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Abstract

The aim of this article is to extend the convergence region of certain multi-step
Chebyshev-Halley-type schemes for solving Banach space valued nonlinear equations. In
particular, we find an at least as small region as the region of the operator involved
containing the iterates. This way the majorant functions are tighter than the ones related to
the original region, leading to a finer local as well as a semi-local convergence analysis

under the same computational effort. Numerical examples complete this article.

1. Introduction

Let F: D U B, - B, be a twice continuously differentiable operator in the sense
of Fréchet, where B, B, are Banach spaces and D is a nonempty and open set. We
shall denote by £(By, B,) the space of bounded linear operators from B into B, .

Numerous problems in mathematical, scientific and engineering computing [1-19]

are usually formulated like an equation of the form

F(x)=0. (1.1)
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However, a solution xpj of equation (1.1) can rarely be found in closed form. Therefore,

researchers and practitioners resort to iterative schemes to produce a sequence

approximating xp. Recently, a great effort has been given to generate fast iterative
schemes which converge under some Lipschitz-type criteria.

In particular, we consider the Chebyshev-Halley-type scheme defined for each
n=0,1,2,.., by

1 =1 g V-
=y = 151 =) ()

In = Yn ~ F,(xn)_l[F,(xn) + F”(un)(xn - yn)]F,(xn)_lF(yn)
Xart = 2p ~ [+ My, +BMG]F'(x,) " F(z,), (1.2)

—_ 2 ] -1 — 1 —1 " ] -1 —_
where Up = Xp _EF(xn) F(xn)9 Mn _F(xn) F (un)F(xn) F(xn)9 Vn = Xp

F'(x,)'F(x,) and o,BOR (in the local convergence case) and a O[0, 1],
B O[-1, 1] (in the semi-local convergence case). Iterative schemes-type (1.2) have been

considered in [19]. However, in this article, we study the local as well as the semi-local
convergence of scheme (1.2) under generalized m-conditions. Moreover, by introducing
the center w-condition, we locate a subset of D containing the iterates. This subset helps
us define tighter majorant functions and parameters than before leading to larger radius
of convergence (i.e., we obtain a wider choice of initial guesses); tighter error bounds on
the distances | x,+; = x, |, | x, = x| (i.e., fewer iterates are needed to obtain a desired
error tolerance € >0) and an at least as precise information on the location of the
solution. Scheme (1.2) is especially useful, when F" is a constant. Other favorable cases

can be found in [19].

The design of the article is as follows: Section 2 and Section 3 contain the local and
semi-local convergence of scheme (1.2), respectively. The numerical examples appear in

the concluding Section 4.
2. Local Convergence Analysis

We rely on some parameters and scalar functions to show the local convergence
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analysis of scheme (1.2). Let Yy : [0, +») — [0, +») be a continuous and increasing

function with y,(0) = 0. Suppose that the equation

Yolr) =1 .1)
has at least one positive solution. We denote by p, the smallest such solution. Let
y: [0, +00) = [0, +), A; : [0, pg) - [0, +), A, : [0, pg) — [0, +) be continuous
and increasing functions with y(0) = 0. Define functions M, and p on the interval

[0, pg) by

and
() = Hole) - 1.

We have p(0)=-1 and p(f) - +o as t —» py. The intermediate value theorem
assures that equation H(¢z) = 0 has at least one positive solution. We denote the smallest

such solution by r.

Define functions [, W, on the interval [0, py) by

A (6r) a0
W () = (1) + 3‘()1 )
and
Mo () = (1) - 1.
Suppose that

A (0) < 3. (2.2)

Then, we get Hy(0) <0 by (2.2) and H,(f) — +o as t - py. Denote by r the

smallest positive solution of equation [, (¢) = 0. Notice that r; < ry. Define functions p

and p; on [0, py) by

Earthline J. Math. Sci. Vol. 1 No. 2 (2019), 187-207
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1
Az(t)joAl(et)det

(1= vo(0))?

plt) =

and
pi(r) =|a|p(t) -1

We get p;(0) = —1 and p;(r) - +o as t » py. We denote by p; the smallest positive

solution of equation p(t) = 0. Set

p = min{py, py}.

Define functions W3, [y on the interval [0, p) by

p()] M(or)0
T=Ta] o)1 - o)

M3(r) = Ho(r) + 2

and
Ma(t) = us(r) - 1.

