produce a sequence 

approximating ∗x . Recently, a great effort has been given to generate fast iterative 

schemes which converge under some Lipschitz-type criteria. 

In particular, we consider the Chebyshev-Halley-type scheme defined for each 

...,,2,1,0=n  by 

( ) ( ) 11

2

1 −− ′





 α−+−= nnnnn xFMIMIxy  

( ) ( ) ( ) ( )[ ] ( ) ( )nnnnnnnnn yFxFyxuFxFxFyz
11 −− ′−′′+′′−=  

[ ] ( ) ( ),12
1 nnnnnn zFxFMMIzx

−
+ ′β++−=   (1.2) 

where ( ) ( ),
3

2 1
nnnn xFxFxu

−′−=  ( ) ( ) ( ) ( ),11
nnnnn xFxFuFxFM

−− ′′′′=  −= nn xv  

( ) ( )nn xFxF
1−′  and R∈βα,  (in the local convergence case) and [ ],1,0∈α  

[ ]1,1−∈β  (in the semi-local convergence case). Iterative schemes-type (1.2) have been 

considered in [19]. However, in this article, we study the local as well as the semi-local 

convergence of scheme (1.2) under generalized ω-conditions. Moreover, by introducing 

the center ω-condition, we locate a subset of D containing the iterates. This subset helps 

us define tighter majorant functions and parameters than before leading to larger radius 

of convergence (i.e., we obtain a wider choice of initial guesses); tighter error bounds on 

the distances ∗+ −− xxxx nnn ,1  (i.e., fewer iterates are needed to obtain a desired 

error tolerance )0>ε  and an at least as precise information on the location of the 

solution. Scheme (1.2) is especially useful, when F ′′  is a constant. Other favorable cases 

can be found in [19]. 

The design of the article is as follows: Section 2 and Section 3 contain the local and 

semi-local convergence of scheme (1.2), respectively. The numerical examples appear in 

the concluding Section 4. 

2. Local Convergence Analysis 

We rely on some parameters and scalar functions to show the local convergence 
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analysis of scheme (1.2). Let [ ) [ )∞+→∞+γ ,0,0:0  be a continuous and increasing 

function with ( ) .000 =γ  Suppose that the equation 

 ( ) 10 =γ t  (2.1) 

has at least one positive solution. We denote by 0ρ  the smallest such solution. Let 

[ ) [ ),,0,0: ∞+→∞+γ  [ ) [ ),,0,0: 01 ∞+→ρλ  [ ) [ )∞+→ρλ ,0,0: 02  be continuous 

and increasing functions with ( ) .00 =γ  Define functions 0µ  and µ on the interval 

[ )0,0 ρ  by 

( )
( )( )

( )t

dt

t
0

1

0
0

1

1

γ−

θθ−γ
=µ
∫

 

and 

( ) ( ) .10 −µ=µ tt  

We have ( ) 10 −=µ  and ( ) +∞→µ t  as .0
−ρ→t  The intermediate value theorem 

assures that equation ( ) 0=µ t  has at least one positive solution. We denote the smallest 

such solution by .0r  

Define functions ,1µ  2µ  on the interval [ )0,0 ρ  by 

( ) ( )
( )

( )( )t

dt

tt
0

1

0
1

01
13 γ−

θθλ
+µ=µ
∫

 

and 

( ) ( ) .112 −µ=µ tt  

Suppose that 

 ( ) .301 <λ  (2.2) 

Then, we get ( ) 002 <µ  by (2.2) and ( ) +∞→µ t2  as .0
−ρ→t  Denote by 1r  the 

smallest positive solution of equation ( ) .02 =µ t  Notice that .01 rr ≤  Define functions p 

and 1p  on [ )0,0 ρ  by 
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( )
( ) ( )

( )( )2
0

1

0
12

1 t

tdtt

tp
γ−

θθλλ
=

∫
 

and 

( ) ( ) .11 −α= tptp  

We get ( ) 101 −=p  and ( ) +∞→tp1  as .0
−ρ→t  We denote by 1ρ  the smallest positive 

solution of equation ( ) .01 =tp  Set 

{ }.,min 10 ρρ=ρ  

Define functions 43, µµ  on the interval [ )ρ,0  by 

( ) ( )
( ) ( )

