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Abstract

We introduce the minus F-index and square F-index of a graph. In this study, we
determine the minus F-index, square F-index and their polynomials of porphyrin
dendrimer, propyl ether imine dendrimer, zinc porphyrin dendrimer and poly ethylene

amide amine dendrimer.

1. Introduction

Let G be a finite, simple, connected graph with vertex set V(G) and edge set E(G).
The degree dg(v) of a vertex v is the number of edges incident to v. The edge

connecting vertices u and v will be denoted by uv. For other definitions and notations,

readers are referred to [1].

Chemical Graph Theory is a branch of Mathematical Chemistry which has an
important effect on the development of Chemical Sciences. A molecular graph or
chemical graph is a simple graph such that its vertices correspond to the atoms and the
edges to the bonds. In Chemistry, topological indices have been found to be useful in
discrimination, chemical documentation, structure property relationships, structure
activity relationships and pharmaceutical drug design. There has been considerable

interest in the general problem of determining topological indices, see [2, 3].

The first F-index [4] and second F-index [5] of a graph G are defined respectively as
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F(G) = Z [dg () +dg ()], F(G) = Z dg(u)dg(v)*.

wlE(G) wDE(G)

Recently some novel variants of F indices were introduced and studied such as F-

indices [5], connectivity F-indices [6], multiplicative F-indices [7].

The irregularity index (called as minus index [8]) was introduced by Albertson in [9]

and defined as

MG)= Y |dgl)-dg0) |

wE(G)

Recently, the square ve-degree index was introduced by Kulli in [10] and defined as

Oye (G) = Z [dve (”) —dy, (V)]Z'

wlE(G)

Very recently, some square indices were introduced and studied such as square
reverse index [11], square Revan index [12] square leap index [13], square KV index
[14].

We now introduce the minus F-index and square F-index of a graph G as follows:

The minus F-index of a graph G is defined as

ME(G)= ) |dg)’ —dg(v) |. (1)
wlE(G)

The square F-index of a graph G is defined as

= D ldgw)’ -dg(v)’T. 6)

wlE(G)

Considering the minus F and square F indices, we define the minus F and square F'

polynomials of a graph G as

MF(G, x) = Z x‘dG(M)2—dG(V)2\’ 3)
wlE(G)

0F(G, x)= Y, @y ~dg(v)* 1. @
wlE(G)
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In this paper, we consider the porphyrin, propyl ether imine, zinc porphyrin and poly
ethylene amide amine dendrimers. Some degree based topological indices, eccentricity
based topological indices of these dendrimers were studied in [15, 16, 17, 18, 19, 20]. In
Chemical Graph Theory, graph polynomials related to molecular graph were studied in
[21, 22, 23, 24, 25, 26, 27, 28, 29]. Graph polynomials and topological based numbers
have significant importance to collect information about properties of chemical
compounds [30]. In this paper, the minus F and square F indices and their polynomials
of porphyrin, propyl ether imine, zine porphyrin and poly ethylene amide amine
dendrimers are determined.

2. Results for Porphyrin Dendrimer D, P,

We consider the porphyrin dendrimer which is denoted by D, P,. The porphyrin

dendrimer is shown in Figure 1.

Figure 1. Porphyrin dendrimer D, P,.
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Let G = D, P, be a porphyrin dendrimer. By calculation, G has 96n — 10 vertices
and 105z — 11 edges. In G, there are six types of edges based on degrees of end vertices

of each edge. By calculation, the edge partition of G is given in Table 1.

Table 1. Edge partition of D, P,.

dgu), dg(W)\uw D E(G) | (1,3) | (1,4) 2,2) (2,3) 3.3 | G4

Number of edges 2n 24n 10n =5 48n -6 13n 8n

Theorem 1. The minus F-index of D,P, is
MF(D,P,) = 672n - 30.

Proof. Let G = D, P,. By using equation (1) and Table 1, we obtain

MF(D,R) = D |dg(u)’ —dG() |
wOE(G)

=112 =32 |20 +| 1% - 4% |24n +| 22 = 2% |(10n - 5)
+]2% =32 |(48n - 6) +| 32 =32 [13n +| 3% - 47 |8n
= 672n - 30.

Theorem 2. The minus F polynomial of D, P, is
— 15 8 7 _ 5 _ 0
MF(D,P,, x) = 24nx"> + 2nx° +8nx’ + (48n - 6) x> + (23n - 5)x".

Proof. Let G = D, P,. By using equation (3) and Table 1, we have

MF(D,B,. x)= > dg () =dg (v}’ |
uvDE(G)

2_2 2_42 2.2
=2l 773 L gl 14 ‘+(10n—5)x‘2 27|
2_52 2_2 2_42

+(48n—6)x‘2 13l 3 gl 34

= 24nx" + 2nx8 + 8nx” + (48n - 6) X+ (23n - 5) 0.
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Theorem 3. The square F-index of D, P, is
QF (D, P,) = 7120n —150.

