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Abstract

In this work, a Chebyshev polynomial spline function is derived and used

to approximate the solution of the second order two-point boundary value

problems of variable coefficients with the associated boundary conditions. In

deriving the method, the cubic spline Chebyshev polynomial approximation,

S(x) is made to satisfy certain conditions for continuity and smoothness of

functions. Numerical examples are presented to illustrate the applications of

this method. The solution, y(x) of these examples are obtained at some nodal

points in the interval of consideration. The absolute errors in each example

are estimated, and the comparison of exact values, and approximate values

by the present method and other methods in literature at the nodal points

are presented graphically. The comparison shows that the proposed method

produces better results than Approaching Spline Techniques and collocation

method.

1 Introduction

The basic idea behind cubic spline approximation/interpolation is based on the

engineer’s tool used for drawing smooth curves through a number of points [1].
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This spline consists of weights attached to a flat surface at the points to be

connected. A flexible strip is then bent across each of these weights, resulting

in a pleasingly smooth curve [2].

There are many linear and nonlinear problems in science and engineering,

namely, second order differential equations with various types of boundary

conditions, which are solved either analytically or numerically [3]. Numerical

simulation in engineering science and in applied mathematics has become a

powerful tool to model the physical phenomena particularly when analytical

solutions are not available [8]. The numerical solution of two-point Boundary

Value Problems (BVPs) is of great importance due to its wide applications in

scientific research [8]. Several authors have considered the solution of boundary

value problems in the past: Ravi and Reddy [3], Caglar et al. [4], Chang et al.

[5], El-Gamel [6], Jang [7] and Chang et al. [8].

In interpolating problems, spline interpolation is often preferred to polynomial

interpolation because it yields similar results to interpolating with higher degree

polynomials while avoiding instability due to Runge’s phenomenon [9]. In

computer graphics, parametric curves whose coordinates are given by spline are

popular because of the simplicity of their construction, ease of manipulation and

accuracy of evaluation, and their capacity to approximate complex shapes through

curve fitting and interactive curve design [9].

The linear two-point boundary value problem considered in this paper is of

the form

y′′(x) + p(x)y′(x) + q(x)y(x) = f(x), a ≤ x ≤ b (1)

with the boundary conditions {
y(a) = ya

y(b) = yb
(2)

where equation (1) together with the boundary conditions is assumed to have a

unique solution y(x) if p(x) ∈ C ′[a, b], p > 0, q(x), f(x) ∈ C[a, b], f(x) is a given

smooth function and ya, yb are real constants [2,8,9,10,11].
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2 Methodology

Generally, cubic spline polynomial involves four constants, so there is sufficient

flexibility in the procedure to ensure that the interpolant is not only continuously

differentiable on the interval but also has a continuous second derivative.

The cubic spline Chebyshev polynomial S(x) approximation for the solution

of (1) together with (2) is derived and made to satisfy the following conditions:

1. S(x) = Si(x) is a cubic polynomial on each sub-interval [xi, xi+1] for i =

0, 1, ..., N − 1;

2. S(x) = yi for i = 0, 1, ..., N and

3. S is smooth. That is, S(x), S′(x), and S′′(x) are continuous on [a, b].

The Chebyshev polynomial of degree n of the first kind valid in the interval

[a, b] is defined as

Tn = cos

[
ncos−1

(
2x− a− b
b− a

)]
. (3)

In the interval [−1, 1], equation (3) becomes

Tn = cos(ncos−1(x) (4)

and the recurrence relation of equation (4) is

Tn+1 = 2T1(x)Tn(x)− Tn−1(x) : T0(x) = 1, T1(x) = x. (5)

Therefore, using (3)-(5)

T2(x) = 2x2 − 1 (6)

and

T3(x) = 4x3 − 3x. (7)

Using (5)-(7), the cubic spline Chebyshev polynomial approximation is then

written as

S4 = ai + bi(x− xi) + ci[2(x− xi)2 − 1] + di[4(x− xi)3 − 3(x− xi)]. (8)

Earthline J. Math. Sci. Vol. 14 No. 5 (2024), 1077-1090



1080 A. K. Jimoh, M. H. Sulaiman and A. S. Mohammed

Letting S4(xi) = yi S4(xi+1) = yi+1

S′′4(xi) = Mi S′′4(xi+1) = Mi+1

S′4(x) = bi + 4ci(x− xi) + 12di(x− xi)2 − 3di (9)

S′′4(x) = 4ci + 24di(x− xi). (10)

Substitute xi for x in (9) and (10) to obtain

ai = yi +
Mi

4
(11)

ci =
Mi

4
. (12)

Substitute xi+1 for x in (8) to obtain

ai+bi(xi+1−xi)+ci[2(xi+1−xi)2−1]+di[4(xi+1−xi)3−3(xi+1−xi)] = yi+1. (13)

Then

4ci + 24di(xi+1 − xi) = Mi+1. (14)

Substituting for ai and ci (13) and (14) with the step length h = xi+1 − xi, gives

ai + hbi + (2h2 − 1)ci + (4h3 − 3h)di = yi+1 (15)

di =
Mi+1 −Mi

24h
. (16)

Using equations (11)-(16),

bi =
yi+1 − yi

h
−
(
h

3
+

1

8h

)
Mi −

(
h

6
− 1

8h

)
Mi+1. (17)

Setting

S′4i−1
(xi) = S′4i

(xi)

leads to

yi+1 − 2yi + yi−1 =
h2

6
(Mi+1 + 4Mi +Mi−1). (18)
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Generally, equation (18) is written as

αMi+1 + 2βMi + αMi−1 =
1

h2
(yi+1 − 2yi + yi−1) (19)

where α = 1
6 and β = 1

3 .

Equation (1) is rewritten as

d2y

dx2
+ q(x)

dy

dx
+ r(x)y = f(x), (20)

where q(x) = p′(x)
p(x) , r(x) = −v(x)

p(x) , f(x) = −g(x)
p(x) .

Equation (20) is discretized at the nodal points xi by

y′′i + qiy
′
i + riyi = fi, (21)

where qi = q(xi), ri = r(xi), fi = f(xi).

Taking the moment of the spline leads to

Mi = fi − qiy′i − riyi. (22)

Equation (22) is substituted into (18) to obtain

yi+1 − 2yi + yi−1 =
h2

6
[fi+1 − qi+1y

′
i+1 − ri+1yi+1 + 4(fi − qiy′i − riyi)

+fi−1 − qi−1y′i−1 − ri−1yi−1]. (23)

Using the fourth order methods in (23)

y′i =
yi+1 − yi−1

2h
,

y′i+1 =
3yi+1 − 4yi + yi−1

2h

and

y′i−1 =
−yi+1 + 4yi − 3yi−1

2h
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where i = 1, 2, 3, ... leads to(
−3h

2
qi−1 − 2hqi +

h

2
qi+1 + h2ri−1 + 6

)
yi−1 + (2hqi−1 − 2hqi+1 + 4h2ri − 12)yi

+

(
−h

2
qi−1 + 2hqi +

3h

2
qi+1 + h2ri+1 + 6

)
yi+1 = h2(fi−1 + 4fi + fi+1) (24)

with y(a) = ya and y(b) = yb with i = 1(1)N − 1.

Equation (24) is a tridiagonal system written in the form

AY = f. (25)

Equation (25) is then solved using MATLAB to obtain the values yi : i =

1, 2, 3, ..., n− 1.

3 Numerical Examples

To compare the approximate solution, y(xi) with the exact solution, Y (xi) the

absolute error between the two solutions is defined as

Err =| Y (xi)− y(xi) |, i = 1, 2, 3, ... (26)

The computations and programmes contained in the work are carried out with

the aid of MATLAB software.

