

Weakly Reich Type Cyclic Contraction Mapping Principle

Clement Boateng Ampadu

31 Carrolton Road, Boston, MA 02132-6303, USA e-mail: profampadu@gmail.com

Abstract

In this paper we introduce the notion of Reich type cyclic weakly contraction and prove a fixed point theorem. Some Corollaries are consequences of the main result.

1 Introduction and Preliminaries

Theorem 1.1 ([1,2]). If $T : X \mapsto X$, where (X,d) is a complete metric space, satisfies

 $d(Tx, Ty) \le k[d(x, Tx) + d(y, Ty)]$

where $0 < k < \frac{1}{2}$ and $x, y \in X$, then T has a unique fixed point.

Definition 1.2 ([3]). Let X be a nonempty set and $T : X \mapsto X$ be an operator. By definition, $X = \bigcup_{i=1}^{m} X_i$ is a cyclic representation of X with respect to T if

(a) $X_i, i = 1, \cdots, m$ are nonempty sets,

(b) $T(X_1) \subseteq X_2, \cdots, T(X_{m-1}) \subseteq X_m, T(X_m) \subseteq X_1.$

Notations 1.3 ([4]). Φ will denote all monotone increasing continuous functions $\mu : [0, \infty) \mapsto [0, \infty)$ with $\mu(t) = 0$ if and only if t = 0.

Received: February 15, 2024; Accepted: April 9, 2024; Published: July 4, 2024 2020 Mathematics Subject Classification: 41A50, 47H10, 54H25.

Keywords and phrases: metric space, fixed point theorem, weakly Reich type cyclic contraction. Copyright © 2024 Author Notations 1.4 ([4]). Ψ will denote all lower semi-continuous functions ψ : $[0,\infty)^2 \mapsto [0,\infty)$ with $\psi(x_1,x_2) > 0$ for $x_1, x_2 \in (0,\infty)$ and $\psi(0,0) = 0$.

Definition 1.5 ([4]). Let (X, d) be a metric space, $m \in \mathbb{N}$, A_1, A_2, \dots, A_m be nonempty subsets of X, and $Y = \bigcup_{i=1}^m A_i$. An operator $T : Y \mapsto Y$ is called a Kannan type cyclic weakly contraction if

- (a) $\bigcup_{i=1}^{m} A_i$ is a cyclic representation of Y with respect to T,
- (b) $\mu(d(Tx,Ty)) \leq \mu(\frac{1}{2}[d(x,Tx) + d(y,Ty)]) \psi(d(x,Tx),d(y,Ty))$ for any $x \in A_i, y \in A_{i+1}, i = 1, 2, \cdots, m$, where $A_{m+1} = A_1, \mu \in \Phi$, and $\psi \in \Psi$.

Theorem 1.6 ([4]). Let (X, d) be a complete metric space, $m \in \mathbb{N}, A_1, A_2, \dots, A_m$ be nonempty closed subsets of X and $Y = \bigcup_{i=1}^m A_i$. Suppose that T is a Kannan type cyclic weakly contraction. Then, T has a fixed point $z \in \bigcap_{i=1}^m A_i$.

Theorem 1.7 ([5]). If (X, d) is a complete metric space and $T: X \mapsto X$ satisfies

$$d(Tx, Ty) \le k[d(x, Ty) + d(y, Tx)]$$

where $0 < k < \frac{1}{2}$ and $x, y \in X$, then T has a unique fixed point.

Definition 1.8 ([6]). Let (X, d) be a metric space, $m \in \mathbb{N}$, A_1, A_2, \dots, A_m be nonempty subsets of X, and $Y = \bigcup_{i=1}^m A_i$. An operator $T : Y \mapsto Y$ is called a Chatterjea type cyclic weakly contraction if

- (a) $\bigcup_{i=1}^{m} A_i$ is a cyclic representation of Y with respect to T,
- (b) $\mu(d(Tx,Ty)) \leq \mu(\frac{1}{2}[d(x,Ty) + d(y,Tx)]) \psi(d(x,Ty), d(y,Tx))$ for any $x \in A_i, y \in A_{i+1}, i = 1, 2, \cdots, m$, where $A_{m+1} = A_1, \mu \in \Phi$, and $\psi \in \Psi$.

Theorem 1.9 ([5]). Let (X, d) be a complete metric space, $m \in \mathbb{N}, A_1, A_2, \cdots, A_m$ be nonempty closed subsets of X and $Y = \bigcup_{i=1}^m A_i$. Suppose that T is a Chatterjea type cyclic weakly contraction. Then, T has a fixed point $z \in \bigcap_{i=1}^m A_i$.