( )( ) ( )( )ttp

dttp

tt
0

1

0
1

03
112 γ−α−

θθλ
+µ=µ

∫
 

and 

( ) ( ) .134 −µ=µ tt  

We obtain ( ) 103 −=µ  and ( ) +∞→µ t3  as .
−ρ→t  Denote by 2r  the smallest positive 

solution of equation ( ) .04 =µ t  Suppose that equation 

 ( )( ) 130 =µγ tt  (2.3) 

has at least one positive solution. We denote by 2ρ  the smallest such solution. Define 

the functions 65 , µµ  on the interval [ ),,0 2ρ  { }12 ,min ρρ=ρ  by 

( )
( ) ( )( ) ( )

( )( )tt

tdtt

t
30

1

0
33

5
1

1

µγ−

θµµθ−γ
=µ
∫

 

( )( ) ( )( ) ( )( ) ( )

( )( )( ) ( )( )ttt

tdttttt

030

1

0
331030

11 γ−µγ−

θµθµλγ+µγ
+

∫
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( )( ) ( )( ) ( )( ) ( )

( )( )2
0

1

0
331120

1

1

t

ttdttttt

γ−

θµθµλµλµ+
+

∫
 

and 

( ) ( ) .156 −µ=µ tt  

We have ( ) 106 −=µ  and ( ) +∞→µ t6  as .3
−ρ→t  Denote by 3r  the smallest positive 

solution of equation ( ) .06 =µ t  Suppose that equation 

 ( )( ) 150 =µγ tt  (2.4) 

has at least one positive solution. We denote by 3ρ  the smallest such solution and set 

{ }.,min 324 ρρ=ρ  Define functions 87 , µµ  on the interval [ ),,0 4ρ  by 

( ) ( )
( )( ) ( )( ) ( )( ) ( )

( )( )( ) ( )( )ttt

tdttttt

tt
050

1

0
551050

57
11 γ−µγ−

θµθµλγ+µγ
+µ=µ

∫
 

( ) ( )( ) ( )

( )t

tdtttp

0

1

0
551

1 γ−

θµθµλ
+

∫
 

( ) ( )( ) ( )

( )t

ttdtttp

0

1

0
551

2

1 γ−

θµθµλβ
+

∫
 

and 

( ) ( ) .178 −µ=µ tt  

We get ( ) 108 −=µ  and ( ) +∞→µ t8  as .5
−ρ→t  Denote by 4r  the smallest positive 

solution on equation ( ) .08 =µ t  Define radius of convergence r by 

 { } .4,3,2,1,min 1 == irr  (2.5) 

Let ( ) { }ayxyaxU <−∈= :, 1B  and ( )axU ,  be its closure. 

The local convergence analysis of method (1.2) is based on the hypotheses (H): 
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(h1) 21: BB →⊂DF  is a continuously differentiable operator in the sense of 

Fréchet and there exists Dx ∈∗  such that ( ) 0=∗xF  and ( ) ( )., 12
1

BBL∈′ −
∗xF  

(h2) There exists a function [ ) [ )∞+→∞+γ ,0,0:0  continuous and increasing with 

( ) 000 =γ  such that for each Dx ∈  

( ) ( ) ( )( ) ( ).0
1

∗∗
−

∗ −γ≤′−′′ xxxFxFxF  

Set ( ),, 00 ρ= ∗xUDD ∩  where 0ρ  is given in (2.1). 

(h3) There exist functions [ ) [ ),,0,0: 0 ∞+→ργ  [ ) [ ),,0,0: 01 ∞+→ρλ  

[ ) [ )∞+→ρλ ,0,0: 02  with ( ) ,00 =γ  continuous and increasing such that for each 

0, Dyx ∈  

( ) ( ) ( )( ) ( )xyxFyFxF −γ≤′−′′ −
∗ 0

1  

( ) ( ) ( )∗
−

∗ −λ≤′′ xxxFxF 1
1  

and 

( ) ( ) ( ).2
1

∗
−

∗ −λ≤′′′ xxxFxF  

  (h4) ( ) ,, DrxU ⊂∗  310 ,, ρρρ  given in (2.1), (2.3), (2.4), respectively exist and 

(2.2) holds. 