Example 1: Consider the second order Ordinary Differential Equation

y′′(x) =
2

x2
y(x)− 1

x
; 2 < x < 3 y(2) = 0, y(3) = 0 : h =

1

10
. (27)

The exact solution is

y(x) =
1

38

(
−5x2 + 19x− 36

x

)
.

Comparing equations (21) and (27)

xi = 2( 1
10)3
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ri = − 2
x2
i

qi = 0 =⇒ q0 = q1 = ... = q9 = 0

fi = − 1
xi
.

When i = 1(2)9, equation (27) leads to the following system

1199

200
y0 −

5300

441
y1 +

1451

241
y2 = − 1321

46200

2644

441
y1 −

1454

121
y2 +

3172

529
y3 = − 145

5313

1451

242
y2 −

6356

529
y3 +

1727

288
y4 = − 317

12144

3172

529
y3 −

865

72
y4 +

3748

625
y5 = − 863

34500

1727

288
y4 −

7508

625
y5 +

2027

338
y6 = − 1873

78000

3748

625
y5 −

2030

169
y6 +

4372

729
y7 = − 1013

43875

2027

338
y6 −

8756

729
y7 +

2351

392
y8 = − 437

19656

4372

729
y7 −

1177

98
y8 +

5044

841
y9 = − 235

10962

2351

392
y8 −

10100

841
y9 +

2699

450
y10 = − 2521

121800
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Imposing the boundary conditions y(2) = y(3) = 0 results in the tridiagonal

system AY = f , where

A =



−5300
441

1451
242 0 0 0 0 0 0 0

2644
441 −1454

121
3172
529 0 0 0 0 0 0

0 1451
242 −6356

529
1727
288 0 0 0 0 0

0 0 3172
529 −865

72
3748
625 0 0 0 0

0 0 0 1727
288 −7508

625
2027
338 0 0 0

0 0 0 0 3748
625 −2030

169
4372
729 0 0

0 0 0 0 0 2027
338 −8756

729
2351
392 0

0 0 0 0 0 0 4372
729 −1177

98
5044
841

0 0 0 0 0 0 0 −10100
841

2699
450


(28)

and

f =

(
− 1321

46200
,− 145

5313
,− 317

12144
,− 863

34500
,− 1873

78000
,− 1013

43875
,− 437

19656
,− 235

10962
,− 2521

121800

)T

.

(29)

Example 2: Consider the second order Ordinary Differential Equation of variable

coefficients

y′′ − 2

x
y′ +

4

x2
y = 1, y(10) = 0, y(20) = 100. (30)

Remark: Closed form solution does not exist.
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Example 3: Consider the stiff second order Ordinary Differential Equation of

variable coefficients

y′′ − (x+ 1)y = −e−x(x2 − 2x+ 2), y(2) = 0, y(4) = 0.036631. (31)

The exact solution is

y(x) = e−x(x− 2).

Tables of Results

Table 1: Numerical Results for Example 1: Comparison between the absolute

errors in the Approaching Spline Techniques and the present method

x Exact Kalyani and Error Present Error

Solution Rao (2013) Method

2.0 0.000000 0.000000 0.00000 0.0000000 0.00000

2.1 0.018609 0.018809 2.00E-4 0.0186217 1.27E-5

2.2 0.032536 0.032904 3.68E-4 0.0325566 2.06E-5

2.3 0.042048 0.042537 4.89E-4 0.0420733 2.53E-5

2.4 0.047368 0.047925 5.57E-4 0.0473952 2.72E-5

2.5 0.048684 0.049252 5.68E-4 0.0487103 2.63E-5

2.6 0.046154 0.046680 5.26E-4 0.0461773 2.33E-5

2.7 0.039912 0.040350 4.38E-4 0.0399316 1.96E-5

2.8 0.030075 0.030389 3.14E-4 0.0300891 1.41E-5

2.9 0.016742 0.016908 1.66E-4 0.0167497 7070E-6

3.0 0.000000 0.000000 0.00000 0.0000000 0.00000
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Table 2: Numerical Results for Example 2: Comparison between the absolute

errors in the Chebyshev Collocation method and Present method

x Exact Chebyshev Error Present Error

Solution Collocation Method

Mathematica Method

10 −1.11022 ∗ 10−16 1.06581 ∗ 10−14 1.06692E-14 0.0000000 1.11022E-16

11 2.36996 2.33973 3.023E-2 2.37478 4.82E-3

12 6.22043 6.18761 3.282E-2 6.22791 7.48E-3

13 11.66800 11.6401 2.790E-2 11.6761 8.10E-3

14 18.80360 18.7802 2.340E-2 18.8102 6.60E-3

15 27.69750 27.6774 2.010E-2 27.7010 3.50E-3

16 38.40360 38.3873 1.630E-2 38.4021 1.50E-3

17 50.96200 50.9526 9.400E-2 50.9539 8.10E-3

18 65.40200 65.4018 2.000E-2 65.3858 1.62E-2

19 81.74370 81.7504 6.700E-2 81.7181 2.56E-2

20 100.0000 100.0000 0.000000 100.000 0.000000

Table 3: Numerical Results for Example 3: Comparison between the exact

solution, the Power series and Chebyshev Collocation method and the Present

method

x Exact Power Series Error Chebyshev Error Present Error

Solution Collocation h = 0.0001 Collocation h = 0.0001 Method h = 0.2

Method N=7 Method N=4

2.0 0.0000000 -0.00000986 9.86E-6 0.00000624 6.24E-6 0.000000 0.00000

2.2 0.0221606 0.0221302 3.04E-5 0.0217249 4.357E-4 0.0222135 5.29E-5

2.4 0.0362872 0.0362667 2.05E-5 0.0359400 3.472E-4 0.036342 5.48E-5

2.6 0.0445641 0.0445480 1.61E-5 0.0443943 1.698E-4 0.0445911 2.70E-5

2.8 0.0486481 0.0486357 1.24E-5 0.0485827 6.540E-5 0.0486412 6.90E-6

3.0 0.0497871 0.0497802 6.90E-6 0.0497527 3.440E-5 0.0497643 2.28E-5

3.2 0.0489146 0.0489098 4.80E-6 0.0489038 1.080E-5 0.0488513 6.33E-5

3.4 0.0467226 0.0467163 6.30E-6 0.0467879 6.530E-5 0.0465919 1.307E-4

3.6 0.0437180 0.0437188 8.00E-7 0.0439092 1.912E-4 0.0434841 2.339E-4

3.8 0.0402674 0.0402904 2.30E-5 0.0405241 2.567E-4 0.0398765 3.909E-4

4.0 0.0366313 0.0366287 2.60E-6 0.0366414 1.010E-5 0.0366313 0.000000
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Figure 1: The relationship between the exact solution and the solutions by the

Approaching Spline Techniques and the present method.
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Figure 2: The relationship between the exact solution and the solutions by

Chebyshev Collocation method and the Present Method.
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Figure 3: The relationship between the exact solution and the solutions by Power

series collocation method, Chebyshev collocation method and Present Method.

4 Discussion of Results and Conclusion

In this paper, cubic spline Chebyshev approximation for solving second order

boundary value problems of ordinary differential equations is derived. Three

equations of variable coefficients are considered and the results obtained are

presented graphically in Figures 1-3. In examples 1 and 3, the coefficient of

y′ is zero while the coefficients of y′ and y are non-zero in example 2. The results

obtained by the present method when compared with the exact solution and

results by other methods in literature are generally better as indicated in Tables

1-3. Better results results can be obtained using the proposed method with h

assuming smaller values.

In conclusion, the method proposed in this paper is a powerful tool for solving
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second order ordinary differential equations of variable coefficients due to its

simplicity and accuracy.
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