2 Main Result

Notations 2.1. Ω will denote all lower semi-continuous functions $\psi : [0, \infty)^3 \mapsto [0, \infty)$ with $\psi(x_1, x_2, x_3) > 0$ for $x_1, x_2, x_3 \in (0, \infty)$ and $\psi(0, 0, 0) = 0$.

Definition 2.2. Let (X, d) be a metric space, $m \in \mathbb{N}$, A_1, A_2, \dots, A_m be nonempty subsets of X, and $Y = \bigcup_{i=1}^m A_i$. An operator $T : Y \mapsto Y$ is called a Reich type cyclic weakly contraction if

(a) $\bigcup_{i=1}^{m} A_i$ is a cyclic representation of Y with respect to T,

(b) $\mu(d(Tx,Ty)) \leq \mu(\frac{1}{3}[d(x,Tx) + d(y,Ty) + d(x,y)]) - \psi(d(x,Tx), d(y,Ty), d(x,y))$ for any $x \in A_i, y \in A_{i+1}, i = 1, 2, \cdots, m$, where $A_{m+1} = A_1, \mu \in \Phi$, and $\psi \in \Omega$.

Theorem 2.3. Let (X, d) be a complete metric space, $m \in \mathbb{N}, A_1, A_2, \dots, A_m$ be nonempty closed subsets of X and $Y = \bigcup_{i=1}^m A_i$. Suppose that T is a Reich type cyclic weakly contraction. Then, T has a fixed point $z \in \bigcap_{i=1}^m A_i$.

Proof. Let $x_0 \in X$. We can construct a sequence $x_{n+1} = Tx_n$, $n = 0, 1, 2, \cdots$. If there exists $n_0 \in \mathbb{N}$ such that $x_{n(0)+1} = x_{n(0)}$, hence the result. Indeed, we have $Tx_{n(0)} = x_{n(0)+1} = x_{n(0)}$. So we assume that $x_{n+1} \neq x_n$ for any $n = 0, 1, 2, \cdots$. As $X = \bigcup_{i=0}^{m} A_i$ for any n > 0 there exists $i_n \in \{1, 2, 3, \cdots, m\}$ such that $x_{n-1} \in A_{i(n)}$ and $x_n \in A_{i(n+1)}$. Since T is a Reich type cyclic weakly contraction, we have

$$\mu \left(d \left(x_{n+1}, x_n \right) \right) = \mu \left(d \left(Tx_n, Tx_{n-1} \right) \right)$$

$$\leq \mu \left(\frac{1}{3} \left[d \left(x_n, Tx_n \right) + d \left(x_{n-1}, Tx_{n-1} \right) + d \left(x_n, x_{n-1} \right) \right] \right)$$

$$- \psi \left(d \left(x_n, Tx_n \right), d \left(x_{n-1}, Tx_{n-1} \right), d \left(x_n, x_{n-1} \right) \right)$$

$$= \mu \left(\frac{1}{3} \left[d \left(x_n, x_{n+1} \right) + d \left(x_{n-1}, x_n \right) + d \left(x_n, x_{n-1} \right) \right] \right)$$

$$- \psi \left(d \left(x_n, x_{n+1} \right), d \left(x_{n-1}, x_n \right), d \left(x_n, x_{n-1} \right) \right)$$

$$< \mu \left(\frac{1}{3} \left[3d \left(x_{n-1}, x_n \right) \right] \right)$$

$$= \mu \left(d \left(x_{n-1}, x_n \right) \right) .$$

Since μ is a non-decreasing function, for all $n = 1, 2, \cdots$ we have

$$d(x_{n+1}, x_n)) \le d(x_{n-1}, x_n).$$

Thus $\{d(x_{n+1}, x_n)\}$ is a monotone decreasing sequence of non-negative real numbers and hence is convergent. Hence there exists $r \geq 0$ such that $d(x_{n+1}, x_n) \rightarrow r$ as $n \rightarrow \infty$. Since

$$\mu \left(d \left(x_{n+1}, x_n \right) \right) \le \mu \left(\frac{1}{3} \left[d \left(x_n, x_{n+1} \right) + d \left(x_{n-1}, x_n \right) + d \left(x_n, x_{n-1} \right) \right] \right) - \psi \left(d \left(x_n, x_{n+1} \right), d \left(x_{n-1}, x_n \right), d \left(x_n, x_{n-1} \right) \right).$$

If we let $n \to \infty$ in the above inequality, using the continuity of μ and lower semi-continuity of ψ , we obtain $\mu(r) \leq \mu(r) - \psi(r, r, r)$. This implies $\mu(r, r, r) \leq 0$ by the continuity of ψ , which is a contradiction unless r = 0. Thus we proved that $d(x_{n+1}, x_n) \to 0$. Now we show that $\{x_n\}$ is a Cauchy sequence. For this, we prove the following claim first

(A) For every $\epsilon > 0$, there exists $n \in \mathbb{N}$ such that if $r, q \ge n$ with $r - q \equiv 1(m)$ then $d(x_r, x_q) < \epsilon$.