We obtain p3(0) = =1 and p3(t) » +o0 as t —» p~. Denote by ry the smallest positive

solution of equation [, (z) = 0. Suppose that equation

Yolus(r)r) =1 (2.3)

has at least one positive solution. We denote by p, the smallest such solution. Define

the functions W5, Hg on the interval [0, p,), p, = min{p, p;} by

[ 0 - O3 (1)1) a0 (1)

1=y (u3(t)1)

Ms(r) =

(Yo b130)1) + Yo M1 (B3 (1)) 01 1)
(Yot Yo
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(1 oD Aa (1 (0] M (But5 (1)) dows (1)

(1= vo(1)?

+

and
Me(r) = Hs(r) — 1.

We have Pg(0) = -1 and pg(r) - +o0 as ¢t — p3. Denote by r; the smallest positive

solution of equation () = 0. Suppose that equation

Yolus()r) =1 (2.4)

has at least one positive solution. We denote by p; the smallest such solution and set

p4 = min{p,, p3}. Define functions {7, g on the interval [0, py), by

(0(150)1) + Yo ] 2050} )dous 1)
() = s () e s O T = ol

QI RICTEODECING

1-y(2)

[B1p2(0)], A1 (8ms (1)) dous ()1

1=yo(r)

+

and
Mg (r) = py(r) - 1.

We get Pg(0) = =1 and pg(t) - +o as ¢t — ps. Denote by r4 the smallest positive

solution on equation pg(#) = 0. Define radius of convergence r by
r=min{r}, i=1,2,3,4. (2.5)
Let U(x, a) ={y OBy :|x=y| < a} and U(x, a) be its closure.

The local convergence analysis of method (1.2) is based on the hypotheses (H):

Earthline J. Math. Sci. Vol. 1 No. 2 (2019), 187-207
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(hy) F:D 0O By - B, is a continuously differentiable operator in the sense of

Fréchet and there exists x 0 D such that F(x) =0 and F'(x)™' O £(B,, By).

(hy) There exists a function Yy : [0, +0) — [0, +) continuous and increasing with

Yo(0) = 0 such that for each x 0 D
| F(x) ™ (F'(x) = F'o) | < Yol x = xa).

Set Dy = DN U(x pg), where pg is given in (2.1).

(h3) There exist functions VY: [0, pO) - [0, +00), N :[0, po) - [0, +00),
A, 1[0, pg) - [0, +0) with y(0) =0, continuous and increasing such that for each
x, y O Dy

I _1 I 1
17 ()™ (F'(3) = F'D ] < Yol y = x )
| F(e) ™ F' () < Ay (3 = )
and
| 7)™ ) < Mol x = ).

(hg) U(xg ) O D, pg, pp» P3 given in (2.1), (2.3), (2.4), respectively exist and
(2.2) holds.

(hs) There exists 1= r such that

1
joyo(erg)d9<l.

Set D, = DN U (x5 1)

The aforementioned hypotheses (H) and notation lead to the local convergence result for
method (1.2).

Theorem 2.1. Under the hypotheses (H), sequence {x,} generated by scheme (1.2)

for xo OU(xg, r) = {x} converges to xqso that

| vn = 2ol < w3l = xo)lx, = xol < %, —xof <r (2.6)

Earthline J. Math. Sci. Vol. 1 No. 2 (2019), 187-207
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20 = x0ll < us(l %, = o)l = xoll < | x, - xoll @27

and

| %01 = 20l < w7 (1 = xa)lx0 = xol <%, = xal, 2.8)

where functions U3, U5, Uy are given previously and r is defined in (2.5). Moreover, xp

is the unique solution of equation F(x) =0 in Dy.

Proof. The definition of the convergence radius r guarantees that for each ¢ 1[0, r)

0<yplr) <1, (2.9)
0< () <1, (2.10)
0< ) <1, (2.11)
0<|alp@)<l, (2.12)
0<ps3(r) <1, (2.13)
0 <vyo(us(r)r) <1, (2.14)
0<us(r) <1, (2.15)
0<vo(us(r)r) <1, (2.16)
and
0<pq(r) <1. (2.17)

The proof is based on the estimates (2.9)-(2.17) and mathematical induction. Let

x OU(xg r) = {x. Using (hy), (hy), (2.5) and (2.9), we have:

| ()™ (F'(x) = F'() | < Vol x = xal) < vo(r) < 1.

which together with the Banach Perturbation Lemma [3-5], imply that F '(x)_1 t
L(B,, B,) and