Proof. Let G = D, P,. From equation (2) and using Table 1, we deduce

OF (D,P,) = Z [dg () = dg(v)* ]

wlE(G)
= (12 =320 + (12 = 42)?24n + (2% - 22)*(10n - 5)

+(2% = 3%)%(48n - 6) + (3% - 3%)13n + (37 - 4%)%8n
= 7120n - 150.

Theorem 4. The square F-polynomial of D, P, is
QF(D,P,, x) = 24nx?% + 20 + 8mx*? + (48n - 6) X2+ (23n - 5) 0.

Proof. Let G = D, P,. From equation (4) and by using Table 1, we derive

OF(D,B.x)= Y JdG)?=-dg(v)’F

nln
wOE(G)
= 2nx(12 R 24nx(12 407 (10n - 5) x(22_22 y
+(48n - 6) x(22 P 13nx(32 ), 8nx(32 -47)
= 24nx2% + 2nx% + 8™ + (48n - 6) x>+ (23n - 5) K
3. Results for Propyl Ether Imine Dendrimer PETIM

We consider the propyl ether imine dendrimer which is denoted by PETIM. This
dendrimer is presented in Figure 2.

Earthline J. Math. Sci. Vol. 1 No. 2 (2019), 171-185
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Figure 2. Propyl ether imine dendrimer PETIM.

Let G be a propyl ether imine dendrimer PETIM. By calculation, G has

24 x 2™ — 23 vertices and 24 x 2" — 24 edges.

In G, there are exactly three types of edges based on degrees of end vertices of each

edge. Also by calcul

ation, the edge partition of G is given in Table 2.

Table 2. Edge partition of PETIM.

dg (), dg(v)\ uv O E(G)

1,2) (2,2) (2,3)

Number of edges

6x2" -6

2n+1 2l’l+4 _ 18

Theorem 5. The minus F-index of PETIM is

Proof. Let G =

MF(PETIM ) = 3 x 2"*1 + 30 x 2" - 30.

PETIM . By using equation (1) and Table 2, we deduce

http://www.earthlinepublishers.com
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MF (PETIM )

Y lda) -dg(v) |

wE(G)

112 =22 |27 4 22 =22 |(2"** —18) +] 22 - 32 (6 X 2" — 6)
=3x 2" 430 x 2" - 30.
Theorem 6. The minus F polynomial of PETIM is
MF(PETIM, x) = (6x2" = 6)x> +2"*1x3 + (2"*4 —18)x".

Proof. Let G = PETIM from equation (3) and by using Table 2, we derive

Z x[ dg () -dg(v)* T

wlE(G)

QF (PETIM , x)

- 2n+1x\ 12-22 | + (2n+4 —18) x\ 2222 | + (6 x M — 6)x‘ 2232 |
= (6x2" —6)x° +2"1 3 + (2" - 18) 0.
Theorem 7. The square F index of PETIM is
QF (PETIM) = 9 x 2" +150 x 2" —150.
Proof. Let G = PETIM . By using equation (2) and Table 2, we obtain

QF(PETIM) = ) [dg ()’ - dg(v)’]*
uvDE( )

- (12 _ 22 )22n+1 + (22 _ 22 )2(2n+4 _ 18) + (22 _ 32 )2(6 x 2 _ 6)
=9x 2" 4150 x 2" - 150.
Theorem 8. The square F-polynomial of PETIM is
QF (PETIM , x) = (6 x 2" - 6) x®> + 2" + (2% —18)x.

Proof. Let G = PETIM . From equation (4) and by using Table 2, we have

Earthline J. Math. Sci. Vol. 1 No. 2 (2019), 171-185
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OF(PETIM. )= ) ) -dg ()P

uwE(G)
_ o+l (1P-27)F (27 ~ 1) (22227 (6x2" - 6)x(22_32)2

= (6x2" —6)x? +2""1 0 + (2" - 18) 0.

4. Results for Zinc Porphyrin Dendrimer DPZ,

We consider the zinc porphyrin dendrimer and it is symbolized by DPZ,,. The zinc
porphyrin dendrimer is depicted in Figure 3.
e SN as" <N
]
o8 Po,
S ey T’ %
O, 4 J % 9
(7

: {

Figure 3. Zinc porphyrin dendrimer DPZ,, .

Let G = DPZ,, be a zinc porphyrin dendrimer. By calculation, G has 64 x 2" -4
edges. In G, there are four different types of edges based on degrees of end vertices of
each edge. Also by calculation, the edge partition of G is given in Table 3.

http://www.earthlinepublishers.com
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Table 3. Edge partition of DPZ,,.

dg(u), dg(v) \ uv O E(G) 2,2) (2,3) 3, 3)

(3,4)

Number of edges 16x2" =4 | 40x2" —-16 | 8x2" +12

Theorem 9. The minus F-index of DPZ,, is
MF(DPZ,) = 200 x 2" - 52.