  (h5) There exists rr ≥∗  such that 

( ) .1
1

0
0 <θθγ∫ ∗ dr  

Set ( ).,1 ∗∗= rxUDD ∩  

The aforementioned hypotheses (H) and notation lead to the local convergence result for 

method (1.2). 

Theorem 2.1. Under the hypotheses (H), sequence { }nx  generated by scheme (1.2) 

for ( ) { }∗∗ −∈ xrxUx ,0  converges to ∗x  so that 

 ( ) rxxxxxxxy nnnn <−≤−−µ≤− ∗∗∗∗ 3  (2.6) 
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 ( ) ∗∗∗∗ −≤−−µ≤− xxxxxxxz nnnn 5  (2.7) 

and 

 ( ) ,71 ∗∗∗∗+ −≤−−µ≤− xxxxxxxx nnnn  (2.8) 

where functions 753 ,, µµµ  are given previously and r is defined in (2.5). Moreover, ∗x  

is the unique solution of equation ( ) 0=xF  in .1D  

Proof. The definition of the convergence radius r guarantees that for each [ )rt ,0∈  

( ) ,10 0 <γ≤ t  (2.9) 

( ) ,10 0 <µ≤ t   (2.10) 

 ( ) ,10 1 <µ≤ t  (2.11) 

( ) ,10 <α≤ tp  (2.12) 

( ) ,10 3 <µ≤ t  (2.13) 

( )( ) ,10 30 <µγ≤ tt  (2.14) 

( ) ,10 5 <µ≤ t  (2.15) 

( )( ) ,10 50 <µγ≤ tt  (2.16) 

and  

( ) .10 7 <µ≤ t  (2.17) 

The proof is based on the estimates (2.9)-(2.17) and mathematical induction. Let 

( ) { }., ∗∗ −∈ xrxUx  Using (h1), (h2), (2.5) and (2.9), we have: 

( ) ( ) ( )( ) ( ) ( ) ,100
1 <γ≤−γ≤′−′′ ∗∗

−
∗ rxxxFxFxF  

which together with the Banach Perturbation Lemma [3-5], imply that ( ) ∈′ −1
xF  

( )22, BBL  and 

 ( ) ( )
( )

.
1

1

0

1

∗
∗

−
−γ−

≤′′
xx

xFxF  (2.18) 
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We must also, show ( ) ( )., 12
1

0 BBL∈α− −
MI  By (2.5), (2.12), (2.18) and (h3), we get 

( ) ( )

( )( )2
00

1

0
00102

0
1 ∗

∗∗∗

−γ−

−θ−θλ−λα
≤α

∫
xx

xxdxxxx

M  

( ) ( ) ,10 <α≤−α= ∗ rpxxp  

so 

 ( )
( )

.
1

1

0

1
0

∗

−
−α−

≤α−
xxp

MI   (2.19) 

We can write by (h1), 

 ( ) ( ) ( ) ( )( ) ( ) .
1

0∫ ∗∗∗∗ −θ−θ+′=−= xxdxxxFxFxFxF  (2.20) 

Then, by (h3) and (2.20) 

  ( ) ( ) ( ) .
1

0
1

1

∫ ∗∗
−

∗ −θ−θλ≤′ xxdxxxFxF   (2.21) 

In particular, for ,0xx =  since ( ) { },,0 ∗∗ −∈ xrxUx  0y  is well defined, if 0=n  by 

the first substep of scheme (1.2). By (2.5), (2.13), (h1)-(h3), (2.18), scheme (1.2) for 

0=n , we get in turn that 

( ) ( ) ( ) ( ) ( )0
1

0
1

000
1

000
2

1
xFxFMIMxFxFxxxy

−−−
∗∗ ′α−+′−−=−  

( ) ( ) ( ) ( )( ) ( )( )∫ θ′−−θ+′′′≤ ∗
−

∗∗
− 1

0
000

11
0 dxFxxxFxFxFxF  

∗− xx0  

( ) ( ) ( ) ( ) ( )0
11

0
1

00
2

1
xFxFxFxFMIM

−
∗∗

−− ′′′α−+  

( )( )