1
1= Yo(lx = xl)

| F) F o) | <

(2.18)

Earthline J. Math. Sci. Vol. 1 No. 2 (2019), 187-207
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We must also, show (I — O(MO)_1 0 L(B,, By). By (2.5), (2.12), (2.18) and (h3), we get

1
a3 =3l M (830 3ol d8l xo - xo]

Jam | <
(1 = Yo(l xo = xa])®
=|a|p(lxo - xgl) <|a|p(r) <1,
SO
_ 1
I-aMy) ! < . (2.19)
=o)L ol = )
We can write by (hy),
F(y)= F(x) - Fxg) = [ ; F'(e+ 8(x - x)) d8(x - x0). (2.20)
Then, by (h3) and (2.20)
B 1
| FGe™ F) s Ml = ol el x = xc. (221)

In particular, for x = xq, since xy DU (xp, ) ={x}, yo is well defined, if n =0 by
the first substep of scheme (1.2). By (2.5), (2.13), (h;)-(h3z), (2.18), scheme (1.2) for

n =0, we get in turn that

= ' -1 1 =1 1 -1
I yo = xoll = || x0 = x0— F'(x0) F(xo)+5Mo(1 —aMg) F'(xp) F(XO)H

<1 F o) F ) I F )™ (F (g + 8 = x00) = F'(xo)) 0
I = ol

* %II Mo |11 (1 = aMo)™ || F'(xo) ™ F o) [} F' ()™ F(xo) |

[ W0 =05 = xp) a0

1= Yo ([ xo = xo)
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1
pll 50 = xal) M(@l % - ) a8

21 =] a | p(l xo = xa) (1 = vo(l xo = xa

)) " X0~ xD”

= W3( xo = xgl) x0 = xal < [ xo = xal <, (2.22)

0 (2.6) holds for n =0 and y, OU(xg r). By the definition of r, vy and (2.22),

vop O U (xp r). Concerning, ug, we have in turn as in (2.22)

g = w0 = | (s = 3= F'(30) ™ Fso)) + 5 F' (o) Flxg)

1
J W0=0)lx0 - xcl) 8] o - xo]

L=vo(lxo = xal)

1
L[ M@l — xal) 0] x - xo
+ —
35 1=vellx — o)
=150 = 30l % = xall < [ xo = xof <.

s0 vo O U(xg r). Then, by the last condition in (h3), we get that

T _1 n
| F' ()™ F"(o) | < A3 o = xaall)
< A3k xo = xal) | xo = xol)- (2.23)
Hence, z( is well defined. Using (2.5), (2.18), (2.14), (2.21), (2.22), (2.23) and second
substep of scheme (1.2) for n = 0 we have in turn that
' -1 ' -1 ' -1
I zo = xall =1 (vo =xa= F'(yo) F(y0)) + (F'(yo) = F'(x0) ") F(¥0)

1

= F'(x0) ™ F"(u)[(x0 = x0) + (xa = v F'(x0) " F(v0) |

|
J.o y((1=8)] yo = xal) @8] yo = x|

1=yo( [l yo = xal)
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< B + 2
 (=yollyo = xaD) (1= vollxo = xal)) (1 - yo(l xo = xal}))?

< Ws(l xo = xal)llxo = xal < xo = xaf <, (2.24)

where
|
M= (Yol xo = xoll) + vo(l yo - XD"))J.OM(BH yo = xal)d8| yo = xg

and

M2 = 1+ ol = 50D M % = )l x0 = xol)

1
J 200 y0 = xal) el yo = ol % — xcl]

$0 (2.7) holds for n =0 and zy OU(xg r). We also have that x; is well defined by the

third substep of scheme (1.2) for n = 0. Next, using (2.5), (2.16), (2.17), (2.18), (2.21),
(2.22) and (2.24), we get in turn that

— ' - ' 1
| % = xal =1 2o = x0= F'(z0) ™ F(z0) + (F'(20)

- F'(x0)™") Flzo)

— MoF'(x0) ™" F(z9) = BMGF'(x0) ™ F(zo) |

< sl xo — gl xo = xol

1

(vo(l 20 = 0D+ Yoll x0 = xa )] M(®l 20 = x) 48] o - xo]

+
(1= Yol zo = 20D (1 = Yol xo = xal))

1
pllx0 = xal) M(8l 2o - x 8] 0 — o

1=vo(l xo = xal)

1
|81 (1 x0 = xalD M(®l =0 — ) a] 20 = xo]
+

1=yo(| x0 = xa])
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< W7(lxo =l xo = xoll <l xo = ol <, (2.25)
$0 (2.8) holds for n = 0 and x; OU (x5, 7).

To finish the induction for estimates (2.6)-(2.8), substitute xg, yq, 2o, Vg, Uo, X1 by

Xis Yi» ks Vio Ug» Xi 41 in the preceding estimates. Then, from the estimate
| Xice1 = 2ol < o xe = xof <1, (2.26)

where ¢ = 7 (| xg = xg) O [0, 1), we conclude that lim,, | 4o X = x and x4 O

U(x, r). The uniqueness of the solution part, is shown by letting G =
1
IO F'(xg+8(yg— x))dO for some ygO Dy with F(yg) = 0. Then, by (h), (hy) and

(hs) we obtain that

| F oG = P | < [ vo(®l xo= ol de

1
< ono(erg)de <1,

so G~ 0 £(B,, By). Finally, in view of the identity
0= F(yn) = F(x) = Gyp ~ x0),

we deduce that xg = yg 0

Remark 2.2. (a) Let Y (r) = Lyt, y(¢) = Lt. The radius p; = was obtained

2Ly +
by Argyros as the convergence radius for Newton’s method under condition (h;)—(h3).

Notice that the convergence radius for Newton’s method given independently by
Rheinboldt [17] and Traub [18] is given by

Let f(x) = e* —1. Then x”=0. Set Q = U(0, 1). Then, we have that Ly =e —1< L

= /10, 50 B = 0.24252961 < B, = 0.3827.

Earthline J. Math. Sci. Vol. 1 No. 2 (2019), 187-207
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Moreover, the new error bounds [3-5] are:

L
| sy =27 =] x, = x|,
1= Lol x, = x|
whereas the old ones [17, 18]
L
| sy =27 < (A

1= L x, =27
Clearly, the new error bounds are more precise, if Ly < L. Clearly, the radius of
convergence of method (1.2) given by pD is smaller than .

(b) Method (1.2) stays the same if we use the new instead of the old conditions [19].

We can use the computational order of convergence (COC) [3-5]

In ” Xn+2 = Xn+l ”

£ = Xn+1 = Xn , foreach n=1,2, ..
In 1 Xn+1 = An
" xn - xl’l—l ”

or the approximate computational order of convergence (ACOC) [3-5]

xn+2 - X
In 5
D xn+1 - X
&= = foreach n=0,1, 2, ...
xn+1 - X
In 5
[

(c) Using (2.6) and
| FCT @) [ =] F D)) - F() + 1
<1+ F() T (F ) - F(D)|
<1+ qo(] x = x7)

condition (2.9) can be replaced by

Ai(r) =1+yo(r)

Earthline J. Math. Sci. Vol. 1 No. 2 (2019), 187-207
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or
Ar =1+ y(po)-
3. Semi-local convergence analysis

We study the semi-local convergence analysis of scheme (1.2) in an analogous way
to the local convergence analysis appearing in Section 2. That is why we omit the proofs
for which you can also see [19]. The hypotheses on which we base our analysis are (A):

(a1) F:D O By - B, is twice continuously differentiable operator in the sense of

Fréchet and there exists xo 0 D, b > 0, N = 0 such that F'(xy)~ O £(B,. B),

| F'(xo)™" s b

and

| F'(x0)™ Flxo) | < .

(ap) There exists a function wy : [0, +0) — [0, +») continuous and non-decreasing

such that for each x 00 D
1 F'(x) = F'(xo) [l < wo [ x = x0 ),
and equation
wo(t) =1
has at least one positive solution. Denote by p the smallest such solution and set
Dy = DNU(xg, Py)- Moreover, suppose that wp(r)=0, for each >0,
wo () < 19wy (&) for each + 00, 1], &€ O (0, +o) and ¢ O [0, 1].

(az) There exists function w:[0, py) — [0, +) continuous and non-decreasing

such that for each x, y U D
[ F ()= F Ol < wlly = x),

where w(t) = 0, for each t >0, w(t€) < t9w(€) for each + 0]0, 1], & O (0, +») and
q afo, 1].

Earthline J. Math. Sci. Vol. 1 No. 2 (2019), 187-207
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(a4) There exists K = 0 such that for each x [0 Dy,
F"(x) < K.
In the literature the following conditions are used instead of (a,), (a3) and (ay).

(a3)’ There exists function wy : [0, +®) — [0, +®) continuous and non-decreasing

such that for each x, y 00 D
IF'(y) = F'() [ < wi(l y = x]),

where w(t) = 0, for each ¢ >0, w;(t€) < t9w,(§) for each ¢+ 0[0, 1], & O (0, +o) and
g d[o,1].

(ag)’ There exists K; = 0 such that for each x U D

F”()C) S Kl'
Clearly, we have
D, O D, 3.1
so for each ¢ 00 [0, Po)
wo(t) < (o), -2)
w(t) < wi (1) 3
and
K <K, (3.4)

Hence, w, K can replace w;, K; in the semi-local convergence of scheme (1.2) and
other schemes using the same function w; and parameter K. This way, we expand the
convergence region, provide tighter error bounds on the distances | x,+1 = x, [,
| x, = xg| and give a more precise information on the location of the solution xp These
benefits are obtained under the same computational effort as before, since the
computation of wy, w (or K) as special cases. Notice also that condition (ap) helps us
define Dy and then w (i.e., w = w(wy, D)). The set Dy contains the iterates x,, and by

(3.2) is at least as precise as D.

Earthline J. Math. Sci. Vol. 1 No. 2 (2019), 187-207
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Define
ho(e) = fie) + (L+1) fo(0) + (141 +[ B ) £3(0), (3.5)
_ 1
h(r) = W (3.6)

760 = (3] 62w+ 20+ B+ BlD) (e )

2(1+1+[B|r?)

+ q+1(1+z+|B|t2)gz(t, u)u + 20 -ar) g2(1. u)
t(10+1) g (t, u)(1+1+|B|1%) go(t, u)
%(1+t+|8|t2)2 22, u)?, 3.7)
where
fl(t):H%l—tcxt
2 3
=5+ 2(1f0(t) ' 2(1t—0(t) ' 2(1—t0(t)2 ’

2
L r(+)

f3(t) = 12 (1) + (L + 1) f2(¢) 20 - ar)

HE)+ 0+ A0,

2471 u (1+0a):? 3
u+ + +
34 (g+D(g+2) 20-oar) 8(1-ar)?

g,(t, u) = K%)qu +12 + (L+1)u + tz(l +t):|g1(t, u) +é(1 + t)2gl(t, u)2.

g+1 2(l-at)

gt u) =

2

Define g(t) = hg(z)t — 1, notice that hy(0) = -1<0, ho(%j >0, so hy(t) =0 has at

least a root in (0, %) Let s be the smallest positive root of ho(t)t =1 =0, then

sD<l.
2

Earthline J. Math. Sci. Vol. 1 No. 2 (2019), 187-207
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We need some auxiliary results.

Lemma 3.1. Let the functions hy, h, f be defined in (3.5), (3.7). Then
(a) ho(t) and h(t) are increasing, ho(t) > 1 and h(t) >1 for 0 <t < s™
(b) For t (0, sD) and a fixed u > 0, f(t, u) is increasing function of t, for

u >0 andafived t 0(0, sV), f(t, u) is increasing function of u.

() For 0<a <1,t0(0, s”) and u >0, f(ar, a'*u) < o339 £ (¢, u).

Let By = b, Ny =N, 0 = Kbn, by = bnw(n) and cq = h(ag) f(ag, by). Moreover,

we define the following sequences
Bm+l = h(am)Bm7 Nim+1 = CmMNim>
A+l = KBm+1r]m+l’ bm+1 = Bm+1nm+lw(nm+1)’ Cm+l = h(am+1)f(am+1’ bm+1)

where m = 0. Then it follows that

A+l = h(am)cmam’ by < h(am)C}nﬂ]bm'

Lemma 3.2. Let s° be the smallest positive root of hy(t)t =1=0.If
ag < sZand h(ag)cy <1,

then (a) for m=0, it holds that h(am) >0 and c, <1, (b) the sequence
{a,}. b} {c,n} and {n,,} are decreasing, (c) hy(a,,)a,, <1 and h(a,,)c,, <1 for

m = 0.
We have the following estimates [19].
(1) rm+1 = [F’(xm+1 )]_1 exists and ” rm+1 ” = h(am)" rm " = h(am)Bm = Bm+1’