Proof. Let G = DPZ,. By using equation (1) and Table 3, we have

ME(DPZ,) = Y [ dg(u)? -~ dg ()|
wlE(G)

=22 =22 |(16x2" - 4) +| 22 =37 | (40 x 2" - 16)
+]3% =37 (8% 2" —12) +| 3% —4% |4
=200 x 2" —52.
Theorem 10. The minus F-polynomial of DPZ,, is

QF (PETIM , x) = 4x” + (40 x2" —=16) x> + (24 x 2" +8) x°.

Proof. Let G = DPZ,. From equation (3) and by using Table 3, we obtain

MF(DPZ,.x)= > dG )y =dg(v)?]
wlE(G)

2_42 2_72
= (16x2" —4) 2 272 4 (40x 2" —16) 2 27

2_12 2_42
+(8x2" —12) 2 3T 4 44l 34
= 4x” +(40x 2" =16) x> + (24 x 2" +8) x°.
Theorem 11. The square F-index of DPZ,, is

QF (DPZ,,) = 1000 x 2" - 204.

Earthline J. Math. Sci. Vol. 1 No. 2 (2019), 171-185




180 V. R. Kulli

Proof. Let G = DPZ,. By using equation (2) and Table 3, we deduce

QF (DPZ,) = Z [dg()* - dg(v)*)?

wOE(G)
= (22 -22)*(16x 2" - 4) + (22 - 3%)? (40 x 2" -16)
+(32-32)2 (8x 2" +12) + (3% -4%)*4

=1000 x 2" - 204.

Theorem 12. The square F-polynomial of DPZ,, is
QF(DPZ,,, x) = 4x® + (40 x 2" =16) x> + (24 x 2" +8) x".

Proof. Let G = DPZ,. From equation (4) and by using Table 3. We derive

OF(DPZ,, x) = Y sldcW=dolP T
wlE(G)

= (16x 2" - 4)x(""2) 4 (a0 x2" ~16)x(2 )
(8% 27 +12) (33 4 4, (3747
= 4x% + (40x 2" —16)x® + (24 x 2" +8)x.
5. Results for Poly Ethylene Amide Amine Dendrimer PETAA

We consider the poly ethylene amide amine dendrimer which is denoted by PETAA.

This dendrimer is shown in Figure 4.

http://www.earthlinepublishers.com
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Figure 4. Poly ethylene amide amine dendrimer PETAA.

Let G = PETAA be a poly ethylene amide amine dendrimer. By calculation, G has

44 x 2" —18 vertices and 44 x 2" =19 edges. In G, there are four different types of
edges based on degrees of end vertices of each edge. Also by calculation, the edge
partition of G is given in Table 4.

Table 4. Edge partition of PETAA.

dg(u), dg(v)\uv O E(G) (1,2) (1,3) 2,2) 2,3)

Number of edges 4 x 2" 4x2" -2 16x2" -8 | 20x2" -9

Theorem 13. The minus F-index of PETAA is
MF(PETAA) =144 x 2" - 61.
Proof. Let G = PETAA. From equation (1) and by using Table 4, we obtain

MF(PETAA) = " |dg(u)® - dg(v) |
wlE(G)

Earthline J. Math. Sci. Vol. 1 No. 2 (2019), 171-185




182 V. R. Kulli

=12 =224 x2" +|12 =32 |(4x2" - 2)
+]22 =22 (16 x 2" -8) +| 2% 3% |(20x 2" -9)

=144 x2" - 61.

Theorem 14. The minus F-polynomial of PETAA is
MF(PETAA, x) = (4% 2" =2)x® +(20x 2" =9) x> +4x 2"}
+(16x 2" -8)x".
Proof. Let G = PETAA. By using equation (3) and Table 4, we deduce

MF(PETAA, x) = Z W)’ =dg(v)?]
wlE(G)

—ax 2 P2y (a2 - 2) A P
+ (16 x2" —8)x‘ 227, (20 x 2" _9)x\ 2232
= (4%x2" =2)x8 + (202" —9)x° +4x2")]
+(16x2" - 8)x".
Theorem 15. The square F-index of PETAA is

QF (PETAA) = 792 x 2" —353.

Proof. Let G = PETAA. By using equation (2) and Table 5, we derive

OF (PETAA) = Z [dg(u)* = dg(v)* ]
wlE(G)

= (12 - 22?4 x2" + (12 - 3%)2 (4 x 2" - 2)
+(22 = 22)2(16 x 2" = 8) + (2% = 32)?}(20x 2" -9)

=792 x2" —353.
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Theorem 16. The square F-polynomial of PETAA is

QF (PETAA, x) = (4x2" =2)x% +(20% 2" =9)x® + 4 x 2"y’

+(16x2" -8)x".

Proof. Let G = PETAA. From equation (4) and by using Table 4, we get

QF(PETAA, x) = Z x[dG(u)z—d(;(v)2]2
wlE(G)

= 4x 2 (P2 4 (4w = ) (P37
2 _~2\2 2 _12\2
+(16x2" -8)x(272)" 4+ (20 x 2" - 9) (27 73)
= (4x2" =2)x% +(20x 2" = 9) % +4x 2"y’

+(16x 2" -8)x°.
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