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Abstract

Let (X, d) be a metric space. A map T : X > X is said to be a (3, L) weak
contraction [1] if there exists 80 (0,1) and L =0 such that the following inequality
holds forall x, y 0 X:

d(Tx, Ty) < &d(x, y) + Ld(y, Tx).
On the other hand, the idea of convex contractions appeared in [2] and [3]. In the first
part of this paper, motivated by [1]-[3], we introduce a concept of convex (8, L) weak

contraction, and obtain a fixed point theorem associated with this mapping. In the second
part of this paper, we consider the map is a non-self map, and obtain a best proximity

point theorem. Finally, we leave the reader with some open problems.

1. Introduction and Preliminaries

The higher-order fixed point theory [4] is inspired by [5]. In particular, the idea of
higher-order Banach mapping was defined as follows:

Definition 1.1. [5] Let (X, d) be a metric space. A map T : X — X is called an
rth-order Banach mapping if for all x, y X, 0< ¢ < I, 0g<r-1, and r ON,

the following inequality holds
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-1
d(T"x, T"y) Z d(T9x, T?y)
q=0

. r=1
with Zqzocq <l.
Remark 1.2. Amap T : X +— X is called a convex contraction [2]-[3], if r =2 in
the definition immediately above.
By these observations we introduce the following

Definition 1.3. Let (X, d) be a metric space. Amap T : X +— X is called an rth-
order (8, L) weak contraction mapping if for all x, y(O X, 0< 5, <1, L, =20,
0<g<r-1, and r ON, the following inequality holds

r—1
d(T"x, T"y) < > {8,d(Tx, Ty) + Ld(T%y, T**'x)}
q=0
r-1
with »°3, <1.
q=0

Remark 1.4. If r = 2 in the definition immediately above, thenwe say 7 : X — X

is a convex (9, L) weak contraction mapping. Note that if » =1 in the above definition,

then T: X — X isa (8, L) weak contraction [1].
Also we recall the following results associated with the (8, L) weak contraction

Theorem 1.5. [1] Let (X, d) be a complete metric space and T : X +> X be an
almost contraction, that is, a mapping for which there exist a constant &[] [0, 1) and

some L = 0 such that for all x, y 0 X
d(Tx, Ty) < &d(x, y) + Ld(y, Tx).
Then
(@ Fix(T) ={x0 X : Tx = x} # 0.
(b) For any xy U X, the Picard iteration {xn};ozo given by x,41 =Tx,,n =1,2, ...

converges to some x“OF ix(T).
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(c) The following estimate holds
0 i
d(xy4i-p, x7) < md(xn—l’ Xp)

n=012 .;i=12,...

Theorem 1.6. [6] Let (X, d) be a complete metric space and T : X — X be a
weak contraction for which there exist a constant 8 0 (0, 1) and some L; = 0 such that

forall x, yOX
d(Tx, Ty) < 0d(x, y) + Lid(x, Tx).
Then
(a) T has a unique fixed point, that is, F(T) = {x"}.
(b) For any xy O X, the Picard iteration {xn}:lo:o givenby x,41 =Tx,,n =1,2, ...

converges to x5
(c) The a priori and a posteriori error estimates holds

61’!

— 6d(xo’ x1)

d(x,, xD) < I

forn=0,1,2,..;

forn=1,2, ...
(d) The rate of convergence of the Picard iteration is given by
d(x,, xD) < 0d(x,_;, xD)
forn=1,2, ...

Now let W and V be two nonempty subsets of a metric space (X, d) and let
S :W > V be a non-self map. If W (1V is nonempty, then the equation Sx = x may

not have a solution. Naturally the following arises

Question 1.7. How far is the distance between x and Sx?
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The problem of global optimization for determining the minimum value of the
distance d(x, Sx) = min{d(x, y) : x OW and y OV} is the study of best proximity
point theory. Since the early paper of [7], many best proximity point theorems have been

obtained, and for example see references [9-23] contained in [8].
Notation 1.8. Throughout this paper

(a) Wand V will denote nonempty subsets of a metric space (X, d).

() dW,V):=inf{d(x, y): xOW and y OV}.

(c) Wo ={x0OW :d(x, y) =d(W, V) for some y OV}.

(d) Vo ={y 0OV :d(x, y) =dW, V) for some x 0 W}.

The notion of proximal contraction appeared in [9], now we introduce the following

Definition 1.9. Let S: W — V be a non-self mapping. We say S is a proximal
convex (8, L) weak contraction if there exists g, 8; 0 (0, 1), Ly, L; =20, and

uy, Uy, x, y OW such that d(u;, Sx) = d(W, V) and d(u,, Sy) = d(W, V) implies
d(Suy, Sup) < 8yd(x, y) + Lod(y, u) + 81d(Sx, Sy) + Lid(Sy, Suy).

The notion of G-proximal Kannan mapping appeared in [8], now we introduce the

following

Definition 1.10. Let (X, d) be a metric space, and G = (V(G), E(G)) be a directed
graph such that V(G) = X. A non-self mapping S : W > V is called a G-proximal
convex (8, L) weak contraction, if there exists 8, & 0 (0, 1) and Ly, L; = 0, such that
(x, y) O E(G), d(u, Sx) =d(W, V) and d(v, Sy) = d(W, V) implies

d(Su, Sv) < dyd(x, y) + Lod(y, u) + 8;d(Sx, Sy) + Lid(Sy, Su),
where x, y, u, vO W,

Definition 1.11. [8] Let (X, d) be a metric space and G = (V(G), E(G)) be a
directed graph such that V(G)= X. A non-self mapping S:W >V is called
proximally G-edge-preserving, if for each x, y, u, vOW, (x, y) O E(G), d(u, Sx) =
dW,V) and d(v, Sy) = d(W, V) implies (u, v) O E(G).
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The rest of this paper is organized as follows. In the next section we obtain a fixed

point theorem associated with the convex (8, L) weak contraction, and a best proximity

point theorem for its non-self version endowed with a graph. We close this paper with
some open problems suggested in Section 3.

2. Main Result

2.1. A fixed point theorem

Theorem 2.1. Let (X, d) be a metric space, and T : X — X be a convex (9, L)

weak contraction mapping, that is, T satisfies
d(T2x, T2y) < dpd(x, y) + Lod(y, Tx) + 8,d(Tx, Ty) + Lid(Ty, sz)

for all x, yOX with 0<8y,0 <1, Ly, L; 20, and dy +& <1. If (X, d) is
complete, then the fixed point of T exists. If, in addition, T is a convex (8, L) weak
contraction such that there exists 0 <dgy, & <1, lg, le 20, with 9y +9; <1

satisfying
2 2 g g 2
d(T"x, Ty) < 8yd(x, y) + Lod(x, Tx) + 8,d(Tx, Ty) + Lid(Tx, T*x),
then the fixed point is unique.

Proof. Define x,,; =Tx, = szn_l for all nON, and observe we have the

following
d(Xy41s Xya2) = d(T 75,1, T7x;,)
< 8y (x,-1, %) + Lod (%, Txy—y) + 8 (Tx,, -y, Ty, )
+ Lid(Tx,, T*x,_;)
= 80d (x,-15 X)) + Lod (x, X)) + 81d (x5 X41) + Lid (X415 X41)
= 8pd (xy—1> X)) + 81d (%, Xpp41)
< (8o + &) max{d(x,-1, x,), d(x,, %41}

= (60 + al)d(xn’ xn+1)'



162 Clement Boateng Ampadu

Set h := (8y + &;), and observe by induction we have d(x,,, x,+1) < h"d(xy, x;) for all

nUON.For n, m UN with n < m we deduce the following
d(xn’ xm) < d(xn’ xn+1) teet d(xm—l’ xm)
< h"d(xo, xl) + .+ hm_ld(xo, xl)

< (B + 1"+ d(xg, )

n

= d(xp, x1).
(g, )

Since h <1, if we take limits in the above inequality as n, m — o we deduce that {x,}

is Cauchy, and since X is complete, there is v 1J X such that lim,, _ , x,, = v. Now we
show the fixed point exist. Suppose v is a fixed point of 7 but not of T2, then we know
d(v, Tv) = 0, but d(v, T?v) > 0. Now observe we have the following
0<d(v, T2v)

< d(v, x41) * d(x,41, TZV)

= d(v, Xy41) + d(T 7,1, T?v)

< d(v, xp41) + 80 (x,-1, v) + Lod (v, Txyy) + 81d(Tx, g, Tv) + Lid(Tv, T2,y

= d(v, x,41) + 8d (x,-1, v) + Lod (v, x,) + &y (x;,, Tv) + Lid(Tv, x,41).
Taking limits in the above inequality and using the fact that d(v, Tv) = 0, we deduce
that d(v, T2v) is bounded above and below by zero, hence the assumption that

d(v, T?v) > 0 cannot be true, it must be the case that d(v, T%v) = 0, that is, T2y = v,

It now follows that v is also a fixed point of T2 . Now we show the fixed point is unique.

Suppose a =Ta = T?q and b =Tb = sz, but a # b. From the second part of the

theorem we deduce the following
d(a, b) = d(T*%a, T?b)

< dyd(a, b) + Lgd(a, Ta) + 8,d(Ta, Tb) + led(Ta, Tza)
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= 60[1(61, b) + 51(1((1, b)
< (60 + Sl)d(a, b)
Since 1-(dy+9;)#0 and d >0, from the above inequality we must have

d(a, b) =0 and hence a = b, which contradicts the assumption that a # b. Thus, the

fixed point is unique.
2.2. A best proximity point theorem

Theorem 2.2. Let (X, d) be a complete metric space, G = (V(G), E(G)) be a
directed graph such that V(G) = X. Let W and V be nonempty closed subsets of X with
Wy nonempty. Let S :W =V be a non-self mapping satisfying the following

properties:

(@) S is proximally G-edge-preserving, continuous and G-proximal convex (J, L)

weak contraction such that S(Wy) O V.
(b) there exist xy, x; U W, such that
d(x;, Sxg) =dW, V), d(x,p, Sx1) = d(x,, Szxo) =d(W, V) and (xy, x;) O E(G).

Then S has a best proximity point in W, that is, there exists an element w W such that
d(w, Sw) = d(W, V) and d(w, S*w)=d(W, V). Further the sequence {x,} defined
by

d(x,, Sx,_) =d(W,V) and d(x,+;, Sx,) = d(x,+1, S*x,_;) = d(W, V)
forall n ON converges to the element w.

Proof. From condition (b), there exist x,, x; [ W, such that
d(x, Sxg) =dW, V), d(xy, Sx;) = d(x,, S2x0) =d(W, V) and (xy, x;) O E(G). (1)
Since S(Wy) O Vy, we have Sx, 0V, and hence there exists x3 0 W, such that
d(x3, Sxo) = d(W, V) and d(xy, Sx3) = d(xq, S*xy) = d(W, V). 2)

By the proximally G-edge preserving of S and using both (1) and (2), we get

(x3, x4), (x2, x3) 0 E(G).
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By continuing this process, we can form the sequence {x,} in W, such that
d(x,, Sx,—) = d(W, V) and d(x,41, Sx,) = d(%x,41, S2x,-) = d(W, V)
with (x,,—, x,,) O E(G), forall nON. (3)

Next we show that § has a best proximity point in W. Suppose there exists ny LI N such

that x,, = x,,+1. By using (3), we obtain that
d(xl’lo’ le’lo) = d(xn0+l’ le’lo) = d(W’ v)
and

d(xy, s Szxno) = d(xy+15 Szxno) =d(x Szxno) =dw,V)

n0+2’
and so Xng is a best proximity point of S and of § 2. Now we suppose that x,_; # x,, for
all n ON. We show that {x,} is a Cauchy sequence in W. As S is G-proximal convex

(3, L) weak contraction, and for each nON, (x,-;, x,)0E(G), d(x,, Sx,—;) =
d(W, V) and d(x,.1, Sx,) = d(x,4, S*x,_;) = d(W, V), then we have
d(Xye1s Xpe2) < 80d (-1, x,) + Lod (x,, x,) + 81 (0 x40) + Lid (X410 X41)
= 8d (x,—15 X,) + 81d(x,,, X41)
< (89 + &) max{d(x,y, x,). d(x,, x,41)}
= (8 +8)d (x,, xp41)-
Now set h := 9 + 0. By the above inequality we have
d(x, x3) < hd(xg, x)
and hence
d(xy, x3) < hzd(x(), xp)-
By induction, we deduce the following
d(x,, Xp41) < B'd(x9, %) “4)

for all n O N U{0}. From (4), for each m, n O N with m > n, we deduce the following
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d(xn’ xm) = d(xn’ xn+1) + d(xn+l’ xn+2) Tt d(xm—l’ xm)
< h'd(xg, x) + h"+1d(x0, xp)+e hm_ld(xo, xp)
m—1

= d(xo, xl)Zhi

i=n

= —n d(XO, Xl).

Since h (0, 1), it follows that {x,} is a Cauchy sequence in W. Since W is closed,
there exists w W such that x, — w. By continuity of S and of S 2 we have

Sx, - Sw and S an - S 2w as n — o, As the metric function is continuous, we

obtain
d(x,+1, Sx,) - d(w, Sw) as n - o
and
d(x,10, Sxp41) = (x40, S2x,) - d(w, S?w) as n - .
Similarly, by (3), we have

d(w, Sw) = d(W, V) and d(w, S*w) = d(W, V).

It follows that w O W is a best proximity point of S and of S2 . Moreover, the sequence
{x,} defined by

d(x,y41, Sx,) =d(W, V) and d(x,47, Sx,41) = d(x,42. S°x,) = d(W, V),
n 0N U{0}
converges to an element w, and the proof is completed. U

3. Open Problem

Definition 3.1. [10] Let (X, d) be a metric space. A map T : X > X is called a

Reich contraction if there exist nonnegative constants a, b, ¢ with a + b + ¢ <1 such
that the following holds for all x, y 0 X



166 Clement Boateng Ampadu

d(Tx, Ty) < ad(x, y) + bd(x, Tx) + cd(y, Ty).
Note if T is a Reich contraction, then it also satisfies the following
d(Tx, Ty) < (a + b + c)max{d(x, y), d(x, Tx), d(y, Ty)}.
Therefore we have the following
Definition 3.2. [11] Let (X, d) be a metric space. A map 7 : X + X is also a
Reich contraction if there exists k U {0, %) such that the following holds for all
x, ydX
d(Tx, Ty) < k[d(x, y) + d(x, Tx) + d(y, Ty)].
Related to the Reich contraction, the following was obtained

Theorem 3.3. [10] Let (X, d) be a metric space, and T : X — X be a Reich

contraction. Then T has a unique fixed point, provided (X, d) is complete.

Now we introduced the following, as the Berinde characterization of the Reich

contraction

Definition 3.4. [11] Let (X, d) be a metric space. A map T : X > X is called a
Berinde weak Reich contraction, if there exists o 0O [0, %) and L =0 such that the
following holds for all x, y O X

d(Tx, Ty) < 8[d(x, y) + d(x, Tx) + d(y, Ty)] + Ld(y, Tx).

Note that if a =Ta and b = Th, but a # b, then we have the following inequality

from Definition 3.4
d(a, b) = d(Ta, Th)
< dd(a, b) + d(a, Ta) + d(b, T)] + Ld (b, Ta)
= dld(a, b) + d(a, a) + d(b, b)] + Ld (b, a)
= &d(a, b) + Ld(b, a)

=(5+ L)d(a, b).
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Unless 1= (8 + L) >0 we cannot conclude a = b . So we introduced the following as a

way to “force” uniqueness of the fixed point.

Definition 3.5. [11] Let (X, d) be a metric space. Amap T : X — X is called a
(8,1-38) weak Reich contraction if the following holds for all x, y 0 X and

55[0, 1)
3

Note that if L = 0 in Definition 3.4, then we recover Definition 3.2. Note that for

d(Tx, Ty) < 8ld(x, y) + d(x, Tx) + d(y, Ty)] + (1 - 38) d(y, Tx).

any 0 [ (O, %), Definition 3.5 does not reduce to Definition 3.2.

The following result is previously known

Theorem 3.6. [11] Let (X, d) be a metric space,and T : X — X be a (, 1 - 30)

weak Reich contraction. Then T has a unique fixed point provided X is complete.

Our first open problem introduces a so-called convex (, L) weak Reich contraction

mapping theorem

Conjecture 3.7. Let (X, d) be a metric space,and T : X + X be a convex (9, L)

weak Reich contraction mapping, that is, T satisfies
d(T%x, T?y) < 8gld(x, y) +d(x, Tx) + d(y, Ty)] + Lod(y. Tx)
+ &, [d(Tx, Ty) + d(Tx, T*x) + d(Ty, T?y)] + Lid(Ty, T*x)
for all x, yOX with 0<3d, d <%,L0,L1 20, and Oy +& <1. If (X,d) is
complete, then the fixed point of T exists. If in addition, T is a convex (3, L) weak Reich

. . 1 . o
contraction such there exists 0 < d;, &, < 3’ 15, le 2 0, with 8y + 0 <1 satisfying

d(T%x, T%y) < 8g[d(x, y) + d(x, Tx) + d(y, Ty)] + Lod(x, Tx)

+&[d(Tx, Ty) + d(Tx, Tx) + d(Ty, T*y)] + Lid(Tx, T%x),

then the fixed point is unique.



168 Clement Boateng Ampadu

Sequel to the second open problem, we will need the following

Definition 3.8. Let S : W > V be a non-self mapping. We say S is a proximal

%), Ly, L1 20, and
uy, uy, x, y OW such that d(u;, Sx) = d(W, V) and d(uy, Sy) = d(W, V) implies

convex (8, L) weak Reich contraction if there exist &, & [ (0,

d(Suy, Sup) < 8old(x, y) + d(x, w) + d(y, up)] + Lod(y, uy)
+8,[d(Sx, Sy) + d(Sx, Suy) + d(Sy, Suy)] + Lid(Sy, Suy).

Definition 3.9. Let (X, d) be a metric space, and G = (V(G), E(G)) be a directed
graph such that V(G) = X. A non-self mapping S : W > V is called a G-proximal

convex (8, L) weak Reich contraction, if there exists &, d; [ [0, %) and Ly, L; =20
such that (x, y) 0 E(G), d(u, Sx) =d(W, V), and d(v, Sy) = d(W, V) implies
(S, $9) < Sofd(x. ) + d(x, u) + d(y, V)] + Lod(y. u)
+ 8;[d(Sx, Sy) + d(Sx, Su) + d(Sy, Sv)] + Lid(Sy, Su),
where x, y, u, v W.

Now we have the following which can be regarded as the non-self counterpart to

Conjecture 3.7 in graphic language

Conjecture 3.10. Let (X, d) be a complete metric space, G = (V(G), E(G)) be a
directed graph such that V(G) = X. Let W and V be nonempty closed subsets of X with
Wy nonempty. Let S:W =V be a non-self mapping satisfying the following

properties:

(@) S is proximally G-edge-preserving, continuous and G-proximal convex (J, L)

weak Reich contraction such that S(Wy) OV,
(b) there exist xy, x; U Wy such that
d(x;, Sxg) =dW, V), d(xp, Sx1) = d(x,, Szxo) =d(W, V) and (xy, x;) O E(G).

Then S has a best proximity point in W, that is, there exists an element w 1W such that

d(w, Sw) = d(W, V) and d(w, S*w)=d(W, V). Further the sequence {x,} defined
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by

d(x,, Sx,1) = d(W, V) and d(x,.1, Sx,) = d(x,+1, S*x,—1) = d(W, V)

forall n ON converges to the element w.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

[10]

[11]

V. Berinde, Approximation fixed points of weak contractions using the Picard iteration,
Nonlinear Anal. Forum 9(1) (2004), 43-53.

Vasile I. Istratescu, Some fixed point theorems for convex contraction mappings and

convex nonexpansive mappings (I), Libertas Math. 1 (1981), 151-163.

Clement Boateng Ampadu, A new proof of the convex contraction mapping theorem in

metric spaces, Internat. J. Math. Arch., to appear.
https://drive.google.com/file/d/0BwtkpMtWoUIEV0d4QUhnaVIgOHc/view

Clement Ampadu, Fixed Point Theory for Higher-Order Mappings, lulu.com, 2016.
ISBN: 5800118959925

Jeffery Ezearn, Higher-order Lipschitz mappings, Fixed Point Theory Appl. 2015,
2015:88, 18 pp.

Vasile Berinde, On the approximation of fixed points of weak contractive mappings,
Carpathian J. Math. 19(1) (2003), 7-22.

K. Fan, Extensions of two fixed point theorems of F.E. Browder, Math. Z. 112 (1969)
234-240.

Chalongchai Klanarong and Suthep Suantai, Best proximity point theorems for
G-proximal generalized contraction in complete metric spaces endowed with graphs, Thai
J. Math. 15(1) (2017), 261-276.

S. S. Basha, Best proximity points: optimal solutions, J. Optim. Theory Appl. 151(1)
(2011), 210-216.

S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14 (1971),
121-124.

Clement Boateng Ampadu, An almost Berinde Reich mapping theorem with unique fixed
point, Global J. Pure Appl. Math., to appear.
https://drive.google.com/file/d/1Tec]2bVkpKRsCtCZZ8fh1Z8h04yptsFU/view