( )









−γ−

θ−θ−γ
≤

∗

∗∫
xx

dxx

00

1

0
0

1

1
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( ) ( )

( )( ) ( )( ) ∗
∗∗

∗∗
−










−γ−−α−

θ−θλ− ∫
xx

xxxxp

dxxxxp

0
000

1

0
010

112
 

( ) ,0003 rxxxxxx <−≤−−µ= ∗∗∗  (2.22) 

so (2.6) holds for 0=n  and ( ).,0 rxUy ∗∈  By the definition of r, 0v  and (2.22), 

( ).,0 rxUv ∗∈  Concerning, ,0u  we have in turn as in (2.22) 

( ( ) ( )) ( ) ( )0
1

00
1

000
3

1
xFxFxFxFxxxu

−−
∗∗ ′+′−−=−  

( )( )

( )∗

∗∗

−γ−

−θ−θ−γ
≤
∫

xx

xxdxx

00

1

0
00

1

1

 

( )

( )∗

∗∗

−γ−

−θ−θλ
+
∫

xx

xxdxx

00

1

0
001

13

1
 

( ) ,0001 rxxxxxx <−≤−−µ= ∗∗∗  

so ( ).,0 rxUv ∗∈  Then, by the last condition in (h3), we get that 

( ) ( ) ( )∗
−

∗ −λ≤′′′ xuuFxF 030
1  

( )( ).0013 ∗∗ −−µλ≤ xxxx  (2.23) 

Hence, 0z  is well defined. Using (2.5), (2.18), (2.14), (2.21), (2.22), (2.23) and second 

substep of scheme (1.2) for 0=n  we have in turn that 

( ( ) ( )) ( ( ) ( ) ) ( )0
1

0
1

00
1

000 yFxFyFyFyFxyxz
−−−

∗∗ ′−′+′−−=−  

( ) ( ) ( ) ( )[ ] ( ) ( )0
1

0000
1

0 yFxFvxxxuFxF
−

∗∗
− ′−+−′′′−  

( )( )

( )∗

∗∗

−γ−

−θ−θ−γ
≤
∫

xy

xydxy

00

1

0
00

1

1
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( )( ) ( )( ) ( )( )2
00

2

0000

1

111 ∗∗∗ −γ−
Γ+

−γ−−γ−
Γ≤

xxxxxy
 

( ) ,0005 rxxxxxx <−≤−−µ≤ ∗∗∗  (2.24) 

where  

( ) ( )( ) ( )∫ ∗∗∗∗ −θ−θλ−γ+−γ=Γ
1

0
00100001 xydxyxyxx  

and 

( )( ) ( )( )∫ ∗∗∗ −−µλ−µ+=Γ
1

0
0012002 1 xxxxxx   

( ) ,
1

0
0001∫ ∗∗∗ −−θ−θλ xxxydxy  

so (2.7) holds for 0=n  and ( ).,0 rxUz ∗∈  We also have that 1x  is well defined by the 

third substep of scheme (1.2) for .0=n  Next, using (2.5), (2.16), (2.17), (2.18), (2.21), 

(2.22) and (2.24), we get in turn that 

( ) ( ) ( ( ) ( ) ) ( )0
1

0
1

00
1

001 zFxFzFzFzFxzxx
−−−

∗∗ ′−′+′−−=−  

( ) ( ) ( ) ( )0
1

0
2
00

1
00 zFxFMzFxFM

−− ′β−′−  

( ) ∗∗ −−µ≤ xxxx 005  

( ) ( )( ) ( )

( )( ) ( )( )∗∗

∗∗∗∗

−γ−−γ−

−θ−θλ−γ+−γ
+

∫
xxxz

xzdxzxxxz

0000

1

0
0010000

11
 

( ) ( )

( )∗

∗∗∗

−γ−

−θ−θλ−
+

∫
xx

xzdxzxxp

00

1

0
0010

1
 

( ) ( )

