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Abstract

In this paper we introduce the notion of Reich type cyclic weakly contraction
and prove a fixed point theorem. Some Corollaries are consequences of the
main result.

1 Introduction and Preliminaries

Theorem 1.1 ( [1, 2]). If T : X 7→ X, where (X, d) is a complete metric space,
satisfies

d(Tx, Ty) ≤ k[d(x, Tx) + d(y, Ty)]

where 0 < k < 1
2 and x, y ∈ X, then T has a unique fixed point.

Definition 1.2 ( [3]). Let X be a nonempty set and T : X 7→ X be an operator.
By definition, X =

⋃m
i=1Xi is a cyclic representation of X with respect to T if

(a) Xi, i = 1, · · · ,m are nonempty sets,

(b) T (X1) ⊆ X2, · · · , T (Xm−1) ⊆ Xm, T (Xm) ⊆ X1.

Notations 1.3 ( [4]). Φ will denote all monotone increasing continuous functions
µ : [0,∞) 7→ [0,∞) with µ(t) = 0 if and only if t = 0.
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Notations 1.4 ( [4]). Ψ will denote all lower semi-continuous functions ψ :

[0,∞)2 7→ [0,∞) with ψ (x1, x2) > 0 for x1, x2 ∈ (0,∞) and ψ(0, 0) = 0.

Definition 1.5 ( [4]). Let (X, d) be a metric space, m ∈ N, A1, A2, · · · , Am be
nonempty subsets of X, and Y =

⋃m
i=1Ai. An operator T : Y 7→ Y is called a

Kannan type cyclic weakly contraction if

(a)
⋃m
i=1Ai is a cyclic representation of Y with respect to T,

(b) µ(d(Tx, Ty)) ≤ µ
(
1
2 [d(x, Tx) + d(y, Ty)]

)
− ψ(d(x, Tx), d(y, Ty)) for any

x ∈ Ai, y ∈ Ai+1, i = 1, 2, · · · ,m, where Am+1 = A1, µ ∈ Φ, and ψ ∈ Ψ.

Theorem 1.6 ( [4]). Let (X, d) be a complete metric space, m ∈ N, A1, A2, · · · , Am
be nonempty closed subsets of X and Y =

⋃m
i=1Ai. Suppose that T is a Kannan

type cyclic weakly contraction. Then, T has a fixed point z ∈
⋂m
i=1Ai.

Theorem 1.7 ( [5]). If (X, d) is a complete metric space and T : X 7→ X satisfies

d(Tx, Ty) ≤ k[d(x, Ty) + d(y, Tx)]

where 0 < k < 1
2 and x, y ∈ X, then T has a unique fixed point.

Definition 1.8 ( [6]). Let (X, d) be a metric space, m ∈ N, A1, A2, · · · , Am be
nonempty subsets of X, and Y =

⋃m
i=1Ai. An operator T : Y 7→ Y is called a

Chatterjea type cyclic weakly contraction if

(a)
⋃m
i=1Ai is a cyclic representation of Y with respect to T,

(b) µ(d(Tx, Ty)) ≤ µ
(
1
2 [d(x, Ty) + d(y, Tx)]

)
− ψ(d(x, Ty), d(y, Tx)) for any

x ∈ Ai, y ∈ Ai+1, i = 1, 2, · · · ,m, where Am+1 = A1, µ ∈ Φ, and ψ ∈ Ψ.

Theorem 1.9 ( [5]). Let (X, d) be a complete metric space, m ∈ N, A1, A2, · · · , Am
be nonempty closed subsets of X and Y =

⋃m
i=1Ai. Suppose that T is a Chatterjea

type cyclic weakly contraction. Then, T has a fixed point z ∈
⋂m
i=1Ai.
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2 Main Result

Notations 2.1. Ω will denote all lower semi-continuous functions ψ : [0,∞)3 7→
[0,∞) with ψ (x1, x2, x3) > 0 for x1, x2, x3 ∈ (0,∞) and ψ(0, 0, 0) = 0.