Assume the contrary of (A). Thus, there exists $\epsilon > 0$ such that for any $n \in \mathbb{N}$, we can find $r_n > q_n \ge n$ with $r_n - q_n \equiv 1(m)$ satisfying $d(x_{r(n)}, x_{q(n)}) \ge \epsilon$. Now, we take n > 2m. Then corresponding to $q_n \ge n$, we can choose r_n in such a way that it is the smallest integer with $r_n > q_n$ satisfying $r_n - q_n \equiv 1(m)$ and $d(x_{r(n)}, x_{q(n)}) \ge \epsilon$. Therefore $d(x_{r(n-m)}, x_{q(n)}) < \epsilon$. By using the triangular inequality we have

$$\epsilon \leq d(x_{q(n)}, x_{r(n)})$$

$$\leq d(x_{q(n)}, x_{r(n-m)}) + \sum_{i=1}^{m} d(x_{r(n-i)}, x_{r(n-i+1)})$$

$$< \epsilon + \sum_{i=1}^{m} d(x_{r(n-i)}, x_{r(n-i+1)}).$$

Letting $n \to \infty$ and using $d(x_{n+1}, x_n) \to 0$, we have $\lim d(x_{q(n)}, x_{r(n)}) = \epsilon$. Again, by the triangular inequality we have

$$\begin{aligned} \epsilon &\leq d\left(x_{q(n)}, x_{r(n)}\right) \\ &\leq d\left(x_{q(n)}, x_{q(n+1)}\right) + d\left(x_{q(n+1)}, x_{r(n+1)}\right) + d\left(x_{r(n+1)}, x_{r(n)}\right) \\ &\leq d\left(x_{q(n)}, x_{q(n+1)}\right) + d\left(x_{q(n+1)}, x_{q(n)}\right) \\ &\quad + d\left(x_{q(n)}, x_{r(n)}\right) + d\left(x_{r(n)}, x_{r(n+1)}\right) + d\left(x_{r(n+1)}, x_{r(n)}\right) \end{aligned}$$

Letting $n \to \infty$ and using $d(x_{n+1}, x_n) \to 0$, we have $\lim d(x_{q(n+1)}, x_{r(n+1)} = \epsilon$. As $x_{q(n)}$ and $x_{r(n)}$ lie in different adjacently labeled sets A_i and A_{i+1} for certain $1 \le i \le m$, using the fact that T is a Reich type cyclic weakly contraction, we have

$$\begin{split} \mu(\epsilon) &\leq \mu \left(d \left(x_{q(n+1)}, x_{r(n+1)} \right) \right) \\ &= \mu \left(d \left(T x_{q(n)}, T x_{r(n)} \right) \right) \\ &\leq \mu \left(\frac{1}{3} \left[d \left(x_{q(n)}, T x_{q(n)} \right) + d \left(x_{r(n)}, T x_{r(n)} \right) + d \left(x_{q(n)}, x_{r(n)} \right) \right] \right) \\ &- \psi \left(d \left(x_{q(n)}, T x_{q(n)} \right), d \left(x_{r(n)}, T x_{r(n)} \right), d \left(x_{q(n)}, x_{r(n)} \right) \right) \\ &= \mu \left(\frac{1}{3} \left[d \left(x_{q(n)}, x_{q(n+1)} \right) + d \left(x_{r(n)}, x_{r(n+1)} \right) + d \left(x_{q(n)}, x_{r(n)} \right) \right] \right) \\ &- \psi \left(d \left(x_{q(n)}, x_{q(n+1)} \right), d \left(x_{r(n)}, x_{r(n+1)} \right), d \left(x_{q(n)}, x_{r(n)} \right) \right) . \end{split}$$

On letting $n \to \infty$, using continuity of μ , and lower semi-continuity of ψ we get that $\epsilon = 0$, which is a contradiction with $\epsilon > 0$. Hence (A) is proved. Using