( )∗

∗∗∗

−γ−

−θ−θλ−β
+

∫
xx

xzdxzxxp

00

1

0
0010

2

1
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( ) ,0007 rxxxxxx <−≤−−µ≤ ∗∗∗  (2.25) 

so (2.8) holds for 0=n  and ( ).,1 rxUx ∗∈  

To finish the induction for estimates (2.6)-(2.8), substitute 100000 ,,,,, xuvzyx  by 

1,,,,, +kkkkkk xuvzyx  in the preceding estimates. Then, from the estimate 

 ,1 rxxcxx kk <−≤− ∗∗+   (2.26)  

where ( ) [ ),1,007 ∈−µ= ∗xxc  we conclude that ∗+∞→ = xxknlim  and ∈+1kx  

( )., rxU ∗  The uniqueness of the solution part, is shown by letting =G  

( )( )∫ θ−θ+′ ∗∗∗
1

0
dxyxF  for some 1Dy ∈∗  with ( ) .0=∗yF  Then, by (h1), (h2) and 

(h5) we obtain that 

( ) ( )( ) ( )∫ θ−θγ≤′−′ ∗∗∗
−

∗
1

0
0

1
dyxxFGxF  

( ) ,1
1

0
0 <θθγ≤ ∫ ∗ dr  

so ( )., 12
1

BBL∈−
G  Finally, in view of the identity 

( ) ( ) ( ),0 ∗∗∗∗ −=−= xyGxFyF  

we deduce that .∗∗ = yx  � 

Remark 2.2. (a) Let ( ) ,00 tLt =γ ( ) .Ltt =γ  The radius 
LL +

=ρ
0

1
2

2~  was obtained 

by Argyros as the convergence radius for Newton’s method under condition (h1)–(h3). 

Notice that the convergence radius for Newton’s method given independently by 

Rheinboldt [17] and Traub [18] is given by 

.~

3

2~
1ρ<=ρ

L
 

Let ( ) .1−= x
exf  Then .0=∗

x  Set ( ).1,0U=Ω  Then, we have that LeL <−= 10  

,01 L
e=  so .3827.0~24252961.0~

1 =ρ<=ρ  
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Moreover, the new error bounds [3-5] are: 

,
1

2

0

1
∗

∗
∗

+ −
−−

≤− xx
xxL

L
xx n

n

n  

whereas the old ones [17, 18] 

.
1

2
1

∗
∗

∗
+ −

−−
≤− xx

xxL

L
xx n

n

n  

Clearly, the new error bounds are more precise, if .0 LL <  Clearly, the radius of 

convergence of method (1.2) given by ∗ρ  is smaller than .~
1ρ  

(b) Method (1.2) stays the same if we use the new instead of the old conditions [19]. 

We can use the computational order of convergence (COC) [3-5] 

,

ln

ln

1

1

1

12

−

+
+

++

−
−
−

−

=ξ

nn

nn

nn

nn

xx

xx

xx

xx

    for each ...,2,1=n  

or the approximate computational order of convergence (ACOC) [3-5] 

,

ln

ln

1

1

2

∗

∗
+

∗
+

∗
+

∗

−

−

−

−

=ξ

xx

xx

xx

xx

n

n

n

n

    for each  ...,2,1,0=n  

(c) Using (2.6) and 

( ) ( ) ( ) ( ( ) ( )) IxFxFxFxFxF +′−′′=′′ ∗−∗−∗ 11
 

( ) ( ( ) ( ))∗−∗ ′−′′+≤ xFxFxF
1

1  

( )∗−+≤ xxq01  

condition (2.9) can be replaced by 

( ) ( )tt 01 1 γ+=λ  
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or 

( ).1 001 ργ+=λ  

3. Semi-local convergence analysis 

We study the semi-local convergence analysis of scheme (1.2) in an analogous way 

to the local convergence analysis appearing in Section 2. That is why we omit the proofs 

for which you can also see [19]. The hypotheses on which we base our analysis are (A): 

(a1) 21: BB →⊂DF  is twice continuously differentiable operator in the sense of 

Fréchet and there exists 0,0,0 ≥η>∈ bDx  such that ( ) ( ),, 12
1

0 BBL∈′ −
xF  

( ) bxF ≤′ −1
0  

and 

( ) ( ) .0
1

0 η≤′ −
xFxF  

(a2) There exists a function [ ) [ )∞+→∞+ ,0,0:0w  continuous and non-decreasing 

such that for each Dx ∈  

( ) ( ) ( ),000 xxwxFxF −≤′−′  

and equation 

( ) 10 =tw  

has at least one positive solution. Denote by 0ρ  the smallest such solution and set 

( )., 000 ρ= xUDD ∩  Moreover, suppose that ( ) ,00 ≥tw  for each ,0>t  

( ) ( )ξ≤ξ 00 wttw
q  for each [ ],1,0∈t  ( )∞+∈ξ ,0  and [ ].1,0∈q  

(a3) There exists function [ ) [ )∞+→ρ ,0,0: 0w  continuous and non-decreasing 

such that for each 0, Dyx ∈  

( ) ( ) ( ),xywxFyF −≤′−′  

where ( ) ,0≥tw  for each ,0>t  ( ) ( )ξ≤ξ wttw
q  for each [ ],1,0∈t  ( )∞+∈ξ ,0  and 

[ ].1,0∈q  
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(a4) There exists 0≥K  such that for each 0Dx ∈  

( ) .KxF ≤′′  

In the literature the following conditions are used instead of (a2), (a3) and (a4). 

(a3)’ There exists function [ ) [ )∞+→∞+ ,0,0:1w  continuous and non-decreasing 

such that for each Dyx ∈,  

( ) ( ) ( ),1 xywxFyF −≤′−′  

where ( ) ,01 ≥tw  for each ,0>t  ( ) ( )ξ≤ξ 11 wttw
q  for each [ ],1,0∈t  ( )∞+∈ξ ,0  and 

[ ].1,0∈q  

(a4)’ There exists 01 ≥K  such that for each Dx ∈  

( ) .1KxF ≤′′  

Clearly, we have 

 ,0 DD ⊆  (3.1) 

so for each [ )0,0 ρ∈t  

 ( ) ( ),10 twtw ≤  (3.2) 

 ( ) ( )twtw 1≤  (3.3) 

and 

 .1KK ≤  (3.4) 

Hence, w, K can replace ,1w  1K  in the semi-local convergence of scheme (1.2) and 

other schemes using the same function 1w  and parameter K. This way, we expand the 

convergence region, provide tighter error bounds on the distances ,1 nn xx −+  

∗− xxn  and give a more precise information on the location of the solution .∗x  These 

benefits are obtained under the same computational effort as before, since the 

computation of ,0w  w (or K) as special cases. Notice also that condition (a2) helps us 

define 0D  and then w (i.e., ( )Dwww ,0= ). The set 0D  contains the iterates nx  and by 

(3.2) is at least as precise as D. 
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Define 

 ( ) ( ) ( ) ( ) ( ) ( ),11 3
2

210 tftttfttfth β+++++=   (3.5) 

 ( )
( )

,
1

1

0 tth
th

−
=   (3.6) 

( ) (( ) ( )) ( )utgttuutgutf
q

,1,
3

2
, 2

2
2 β+β++







=  

( ) ( ) ( )
( )

( )utg
t

ttt
uutgtt

q
,

12

1
,1

1

1
2

22

2
2

α−
β+++β++

+
+  

( ) ( ) ( ) ( )utgttutgtt ,1,1 2
2

1 β+++  

( ) ( ) ,,1
2

2
2

22
utgtt

t β++  (3.7) 

 where 

( ) ,
12

1
11

t

t
tf

α−
+=  

( )
( ) ( ) ( )

,
1212122 2

32

2
t

t

t

t

t

tt
tf

α−
+

α−
+

α−
+=  

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ,1
212

1
1

2
2

2
2

2

223 tft
t

tf
t

tt
tfttttftf ++

α−
++++=  

( )
( ) ( )

( )
( ) ( )

,
1812

1

213

2
,

2

321

1
t

t

t

t

qq

u
uutg

q

q

α−
+

α−
α++

++
+=

−
 

( ) ( ) ( )
( )

( ) ( ) ( ) .,1
2

,
12

1

1

1

3

2
,

2
1

2
1

2
2

2 utgt
t

utg
t

tt

q

ut
tuutg

q

++












α−
++

+
+++







=  

Define ( ) ( ) ,10 −= tthtg  notice that ( ) ,0100 <−=h  ,0
2

1
0 >








h  so ( ) 00 =th  has at 

least a root in .
2

1
,0 








 Let ∗

s  be the smallest positive root of ( ) ,010 =−tth  then 

.
2

1<∗
s   
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We need some auxiliary results. 

Lemma 3.1. Let the functions fhh ,,0  be defined in (3.5), (3.7). Then 

(a) ( )th0  and ( )th  are increasing, ( ) 10 >th  and ( ) 1>th  for ;0 ∗<< st  

(b) For ( )∗∈ st ,0  and a fixed ( )utfu ,,0>  is increasing function of t, for 

0>u  and a fixed ( ),,0 ∗∈ st  ( )utf ,  is increasing function of u. 

(c) For ( )∗∈<α< st ,0,10  and ( ) ( ).,,,0
331

utfutfu
qq ++ α<αα>  

Let ( )ηη=η=αη=η=β wbbKbb 0000 ,,,  and ( ) ( )., 0000 bafahc =  Moreover, 

we define the following sequences 

( ) ,, 11 mmmmmm cah η=ηβ=β ++  

,111 +++ ηβ= mmm Ka  ( ),1111 ++++ ηηβ= mmmm wb  ( ) ( )1111 , ++++ = mmmm bafahc  

where .0≥m  Then it follows that 

( ) ( ) .,
1

11 m
q

mmmmmmm bcahbacaha
+

++ ≤=  

Lemma 3.2. Let ∗
s  be the smallest positive root of ( ) .010 =−tth  If 

∗< sa0  and ( ) ,100 <cah  

then (a) for ,0≥m  it holds that ( ) 0>mah  and ,1<mc  (b) the sequence 

{ } { } { }mmm cba ,,  and { }mη  are decreasing, (c) ( ) 10 <mm aah  and ( ) 1<mm cah for 

.0≥m  

We have the following estimates [19]. 

   (i) ( )[ ] 1
11

−
++ ′=Γ mm xF  exists and ( ) ( ) =β≤Γ≤Γ + mmmmm ahah1 ,1+βm  

   (ii) ( ) ( ) ( ) ( ) ,, 111 +++ η=η≤Γ≤Γ mmmmmmmmmm cxFbafahxF  

  (iii) ( ) ,mmmmmm aKxFK =ηβ≤ΓΓ  

  (iv)  ( ) ( )( ) ,mmmmmm bxFwxF ≤ΓΓΓ   

   (v) ( ) ,
3

2

3

2
mmmmm xFxu η≤Γ=−  
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  (vi) ( ) ,mmmmm xFxv η≤Γ=−  

 (vii) ( ) ( ) ,1 mmmmm xFafxy Γ≤−  

 (viii) [ ] ( ) ( ) ,1 2 mmmmmm xFagayz Γ+≤−  

  (ix) ( ) ( ) ( ) ,001 mmmmmmm ahxFahxx η≤Γ≤−+  where .0≥m  

Lemma 3.3. Let the assumptions of Lemma 3.2 and the conditions (A) hold. Then 

1,,,, +mmmmm xzyvu  belong to ( ),,0 ρηcU  where 
( )

.
1 0

00

c

ah

−
=ρ  

Next, we present the main semi-local convergence result for method (1.2) under the 

hypotheses (A). 

Theorem 3.4. Let 21: BB →⊆DF  be twice Fréchet differentiable, where 1B  

and 2B  are Banach spaces, D is a non-empty open convex subset. Suppose that Dx ∈0  

and hypotheses (A) hold. Let ( ) ,,0 DxU ⊆ρη  ,0 η= Kba  ( ),0 ηη= wbb  

( ) ( )00000 , bahahc =  satisfy ∗< sa0  and ( ) 100 <cah  where 
( )

,
1 0

00

c

ah

−
=ρ  ∗s  is the 

smallest positive root of ( ) 010 =−tth  and fhh ,,0  are defined previously. Then, 

starting from 0x , the sequence { }nx  generated by method (1.2) converge to ∗x  with 

( )ρη∈∗ ,, 0xUxxn  and the solution ∗x  of ( ) 0=xF  is unique in ( ) ,~,0 DxU ∩ηρ  

where .
2~

0

ρ−=ρ
a

 Furthermore, 

( )
( )

( )
,

1

1

34
0

3

134

000 n

n

q

q

q

n
n

rr

rrahxx
+

+
−+

∗
−

≤−  

where 
( )

( ) .,
1

00
0

0 cahr
ah

r ==  

4. Numerical Examples 

The numerical examples are presented in this section. 
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Example 4.1. Let ,
3

21 R== BB ( ),1,0U=Ω ( ) .0,0,0
T

x =∗  Define function F 

on Ω for ( )Tzyxu ,,=  by 

( ) .,
2

1
,1

2
T

x
zyy

e
euF 







 +−−=  

Then, the Fréchet-derivative is given by 

( ) ( )
















+−=′
100

0110

00

ye

e

vF

x

 

Notice that using the (2.8)-(2.12), conditions, we get ( ) ( ) ,10 tet −=γ  ( ) ,1

1

tet e−=γ  

( ) ( ) .1

1

21
−=λ=λ eett  

Then using the definition of 0r  and r, we have that 

2056,489351991991524482330.144448850 =r  

15119.815570159562543074460.04151353=r  

Example 4.2. Let [ ],1,021 C== BB  the space of continuous functions defined on 

[ ]1,0  and be equipped with the max norm. Let ( ).1,0U=Ω  Define function F on Ω by 

 ( ) ( ) ( ) ( )∫ θθθϕ−ϕ=ϕ
1

0

3
.5 dxxxF   (4.1) 

We have that 

( )( ) ( ) ( ) ( ) ( )∫ θθξθθϕ−ξ=ξϕ′
1

0

2
,15 dxxxF  for each .Ω∈ξ  

Then, we get that ,0=∗x  ( ) ,5.70 tt =γ  ( ) ,15tt =γ  ( ) ( ) .1521 =λ=λ tt  This way, we 

have that 

565834,521676472065027481210.002978710 =r  

2819792.530200292816238907000.00025772=r  
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Example 4.3. Let us return back to the motivational example. Then, we get that 

( ) ( ) ,1470 ttwtw ==  ( ) .147=tv  So, we obtain 

97016504,840650292405995203030.000002280 =r  

514160.490846537463215609450.00000015=r  

Example 4.4. Let [ ],1,021 C== BB  ( )1,
∗=Ω xU  and consider the non-linear 

integral equation of the mixed Hammerstein-type [1, 2, 6-9, 12] defined by 

( ) ( ) ( ) ( )
∫ 













+=

1

0

2
23

,
2

, dt
tx

txtsGsx  

where the kernel G is the Green’s function defined on the interval [ ] [ ]1,01,0 ×  by 

( ) ( )
( )




≤−
≤−

=
.,1

,1
,

tsts

stts
tsG  

The solution ( ) 0=∗ sx  is the same as the solution of equation (1.1), where 

[ ] [ ]1,01,0: CCF →  is defined by 

( ) ( ) ( ) ( ) ( ) ( )
∫ 













+−=

1

0

2
23

,
2

, dt
tx

txtsGsxsxF  

Notice that 

( ) .
8

1
,

1

0
≤∫ dttsG  

Then, we have that 

( ) ( ) ( ) ( ) ( ) ( ) ,
3

2
,

1

0

21

∫ 






 +−=′ dttxtxtsGsysyxF  

so since ( ( )) ,IsxF =′ ∗  

( ) ( ) ( )( ) .
2

3

8

1 211







 −+−≤′−′′ −∗
yxyxyFxFxF  

Then, we get that ( ) ( ) ,
2

3

8

1 21
0 







 +=γ=γ tttt  ( ) ( ) ( ).1 021 ttt γ+=λ=λ  So, we 
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obtain 

2092,888912070909459670270.740685070 =r  

3933.031978119388972422770.57895531=r  
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