Definition 2.2. Let (X, d) be a metric space, m ∈ N, A1, A2, · · · , Am be nonempty
subsets of X, and Y =

⋃m
i=1Ai. An operator T : Y 7→ Y is called a Reich type

cyclic weakly contraction if

(a)
⋃m
i=1Ai is a cyclic representation of Y with respect to T ,

(b) µ(d(Tx, Ty)) ≤ µ
(
1
3 [d(x, Tx) + d(y, Ty) + d(x, y)]

)
− ψ(d(x, Tx), d(y, Ty),

d(x, y)) for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, · · · ,m, where Am+1 = A1,
µ ∈ Φ, and ψ ∈ Ω.

Theorem 2.3. Let (X, d) be a complete metric space, m ∈ N, A1, A2, · · · , Am be
nonempty closed subsets of X and Y =

⋃m
i=1Ai. Suppose that T is a Reich type

cyclic weakly contraction. Then, T has a fixed point z ∈
⋂m
i=1Ai.

Proof. Let x0 ∈ X. We can construct a sequence xn+1 = Txn, n = 0, 1, 2, · · · . If
there exists n0 ∈ N such that xn(0)+1 = xn(0), hence the result. Indeed, we have
Txn(0) = xn(0)+1 = xn(0). So we assume that xn+1 6= xn for any n = 0, 1, 2, · · · . As
X =

⋃m
i=0Ai for any n > 0 there exists in ∈ {1, 2, 3, · · · ,m} such that xn−1 ∈ Ai(n)

and xn ∈ Ai(n+1).
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Since T is a Reich type cyclic weakly contraction, we have

µ (d (xn+1, xn)) = µ (d (Txn, Txn−1))

≤ µ
(

1

3
[d (xn, Txn) + d (xn−1, Txn−1) + d (xn, xn−1)]

)
− ψ (d (xn, Txn) , d (xn−1, Txn−1) , d (xn, xn−1))

= µ

(
1

3
[d (xn, xn+1) + d (xn−1, xn) + d (xn, xn−1)]

)
− ψ (d (xn, xn+1) , d (xn−1, xn) , d (xn, xn−1))

< µ

(
1

3
[3d (xn−1, xn)]

)
= µ (d (xn−1, xn)) .

Since µ is a non-decreasing function, for all n = 1, 2, · · · we have

d (xn+1, xn)) ≤ d (xn−1, xn) .

Thus {d (xn+1, xn)} is a monotone decreasing sequence of non-negative real
numbers and hence is convergent. Hence there exists r ≥ 0 such that
d (xn+1, xn)→ r as n→∞. Since

µ (d (xn+1, xn)) ≤ µ
(

1

3
[d (xn, xn+1) + d (xn−1, xn) + d (xn, xn−1)]

)
− ψ (d (xn, xn+1) , d (xn−1, xn) , d (xn, xn−1)) .

If we let n → ∞ in the above inequality, using the continuity of µ and lower
semi-continuity of ψ, we obtain µ(r) ≤ µ(r)−ψ(r, r, r). This implies µ(r, r, r) ≤ 0

by the continuity of ψ, which is a contradiction unless r = 0. Thus we proved
that d (xn+1, xn) → 0. Now we show that {xn} is a Cauchy sequence. For this,
we prove the following claim first

(A) For every ε > 0, there exists n ∈ N such that if r, q ≥ n with r− q ≡ 1(m)

then d (xr, xq) < ε.

Assume the contrary of (A). Thus, there exists ε > 0 such that for any n ∈ N,
we can find rn > qn ≥ n with rn − qn ≡ 1(m) satisfying d

(
xr(n), xq(n)

)
≥ ε. Now,
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we take n > 2m. Then corresponding to qn ≥ n, we can choose rn in such a
way that it is the smallest integer with rn > qn satisfying rn − qn ≡ 1(m) and
d
(
xr(n), xq(n)

)
≥ ε. Therefore d

(
xr(n−m), xq(n)

)
< ε. By using the triangular

inequality we have

ε ≤ d
(
xq(n), xr(n)

)
≤ d

(
xq(n), xr(n−m)

)
+

m∑
i=1

d
(
xr(n−i), xr(n−i+1)

)
< ε+

m∑
i=1

d
(
xr(n−i), xr(n−i+1)

)
.

Letting n → ∞ and using d (xn+1, xn) → 0, we have lim d
(
xq(n), xr(n)

)
= ε.