(A), we shall show that $\{x_n\}$ is a Cauchy sequence in Y. Fix $\epsilon > 0$. By (A) we can find $n(0) \in \mathbb{N}$ such that $r, q \ge n(0)$ with $r - q \equiv 1(m)$ and $d(x_r, x_q) \le \frac{\epsilon}{2}$. Since $\lim d(x_n, x_{n+1}) = 0$, we can also find $n_1 \in \mathbb{N}$ such that $d(x_n, x_{n+1}) \le \frac{\epsilon}{2m}$ for any $n \ge n_1$. Assume that $r, s \ge \max\{n_0, n_1\}$ and s > r. Then there exists $k \in \{1, 2, \dots, m\}$ such that $s - r \equiv k(m)$. Hence $s - r + t \equiv 1(m)$ for t = m - k + 1. So we have

$$d(x_r, x_s) \le d(x_r, x_{s+j}) + d(x_{s+j}, x_{s+j-1}) + \dots + d(x_{s+1}, x_s).$$

From which it follows that

$$d(x_r, x_s) \le \frac{\epsilon}{2} + j \times \frac{\epsilon}{2m}$$
$$\le \frac{\epsilon}{2} + m \times \frac{\epsilon}{2m}$$
$$= \epsilon.$$

Hence $\{x_n\}$ is a Cauchy sequence in Y. Since Y is closed in X, then Y is also complete and there exists $x \in Y$ such that $\lim x_n = x$. Now, we will prove that x is a fixed point of T. As $Y = \bigcup_{i=1}^m A_i$ is a cyclic representation of Y with respect to T, the sequence $\{x_n\}$ has infinite terms in each A_i for $i \in \{1, 2, \dots, m\}$. Suppose that $x \in A_i, Tx \in A_{i+1}$, and we take a subsequence $\{x_{n(k)}\}$ of $\{x_n\}$ with $x_{n(k)} \in A_i$. By using the contractive condition we obtain

$$\mu \left(d \left(x_{n(k)+1}, Tx \right) \right) = \mu \left(d \left(Tx_{n(k)}, Tx \right) \right)$$

$$\leq \mu \left(\frac{1}{3} \left[d \left(x_{n(k)}, Tx_{n(k)} \right) + d(x, Tx) + d \left(x_{n(k)}, x \right) \right] \right)$$

$$- \psi \left(d \left(x_{n(k)}, Tx_{n(k)} \right), d(x, Tx), d \left(x_{n(k)}, x \right) \right)$$

$$= \mu \left(\frac{1}{3} \left[d \left(x_{n(k)}, x_{n(k+1)} \right) + d(x, Tx) + d \left(x_{n(k)}, x \right) \right] \right)$$

$$- \psi \left(d \left(x_{n(k)}, x_{n(k+1)} \right), d(x, Tx), d \left(x_{n(k)}, x \right) \right) .$$

Letting $n \to \infty$ and using the continuity of μ and lower semi-continuity of ψ , we have

$$\mu(d(x,Tx)) \le \mu\left(\frac{1}{3}[d(x,Tx)]\right) - \psi(0,d(x,Tx),0)$$

which is a contradiction unless d(x, Tx) = 0. Hence, x is a fixed point of T. Now we will prove the uniqueness of the fixed point. Suppose that x_1 and $x_2 (x_1 \neq x_2)$ are two fixed points of T. Using the contractive condition and continuity of μ and lower semi-continuity of ψ , we have

$$\mu \left(d \left(x_1, x_2 \right) \right) = \mu \left(d \left(Tx_1, Tx_2 \right) \right)$$

$$\leq \mu \left(\frac{1}{3} \left[d \left(x_1, Tx_1 \right) + d \left(x_2, Tx_2 \right) + d \left(x_1, x_2 \right) \right] \right)$$

$$- \psi \left(d \left(x_1, Tx_1 \right), d \left(x_2, Tx_2 \right), d \left(x_1, x_2 \right) \right)$$

$$= \mu \left(\frac{1}{3} \left[d \left(x_1, x_1 \right) + d \left(x_2, x_2 \right) + d \left(x_1, x_2 \right) \right] \right)$$

$$- \psi \left(d \left(x_1, x_1 \right), d \left(x_2, x_2 \right), d \left(x_1, x_2 \right) \right)$$

$$= \mu \left(\frac{1}{3} \left[0 + 0 + d \left(x_1, x_2 \right) \right] \right)$$

$$- \psi \left(0, 0, d \left(x_1, x_2 \right) \right)$$

which is a contradiction unless $d(x_1, x_2) = 0$. Hence the result, and the proof is finished.