(ii) ” rm+1F(xm+1) " = h(am)f(am’ bm)" I_mF(xm) " = SN = N+
(i) K[y [ T () | S KB = s

V) [T T Con ) WA T F () 1) < By

(v) ” Up = Xm " =

2
5 rmF(xm)

<2,
<2,

Earthline J. Math. Sci. Vol. 1 No. 2 (2019), 187-207
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) [ vy = 2 | = [ T F ) | S M
(vii) ” Ym = Xm ” = fl(am)” I_mF(xm)"’

ViiD) || 2y = v | < 1+ @) g2(an)| T F (x,) [

@) [+ = 2 || < B (am )| TonF G ) | < P (@ )M Where m 2 0.

Lemma 3.3. Let the assumptions of Lemma 3.2 and the conditions (A) hold. Then

Ups Vins Yms Zms Xm+1 belong to U(cy, pn), where p = M.
— ¢

Next, we present the main semi-local convergence result for method (1.2) under the
hypotheses (A).

Theorem 3.4. Let F: D O B; — B, be twice Fréchet differentiable, where B,
and B, are Banach spaces, D is a non-empty open convex subset. Suppose that x, 0 D
and  hypotheses (A) hold. Let U(xy, pn) 0D, ag=Kbn, by =bnw(n),

holag) 0

co = hlag) hy(ag. by) satisfy ay < s” and h(ay)cy <1 where p = . , S~ is the
— ¢

smallest positive root of hy(t)t =1=0 and hy, h, f are defined previously. Then,
starting from xg, the sequence {x,} generated by method (1.2) converge to xp with

Xp» xg O U(xq, pn) and the solution xp of F(x) =0 is unique in U(xy, pn)N D,

where p = 2 p. Furthermore,
a

(4+3¢)" -1

1
| %0 =30l < holag) g'r 79—,

1
where ry = ——, r = h(ag) co.
h(ap)

4. Numerical Examples

The numerical examples are presented in this section.
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Example 4.1. Let B; = B, = R, Q= U (0, 1), xg= (0.0, O)T. Define function F

on Qfor u = (x, y, z)! by

_ T
F(u):(ex—l,—621y2+y, Zj .

Then, the Fréchet-derivative is given by

e* 0 0
F'()=]0 (e-1)y+1 0
0 0 1

1

Notice that using the (2.8)-(2.12), conditions, we get Y(r) = (e = 1)z, y(t) = e¢71t,

1
)\1(1‘) = )\2(1‘) =eel,
Then using the definition of r; and r, we have that
rp = 0.14444885915244823348935199192056,

r =0.041513536254307446815570159515119.

Example 4.2. Let B; = B, = C[0, 1], the space of continuous functions defined on

[0, 1] and be equipped with the max norm. Let Q = U (0, 1). Define function F on Q by
F(8)(x) = 0(x) - 5[ 0b(@) a8 @
We have that
FOE) () =€) - 15 01x9¢(6)25,(6) 46, for each £ 0 Q.

Then, we get that xg=0, Yo(r) =7.5t, y(r) =15¢, A(r) = A\,(r) =15. This way, we
have that

rp = 0.0029787165027481215216764720565834,

r = 0.00025772162389070053020029282819792.
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Example 4.3. Let us return back to the motivational example. Then, we get that
wo(t) = w(t) = 147, v(t) = 147. So, we obtain

rp = 0.000002280599520303840650292497016504,

r = 0.0000001563215609454908465374514160.

Example 4.4. Let B; =B, =C[0,1], Q =U ( , 1) and consider the non-linear
integral equation of the mixed Hammerstein-type [1, 2, 6-9, 12] defined by

)= [ OIG(S, ;)[ ()72 + (2)2}#

where the kernel G is the Green’s function defined on the interval [0, 1] x [0, 1] by

1-s)t, t<s

.=

sl—t), s<t

The solution x(s) =0 is the same as the solution of equation (1.1), where

F : C[0,1] - CJo, 1] is defined by

F(x)(s) = x(s) - | ;G(s, t)(x(t)3/2 s %)2} dr,

Notice that

H I;G(s, t)dt

Then, we have that

so since F'(x(s)) =1,
| PG EE - FOD s (3112 + -1

Then, we get that yo(t) = y(t) = %@ 2 4 tj, () = Aa(e) = 14 yolt). So, we
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obtain

rp = 0.74068507094596702788891207092092,

r = 0.57895531889724227703197811933933.
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