Again, by the triangular inequality we have

ε ≤ d
(
xq(n), xr(n)

)
≤ d

(
xq(n), xq(n+1)

)
+ d

(
xq(n+1), xr(n+1)

)
+ d

(
xr(n+1), xr(n)

)
≤ d

(
xq(n), xq(n+1)

)
+ d

(
xq(n+1), xq(n)

)
+ d

(
xq(n), xr(n)

)
+ d

(
xr(n), xr(n+1)

)
+ d

(
xr(n+1), xr(n)

)
Letting n → ∞ and using d (xn+1, xn) → 0, we have lim d

(
xq(n+1), xr(n+1) = ε .

As xq(n) and xr(n) lie in different adjacently labeled sets Ai and Ai+1 for certain
1 ≤ i ≤ m, using the fact that T is a Reich type cyclic weakly contraction, we
have

µ(ε) ≤ µ
(
d
(
xq(n+1), xr(n+1)

))
= µ

(
d
(
Txq(n), Txr(n)

))
≤ µ

(
1

3

[
d
(
xq(n), Txq(n)

)
+ d

(
xr(n), Txr(n)

)
+ d

(
xq(n), xr(n)

)])
− ψ

(
d
(
xq(n), Txq(n)

)
, d
(
xr(n), Txr(n)

)
, d
(
xq(n), xr(n)

))
= µ

(
1

3

[
d
(
xq(n), xq(n+1)

)
+ d

(
xr(n), xr(n+1)

)
+ d

(
xq(n), xr(n)

)])
− ψ

(
d
(
xq(n), xq(n+1)

)
, d
(
xr(n), xr(n+1)

)
, d
(
xq(n), xr(n)

))
.

On letting n → ∞, using continuity of µ, and lower semi-continuity of ψ we get
that ε = 0, which is a contradiction with ε > 0. Hence (A) is proved. Using
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(A), we shall show that {xn} is a Cauchy sequence in Y . Fix ε > 0. By (A) we
can find n(0) ∈ N such that r, q ≥ n(0) with r − q ≡ 1(m) and d (xr, xq) ≤ ε

2 .
Since lim d (xn, xn+1) = 0, we can also find n1 ∈ N such that d (xn, xn+1) ≤ ε

2m

for any n ≥ n1. Assume that r, s ≥ max {n0, n1} and s > r. Then there exists
k ∈ {1, 2, · · · ,m} such that s−r ≡ k(m). Hence s−r+t ≡ 1(m) for t = m−k+1.
So we have

d (xr, xs) ≤ d (xr, xs+j) + d (xs+j , xs+j−1) + · · ·+ d (xs+1, xs) .

From which it follows that

d (xr, xs) ≤
ε

2
+ j × ε

2m

≤ ε

2
+m× ε

2m

= ε.

Hence {xn} is a Cauchy sequence in Y . Since Y is closed in X, then Y is also
complete and there exists x ∈ Y such that limxn = x. Now, we will prove that
x is a fixed point of T . As Y =

⋃m
i=1Ai is a cyclic representation of Y with

respect to T , the sequence {xn} has infinite terms in each Ai for i ∈ {1, 2, · · · ,m}.
Suppose that x ∈ Ai, Tx ∈ Ai+1, and we take a subsequence

{
xn(k)

}
of {xn} with

xn(k) ∈ Ai. By using the contractive condition we obtain

µ
(
d
(
xn(k)+1, Tx

))
= µ

(
d
(
Txn(k), Tx

))
≤ µ

(
1

3

[
d
(
xn(k), Txn(k)

)
+ d(x, Tx) + d

(
xn(k), x

)])
− ψ

(
d
(
xn(k), Txn(k)

)
, d(x, Tx), d

(
xn(k), x

))
= µ

(
1

3

[
d
(
xn(k), xn(k+1)

)
+ d(x, Tx) + d

(
xn(k), x

)])
− ψ

(
d
(
xn(k), xn(k+1)

)
, d(x, Tx), d

(
xn(k), x

))
.