If $\mu(a) = a$, then we have the following result

Corollary 2.4. Let (X, d) be a complete metric space, $m \in \mathbb{N}$, A_1, A_2, \dots, A_m be nonempty closed subsets of X, and $Y = \bigcup_{i=1}^m A_i$. Suppose that $T: Y \mapsto Y$ is an operator such that

(a) $\bigcup_{i=1}^{m} A_i$ is a cyclic representation of Y with respect to T,

$$(b) \ d(Tx,Ty) \leq \frac{1}{3}[d(x,Tx) + d(y,Ty) + d(x,y)] - \psi(d(x,Tx),d(y,Ty),d(x,y))$$

for any $x \in A_i$, $y \in A_{i+1}$, $i = 1, 2, \dots, m$, where $A_{m+1} = A_1$, and $\psi \in \Psi$. Then T has a fixed point $z \in \bigcap_{i=1}^m A_i$.

If $\psi(x, y, z) = \left(\frac{1}{3} - k\right)(x + y + z)$, where $k \in \left[0, \frac{1}{3}\right)$, then we have the following result

Corollary 2.5. Let (X, d) be a complete metric space, $m \in \mathbb{N}$, A_1, A_2, \dots, A_m be nonempty closed subsets of X, and $Y = \bigcup_{i=1}^m A_i$. Suppose that $T: Y \mapsto Y$ is an operator such that

- (a) $\bigcup_{i=1}^{m} A_i$ is a cyclic representation of Y with respect to T,
- (b) there exists $k \in \left[0, \frac{1}{3}\right)$ such that $d(Tx, Ty) \leq k[d(x, Tx) + d(y, Ty) + d(x, y)]$

for any $x \in A_i$, $y \in A_{i+1}$, $i = 1, 2, \dots, m$, where $A_{m+1} = A_1$. Then T has a fixed point $z \in \bigcap_{i=1}^m A_i$.

Notations 2.6. Γ will denote the set of functions $\mu : [0, \infty) \mapsto [0, \infty)$ satisfying the following hypotheses

- (a) μ is Lebesgue-integrable mapping on each compact of $[0, \infty)$,
- (b) for any $\epsilon > 0$, we have $\int_0^{\epsilon} \mu(t) > 0$.

The following result is immediate from the above Corollary.

Corollary 2.7. Let (X, d) be a complete metric space, $m \in \mathbb{N}$, A_1, A_2, \dots, A_m be nonempty closed subsets of X, and $Y = \bigcup_{i=1}^m A_i$. Suppose that $T: Y \mapsto Y$ is an operator such that

- (a) $\bigcup_{i=1}^{m} A_i$ is a cyclic representation of Y with respect to T,
- (b) there exists $k \in [0, \frac{1}{3})$ such that

$$\int_0^{d(Tx,Ty)} \alpha(s) \, ds \le k \int_0^{d(x,Tx) + d(y,Ty) + d(x,y)} \alpha(s) \, ds$$

for any $x \in A_i$, $y \in A_{i+1}$, $i = 1, 2, \dots, m$, where $A_{m+1} = A_1$ and $\alpha \in \Gamma$. Then T has a fixed point $z \in \bigcap_{i=1}^m A_i$.

If we take $A_i = X, i = 1, 2, \dots, m$, then we have the following result.

Corollary 2.8. Let (X,d) be a complete metric space and $T : X \mapsto X$ be a mapping such that

$$\int_0^{d(Tx,Ty)} \alpha(s) ds \le k \int_0^{d(x,Tx) + d(y,Ty) + d(x,y)} \alpha(s) ds$$

for any $x, y \in X, k \in [0, \frac{1}{3})$ and $\alpha \in \Gamma$. Then T has a fixed point $z \in X$.

References

- Kannan, R. (1968). Some results on fixed points. Bulletin of the Calcutta Mathematical Society, 60, 71-76.
- Kannan, R. (1969). Some results on fixed points-II. American Mathematical Monthly, 76, 405-408. https://doi.org/10.2307/2316437
- [3] Kirk, W. A., Srinivasan, P. S., & Veeramani, P. (2003). Fixed points for mappings satisfying cyclical contractive conditions. *Fixed Point Theory*, 4(1), 79-89.
- [4] Chandok, S. (2013). A fixed point result for weakly Kannan type cyclic contractions. *International Journal of Pure and Applied Mathematics*, 82(2), 253-260.
- [5] Chatterjea, S. K. (1972). Fixed point theorem. C. R. Acad. Bulgare Sci., 25, 727-730.
- [6] Chandok, S., & Postolache, M. (2013). Fixed point theorem for weakly Chatterjea-type cyclic contractions. *Fixed Point Theory and Applications*, 2013, 28. https://doi.org/10.1186/1687-1812-2013-28

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited.