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Abstract 

Let ( )dX ,  be a metric space. A map XXT ֏:  is said to be a ( )L,δ  weak 

contraction [1] if there exists ( )1,0∈δ  and 0≥L  such that the following inequality 

holds for all :, Xyx ∈  

( ) ( ) ( ).,,, TxyLdyxdTyTxd +δ≤  

On the other hand, the idea of convex contractions appeared in [2] and [3]. In the first 

part of this paper, motivated by [1]-[3], we introduce a concept of convex ( )L,δ  weak 

contraction, and obtain a fixed point theorem associated with this mapping. In the second 

part of this paper, we consider the map is a non-self map, and obtain a best proximity 

point theorem. Finally, we leave the reader with some open problems. 

1. Introduction and Preliminaries 

The higher-order fixed point theory [4] is inspired by [5]. In particular, the idea of 

higher-order Banach mapping was defined as follows: 

Definition 1.1. [5] Let ( )dX ,  be a metric space. A map XXT ֏:  is called an 

rth-order Banach mapping if for all ,, Xyx ∈  ,10 <≤ qc  ,10 −≤≤ rq  and ,N∈r  

the following inequality holds 
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Remark 1.2. A map XXT ֏:  is called a convex contraction [2]-[3], if 2=r  in 

the definition immediately above. 

By these observations we introduce the following 

Definition 1.3. Let ( )dX ,  be a metric space. A map XXT ֏:  is called an rth-

order ( )L,δ  weak contraction mapping if for all ,, Xyx ∈  ,10 <δ< q  ,0≥qL  

,10 −≤≤ rq  and ,N∈r  the following inequality holds 
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Remark 1.4. If 2=r  in the definition immediately above, then we say XXT ֏:  

is a convex ( )L,δ  weak contraction mapping. Note that if 1=r  in the above definition, 

then XXT ֏:  is a ( )L,δ  weak contraction [1]. 

Also we recall the following results associated with the ( )L,δ  weak contraction 

Theorem 1.5. [1] Let ( )dX ,  be a complete metric space and XXT ֏:  be an 

almost contraction, that is, a mapping for which there exist a constant [ )1,0∈δ  and 

some 0≥L  such that for all Xyx ∈,  

( ) ( ) ( ).,,, TxyLdyxdTyTxd +δ≤  

Then 

(a) ( ) { } .: ∅≠=∈= xTxXxTFix  

(b) For any ,0 Xx ∈  the Picard iteration { }∞
=0nnx  given by ...,2,1,1 ==+ nTxx nn  

converges to some ( ).TFixx ∈∗  
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(c) The following estimate holds 

( ) ( )nn

i

in xxdxxd ,
1

, 11 −
∗

−+ δ−
δ≤  

....,2,1...;,2,1,0 == in  

Theorem 1.6. [6] Let ( )dX ,  be a complete metric space and XXT ֏:  be a 

weak contraction for which there exist a constant ( )1,0∈θ  and some 01 ≥L  such that 

for all Xyx ∈,  

( ) ( ) ( ).,,, 1 TxxdLyxdTyTxd +θ≤  

Then 

(a) T has a unique fixed point, that is, ( ) { }.
∗= xTF  

(b) For any ,0 Xx ∈  the Picard iteration { }∞
=0nnx  given by ...,2,1,1 ==+ nTxx nn  

converges to .∗
x  

(c) The a priori and a posteriori error estimates holds 

( ) ( )10 ,
1

, xxdxxd
n

n δ−
δ≤∗  

for ...;,2,1,0=n  

( ) ( )nnn xxdxxd ,
1

, 1−
∗

δ−
δ≤  

for ....,2,1=n  

(d) The rate of convergence of the Picard iteration is given by 

( ) ( )∗
−

∗ θ≤ xxdxxd nn ,, 1  

for ....,2,1=n  

Now let W and V be two nonempty subsets of a metric space ( )dX ,  and let 

VWS ֏:  be a non-self map. If VW ∩  is nonempty, then the equation xSx =  may 

not have a solution. Naturally the following arises 

Question 1.7. How far is the distance between x and Sx? 
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The problem of global optimization for determining the minimum value of the 

distance ( ) ( ){ }VyWxyxdSxxd ∈∈= and:,min,  is the study of best proximity 

point theory. Since the early paper of [7], many best proximity point theorems have been 

obtained, and for example see references [9-23] contained in [8]. 

Notation 1.8. Throughout this paper 

(a) W and V will denote nonempty subsets of a metric space ( )., dX  

(b) ( ) ( ){ }.and:,inf:, VyWxyxdVWd ∈∈=  

(c) ( ) ( ){ }.somefor,,:0 VyVWdyxdWxW ∈=∈=  

(d) ( ) ( ){ }.somefor,,:0 WxVWdyxdVyV ∈=∈=  

The notion of proximal contraction appeared in [9], now we introduce the following 

Definition 1.9. Let VWS ֏:  be a non-self mapping. We say S is a proximal 

convex ( )L,δ  weak contraction if there exists ( ),1,0, 10 ∈δδ  ,0, 10 ≥LL  and 

Wyxuu ∈,,, 21  such that ( ) ( )VWdSxud ,,1 =  and ( ) ( )VWdSyud ,,2 =  implies 

( ) ( ) ( ) ( ) ( ).,,,,, 11110021 SuSydLSySxduydLyxdSuSud +δ++δ≤  

The notion of G-proximal Kannan mapping appeared in [8], now we introduce the 

following 

Definition 1.10. Let ( )dX ,  be a metric space, and ( ) ( )( )GEGVG ,=  be a directed 

graph such that ( ) .XGV =  A non-self mapping VWS ֏:  is called a G-proximal 

convex ( )L,δ  weak contraction, if there exists ( )1,0, 10 ∈δδ  and ,0, 10 ≥LL  such that 

( ) ( ),, GEyx ∈ ( ) ( )VWdSxud ,, =  and ( ) ( )VWdSyvd ,, =  implies 

( ) ( ) ( ) ( ) ( ),,,,,, 1100 SuSydLSySxduydLyxdSvSud +δ++δ≤  

where .,,, Wvuyx ∈  

Definition 1.11. [8] Let ( )dX ,  be a metric space and ( ) ( )( )GEGVG ,=  be a 

directed graph such that ( ) .XGV =  A non-self mapping VWS ֏:  is called 

proximally G-edge-preserving, if for each ,,,, Wvuyx ∈  ( ) ( ),, GEyx ∈  ( ) =Sxud ,  

( )VWd ,  and ( ) ( )VWdSyvd ,, =  implies ( ) ( )., GEvu ∈  
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The rest of this paper is organized as follows. In the next section we obtain a fixed 

point theorem associated with the convex ( )L,δ  weak contraction, and a best proximity 

point theorem for its non-self version endowed with a graph. We close this paper with 

some open problems suggested in Section 3.  

2. Main Result 

2.1. A fixed point theorem 

 Theorem 2.1. Let ( )dX ,  be a metric space, and XXT ֏:  be a convex ( )L,δ  

weak contraction mapping, that is, T satisfies 

( ) ( ) ( ) ( ) ( )xTTydLTyTxdTxydLyxdyTxTd
2

1100
22

,,,,, +δ++δ≤  

for all Xyx ∈,  with ,1,0 10 <δδ<  ,0, 10 ≥LL  and .110 <δ+δ  If ( )dX ,  is 

complete, then the fixed point of T exists. If, in addition, T is a convex ( )L,δ  weak 

contraction such that there exists ,1,0 10 <δδ<  ,0, 10 ≥∗∗
LL  with 110 <δ+δ  

satisfying 

( ) ( ) ( ) ( ) ( ),,,,,,
2

1100
22

xTTxdLTyTxdTxxdLyxdyTxTd
∗∗ +δ++δ≤  

then the fixed point is unique. 

 Proof. Define 1
2

1 −+ == nnn xTTxx  for all ,N∈n  and observe we have the 

following 

( ) ( )nnnn xTxTdxxd
2

1
2

21 ,, −++ =  

( ) ( ) ( )nnnnnn TxTxdTxxdLxxd ,,, 111010 −−− δ++δ≤  

( )1
2

1 , −+ nn xTTxdL  

( ) ( ) ( ) ( )11111010 ,,,, +++− +δ++δ= nnnnnnnn xxdLxxdxxdLxxd  

( ) ( )1110 ,, +− δ+δ= nnnn xxdxxd  

( ) ( ) ( ){ }1110 ,,,max +−δ+δ≤ nnnn xxdxxd  

( ) ( )., 110 +δ+δ= nn xxd  
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Set ( ),: 10 δ+δ=h  and observe by induction we have ( ) ( )101 ,, xxdhxxd
n

nn ≤+  for all 

N∈n . For N∈mn,  with mn <  we deduce the following 

( ) ( ) ( )mmnnmn xxdxxdxxd ,,, 11 −+ ++≤ ⋯  

( ) ( )10
1

10 ,, xxdhxxdh
mn −++≤ ⋯  

( ) ( )10
1

, xxdhh
nn

⋯++≤ +  

( ).,
1

10 xxd
h

h
n

−
=  

Since ,1<h  if we take limits in the above inequality as ∞→mn,  we deduce that { }nx  

is Cauchy, and since X is complete, there is Xv ∈  such that .lim vxnn =∞→  Now we 

show the fixed point exist. Suppose v is a fixed point of T but not of ,2T  then we know 

( ) ,0, =Tvvd  but ( ) .0, 2 >vTvd  Now observe we have the following 

( )vTvd
2

,0 <  

( ) ( )vTxdxvd nn
2

11 ,, ++ +≤  

( ) ( )vTxTdxvd nn
2

1
2

1 ,, −+ +=  

( ) ( ) ( ) ( ) ( )1
2

11110101 ,,,,, −−−−+ +δ++δ+≤ nnnnn xTTvdLTvTxdTxvdLvxdxvd  

( ) ( ) ( ) ( ) ( ).,,,,, 1110101 +−+ +δ++δ+= nnnnn xTvdLTvxdxvdLvxdxvd  

Taking limits in the above inequality and using the fact that ( ) ,0, =Tvvd  we deduce 

that ( )vTvd
2,  is bounded above and below by zero, hence the assumption that 

( ) 0, 2 >vTvd  cannot be true, it must be the case that ( ) ,0, 2 =vTvd  that is, .2 vvT =  

It now follows that v is also a fixed point of 2
T . Now we show the fixed point is unique. 

Suppose aTTaa
2==  and ,2bTTbb ==  but .ba ≠  From the second part of the 

theorem we deduce the following 

( ) ( )bTaTdbad
22 ,, =  

( ) ( ) ( ) ( )aTTadLTbTadTaadLbad
2

1100 ,,,,
∗∗ +δ++δ≤  
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( ) ( )badbad ,, 10 δ+δ=  

( ) ( ).,10 badδ+δ≤  

Since ( ) 01 10 ≠δ+δ−  and ,0>d  from the above inequality we must have 

( ) 0, =bad  and hence ,ba =  which contradicts the assumption that .ba ≠  Thus, the 

fixed point is unique. 

2.2. A best proximity point theorem 

Theorem 2.2. Let ( )dX ,  be a complete metric space, ( ) ( )( )GEGVG ,=  be a 

directed graph such that ( ) .XGV =  Let W and V be nonempty closed subsets of X with 

0W  nonempty. Let VWS ֏:  be a non-self mapping satisfying the following 

properties: 

 (a) S is proximally G-edge-preserving, continuous and G-proximal convex ( )L,δ  

weak contraction such that ( ) .00 VWS ⊂  

 (b) there exist 010 , Wxx ∈  such that 

( ) ( ),,, 01 VWdSxxd =  ( ) ( ) ( )VWdxSxdSxxd ,,, 0
2

212 ==  and ( ) ( )., 10 GExx ∈  

Then S has a best proximity point in W, that is, there exists an element Ww ∈  such that 

( ) ( )VWdSwwd ,, =  and ( ) ( ).,,
2

VWdwSwd =  Further the sequence { }nx  defined 

by 

( ) ( )VWdSxxd nn ,, 1 =−  and ( ) ( ) ( )VWdxSxdSxxd nnnn ,,, 1
2

11 == −++  

for all N∈n  converges to the element w. 

Proof. From condition (b), there exist 010 , Wxx ∈  such that 

( ) ( ),,, 01 VWdSxxd =  ( ) ( ) ( )VWdxSxdSxxd ,,, 0
2

212 ==  and ( ) ( )., 10 GExx ∈  (1) 

Since ( ) ,00 VWS ⊆  we have 02 VSx ∈  and hence there exists 03 Wx ∈  such that 

( ) ( )VWdSxxd ,, 23 =  and ( ) ( ) ( ).,,, 2
2

434 VWdxSxdSxxd ==             (2) 

By the proximally G-edge preserving of S and using both (1) and (2), we get 

( ) ( ) ( ).,,, 3243 GExxxx ∈  
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By continuing this process, we can form the sequence { }nx  in 0W  such that 

( ) ( )VWdSxxd nn ,, 1 =−  and ( ) ( ) ( )VWdxSxdSxxd nnnn ,,, 1
2

11 == −++  

with ( ) ( ),,1 GExx nn ∈−  for all .N∈n     (3) 

Next we show that S has a best proximity point in W. Suppose there exists N∈0n  such 

that .100 += nn xx  By using (3), we obtain that 

( ) ( ) ( )VWdSxxdSxxd nnnn ,,,
0000 1 == +  

and 

( ) ( ) ( ) ( )VWdxSxdxSxdxSxd nnnnnn ,,,,
000000

2
2

2
1

2 === ++  

and so 
0nx  is a best proximity point of S and of .

2
S  Now we suppose that nn xx ≠−1  for 

all .N∈n  We show that { }nx  is a Cauchy sequence in W. As S is G-proximal convex 

( )L,δ  weak contraction, and for each ,N∈n  ( ) ( ),,1 GExx nn ∈−  ( ) =−1, nn Sxxd  

( )VWd ,  and ( ) ( ) ( ),,,, 1
2

11 VWdxSxdSxxd nnnn == −++  then we have 

( ) ( ) ( ) ( ) ( )1111101021 ,,,,, +++−++ +δ++δ≤ nnnnnnnnnn xxdLxxdxxdLxxdxxd  

( ) ( )1110 ,, +− δ+δ= nnnn xxdxxd  

( ) ( ) ( ){ }1110 ,,,max +−δ+δ≤ nnnn xxdxxd  

( ) ( )., 110 +δ+δ= nn xxd  

Now set .: 10 δ+δ=h  By the above inequality we have 

( ) ( )1021 ,, xxhdxxd ≤  

and hence 

( ) ( ).,, 10
2

32 xxdhxxd ≤  

By induction, we deduce the following 

( ) ( )101 ,, xxdhxxd
n

nn ≤+                                              (4) 

for all { }.0∪N∈n  From (4), for each N∈nm,  with ,nm >  we deduce the following 
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 ( ) ( ) ( ) ( )mmnnnnmn xxdxxdxxdxxd ,,,, 1211 −+++ +++≤ ⋯  

( ) ( ) ( )10
1

10
1

10 ,,, xxdhxxdhxxdh
mnn −+ +++≤ ⋯  

( )∑
−

=
=

1

10 ,

m

ni

i
hxxd  

( ).,
1

10 xxd
h

h
n

−
=  

Since ( ),1,0∈h  it follows that { }nx  is a Cauchy sequence in W. Since W is closed, 

there exists Ww ∈  such that .wxn →  By continuity of S and of 2
S , we have 

SwSxn →  and wSxS n
22 →  as .∞→n  As the metric function is continuous, we 

obtain 

( ) ( )SwwdSxxd nn ,,1 →+  as ∞→n  

and 

( ) ( ) ( )wSwdxSxdSxxd nnnn
22

212 ,,, →= +++  as .∞→n  

Similarly, by (3), we have 

( ) ( )VWdSwwd ,, =  and ( ) ( ).,,
2

VWdwSwd =  

It follows that Ww ∈  is a best proximity point of S and of 2
S . Moreover, the sequence 

{ }nx  defined by 

( ) ( )VWdSxxd nn ,,1 =+  and ( ) ( ) ( ),,,, 2
212 VWdxSxdSxxd nnnn == +++  

{ }0∪N∈n  

converges to an element w, and the proof is completed. � 

3. Open Problem 

Definition 3.1. [10] Let ( )dX ,  be a metric space. A map XXT ֏:  is called a 

Reich contraction if there exist nonnegative constants a, b, c with 1<++ cba  such 

that the following holds for all Xyx ∈,  
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( ) ( ) ( ) ( ).,,,, TyycdTxxbdyxadTyTxd ++≤  

Note if T is a Reich contraction, then it also satisfies the following 

( ) ( ) ( ) ( ) ( ){ }.,,,,,max, TyydTxxdyxdcbaTyTxd ++≤  

Therefore we have the following 

Definition 3.2. [11] Let ( )dX ,  be a metric space. A map XXT ֏:  is also a 

Reich contraction if there exists 





∈
3

1
,0k  such that the following holds for all 

Xyx ∈,  

( ) ( ) ( ) ( )[ ].,,,, TyydTxxdyxdkTyTxd ++≤  

Related to the Reich contraction, the following was obtained 

Theorem 3.3. [10] Let ( )dX ,  be a metric space, and XXT ֏:  be a Reich 

contraction. Then T has a unique fixed point, provided ( )dX ,  is complete. 

Now we introduced the following, as the Berinde characterization of the Reich 

contraction 

Definition 3.4. [11] Let ( )dX ,  be a metric space. A map XXT ֏:  is called a 

Berinde weak Reich contraction, if there exists 





∈δ
3

1
,0  and 0≥L  such that the 

following holds for all Xyx ∈,  

( ) ( ) ( ) ( )[ ] ( ).,,,,, TxyLdTyydTxxdyxdTyTxd +++δ≤  

Note that if Taa =  and ,Tbb =  but ,ba ≠  then we have the following inequality 

from Definition 3.4 

( ) ( )TbTadbad ,, =  

( ) ( ) ( )[ ] ( )TabLdTbbdTaadbad ,,,, +++δ≤  

( ) ( ) ( )[ ] ( )abLdbbdaadbad ,,,, +++δ=  

( ) ( )abLdbad ,, +δ=  

( ) ( )., badL+δ=  
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Unless ( ) 01 >+δ− L  we cannot conclude ba = . So we introduced the following as a 

way to “force” uniqueness of the fixed point. 

Definition 3.5. [11] Let ( )dX ,  be a metric space. A map XXT ֏:  is called a 

( )δ−δ 31,  weak Reich contraction if the following holds for all Xyx ∈,  and 








∈δ
3

1
,0  

( ) ( ) ( ) ( )[ ] ( ) ( ).,31,,,, TxydTyydTxxdyxdTyTxd δ−+++δ≤  

Note that if 0=L  in Definition 3.4, then we recover Definition 3.2. Note that for 

any ,
3

1
,0 







∈δ  Definition 3.5 does not reduce to Definition 3.2. 

The following result is previously known 

Theorem 3.6. [11] Let ( )dX ,  be a metric space, and XXT ֏:  be a ( )δ−δ 31,  

weak Reich contraction. Then T has a unique fixed point provided X is complete. 

Our first open problem introduces a so-called convex ( )L,δ  weak Reich contraction 

mapping theorem 

Conjecture 3.7. Let ( )dX ,  be a metric space, and XXT ֏:  be a convex ( )L,δ  

weak Reich contraction mapping, that is, T satisfies 

( ) ( ) ( ) ( )[ ] ( )TxydLTyydTxxdyxdyTxTd ,,,,, 00
22 +++δ≤  

[ ( ) ( ) ( )] ( )xTTydLyTTydxTTxdTyTxd
2

1
22

1 ,,,, +++δ+  

for all Xyx ∈,  with ,0,,
3

1
,0 1010 ≥<δδ< LL  and .110 <δ+δ  If ( )dX ,  is 

complete, then the fixed point of T exists. If in addition, T is a convex ( )L,δ  weak Reich 

contraction such there exists ,
3

1
,0 10 <δδ<  ,0, 10 ≥∗∗

LL  with 110 <δ+δ  satisfying 

( ) ( ) ( ) ( )[ ] ( )TxxdLTyydTxxdyxdyTxTd ,,,,, 00
22 ∗+++δ≤  

[ ( ) ( ) ( )] ( ),,,,,
2

1
22

1 xTTxdLyTTydxTTxdTyTxd
∗+++δ+  

then the fixed point is unique. 
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Sequel to the second open problem, we will need the following 

Definition 3.8. Let  VWS ֏:  be a non-self mapping. We say S is a proximal 

convex ( )L,δ  weak Reich contraction if there exist ,
3

1
,0, 10 







∈δδ  ,0, 10 ≥LL  and 

Wyxuu ∈,,, 21  such that ( ) ( )VWdSxud ,,1 =  and ( ) ( )VWdSyud ,,2 =  implies 

( ) ( ) ( ) ( )[ ] ( )1021021 ,,,,, uydLuyduxdyxdSuSud +++δ≤  

( ) ( ) ( )[ ] ( ).,,,, 11211 SuSydLSuSydSuSxdSySxd +++δ+  

Definition 3.9. Let ( )dX ,  be a metric space, and ( ) ( )( )GEGVG ,=  be a directed 

graph such that ( ) .XGV =  A non-self mapping VWS ֏:  is called a G-proximal 

convex ( )L,δ  weak Reich contraction, if there exists 






∈δδ
3

1
,0, 10  and 0, 10 ≥LL  

such that ( ) ( ),, GEyx ∈ ( ) ( ),,, VWdSxud =  and ( ) ( )VWdSyvd ,, =  implies 

( ) ( ) ( ) ( )[ ] ( )uydLvyduxdyxdSvSud ,,,,, 00 +++δ≤  

( ) ( ) ( )[ ] ( ),,,,, 11 SuSydLSvSydSuSxdSySxd +++δ+  

where .,,, Wvuyx ∈  

Now we have the following which can be regarded as the non-self counterpart to 

Conjecture 3.7 in graphic language 

Conjecture 3.10. Let ( )dX ,  be a complete metric space, ( ) ( )( )GEGVG ,=  be a 

directed graph such that ( ) .XGV =  Let W and V be nonempty closed subsets of X with 

0W  nonempty. Let VWS ֏:  be a non-self mapping satisfying the following 

properties: 

(a) S is proximally G-edge-preserving, continuous and G-proximal convex ( )L,δ  

weak Reich contraction such that ( ) 00 VWS ⊂  

(b) there exist 010 , Wxx ∈  such that 

( ) ( ),,, 01 VWdSxxd =  ( ) ( ) ( )VWdxSxdSxxd ,,, 0
2

212 ==  and ( ) ( )., 10 GExx ∈  

Then S has a best proximity point in W, that is, there exists an element Ww ∈  such that 

( ) ( )VWdSwwd ,, =  and ( ) ( ).,,
2

VWdwSwd =  Further the sequence { }nx  defined 
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by 

( ) ( )VWdSxxd nn ,, 1 =−  and ( ) ( ) ( )VWdxSxdSxxd nnnn ,,, 1
2

11 == −++  

for all N∈n  converges to the element w. 
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