Letting n → ∞ and using the continuity of µ and lower semi-continuity of ψ, we
have

µ(d(x, Tx)) ≤ µ
(

1

3
[d(x, Tx)]

)
− ψ(0, d(x, Tx), 0)
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which is a contradiction unless d(x, Tx) = 0. Hence, x is a fixed point of T . Now
we will prove the uniqueness of the fixed point. Suppose that x1 and x2 (x1 6= x2)

are two fixed points of T . Using the contractive condition and continuity of µ and
lower semi-continuity of ψ, we have

µ (d (x1, x2)) = µ (d (Tx1, Tx2))

≤ µ
(

1

3
[d (x1, Tx1) + d (x2, Tx2) + d (x1, x2)]

)
− ψ (d (x1, Tx1) , d (x2, Tx2) , d (x1, x2))

= µ

(
1

3
[d (x1, x1) + d (x2, x2) + d (x1, x2)]

)
− ψ (d (x1, x1) , d (x2, x2) , d (x1, x2))

= µ

(
1

3
[0 + 0 + d (x1, x2)]

)
− ψ (0, 0, d (x1, x2))

which is a contradiction unless d (x1, x2) = 0. Hence the result, and the proof is
finished.

If µ(a) = a, then we have the following result

Corollary 2.4. Let (X, d) be a complete metric space, m ∈ N, A1, A2, · · · , Am be
nonempty closed subsets of X, and Y =

⋃m
i=1Ai. Suppose that T : Y 7→ Y is an

operator such that

(a)
⋃m
i=1Ai is a cyclic representation of Y with respect to T,

(b) d(Tx, Ty) ≤ 1
3 [d(x, Tx) + d(y, Ty) + d(x, y)]− ψ(d(x, Tx), d(y, Ty), d(x, y))

for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, · · · ,m, where Am+1 = A1, and ψ ∈ Ψ. Then
T has a fixed point z ∈

⋂m
i=1Ai.

If ψ(x, y, z) =
(
1
3 − k

)
(x+y+z), where k ∈

[
0, 13
)
, then we have the following

result
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Corollary 2.5. Let (X, d) be a complete metric space, m ∈ N, A1, A2, · · · , Am be
nonempty closed subsets of X, and Y =

⋃m
i=1Ai. Suppose that T : Y 7→ Y is an

operator such that

(a)
⋃m
i=1Ai is a cyclic representation of Y with respect to T,

(b) there exists k ∈
[
0, 13
)
such that d(Tx, Ty) ≤ k[d(x, Tx) + d(y, Ty) + d(x, y)]

for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, · · · ,m, where Am+1 = A1. Then T has a fixed
point z ∈

⋂m
i=1Ai.

Notations 2.6. Γ will denote the set of functions µ : [0,∞) 7→ [0,∞) satisfying
the following hypotheses

(a) µ is Lebesgue-integrable mapping on each compact of [0,∞),

(b) for any ε > 0, we have
∫ ε
0 µ(t) > 0.

The following result is immediate from the above Corollary.

Corollary 2.7. Let (X, d) be a complete metric space, m ∈ N, A1, A2, · · · , Am be
nonempty closed subsets of X, and Y =

⋃m
i=1Ai. Suppose that T : Y 7→ Y is an

operator such that

(a)
⋃m
i=1Ai is a cyclic representation of Y with respect to T,

(b) there exists k ∈
[
0, 13
)
such that∫ d(Tx,Ty)

0
α(s) ds ≤ k

∫ d(x,Tx)+d(y,Ty)+d(x,y)

0
α(s) ds

for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, · · · ,m, where Am+1 = A1 and α ∈ Γ. Then T
has a fixed point z ∈

⋂m
i=1Ai.

If we take Ai = X, i = 1, 2, · · · ,m, then we have the following result.

http://www.earthlinepublishers.com



Weakly Reich Type Cyclic Contraction Mapping Principle 1075

Corollary 2.8. Let (X, d) be a complete metric space and T : X 7→ X be a
mapping such that∫ d(Tx,Ty)

0
α(s)ds ≤ k

∫ d(x,Tx)+d(y,Ty)+d(x,y)

0
α(s)ds

for any x, y ∈ X, k ∈
[
0, 13
)
and α ∈ Γ. Then T has a fixed point z ∈ X.
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