
Earthline Journal of Mathematical Sciences
E-ISSN: 2581-8147
Volume 14, Number 4, 2024, Pages 817-839
https://doi.org/10.34198/ejms.14424.817839

Efficiency of a New Parametric Cox Proportional

Hazard Model Using Monte Carlo Simulation Study

Precious O. Ibeakuzie1,* and Sidney I. Onyeagu2

1 Department of Statistics, Faculty of Physical Sciences, Nnamdi Azikiwe University,

Awka, Nigeria

e-mail: op.ibeakuzie@unizik.edu.ng

2 Department of Statistics, Faculty of Physical Sciences, Nnamdi Azikiwe University,

Awka, Nigeria

Abstract

In clinical studies, statistical models have proved useful in inferential analysis.

This study examines the parametric Cox PH model using simulation studies.

Through simulation studies, the study demonstrated the usefulness of the

parametric Cox model by comparing its statistics, such as the concordance,

confidence interval, redundancy or otherwise of the covariates, and median

survival time, with those of classical Cox and logistic models. By extension,

the ROC was plotted to show similarity with the parametric Cox model. The

results show that the parametric Cox PH model has a higher concordance

ratio of 0.9810 while the classical Cox PH model has 0.7810 concordance

ratio. In both model scenarios, the variable Disease-Free survival indicator

did not produce any value. The mean square error of the parametric Cox

PH is lower than that of the classical Cox PH model. More covariates are

significant in the parametric Cox PH model than in the classical Cox PH

model. This tells that the proposed parametric Cox PH model improves the

classical Cox PH model. The confidence interval for both models is seemingly

the same. Because the assumptions of the Cox PH model were not violated

in this study, given that the exponential distribution has a constant hazard
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rate, it is therefore recommended that other choices of non-constant hazard

rate functions be made and deployed in the classical Cox PH model to attain

some variant parametric Cox PH models.

1 Introduction

Cox Proportional Hazard also known as Cox PH model for survival analysis has

come a long way in the literature with some studies both in application and

software implementation being remarkable such as Allison [1,2], Cox [3,4], Fox [5],

Fox and Weisberg [6], Hosmer et al. [7], Therneau [8] Therneau et al. [9]. The

survival time of a particular event is called the time-to-event, Samawi et al. [10].

The time of death and time to develop a disease are examples of survival data.

Statistical methods for survival analysis have been applied to many vital fields

of research. Generally, survival analysis uses data to predict survival probability

and identify risk and/or prognostic factors related to subjects’ survival and disease

progression. An essential aspect of survival data is not usually fully observed in

all subjects under study, leading to different censored data types. Subjects in a

study are usually assumed to be selected randomly (interred the study randomly)

in the sense of simple random sample (SRS) Scheaffer et al. [11].

The Cox PH model is the most commonly used survival data analysis technique

that simultaneously allows one to include and to assess the effect of multiple

covariates Bradburn et al. [12]. These model covariates can include the variables

of specific research interest (treatment groups), as well as potential confounders for

which the researcher wants to control (demographic and other clinical factors).

Multiple strategies for covariate selection have been described, and the aim of

the study-most often to determine the effect of a covariate while controlling for

confounding versus prediction of survival using a set of predictor variables-should

be considered in choosing a strategy Clark et al. [7], Hosmer et al. [13] and

Bradburn et al. [14].

The Cox PH model assumes that the hazard function for any individual at any

http://www.earthlinepublishers.com



Efficiency of a New Parametric Cox Proportional Hazard Model ... 819

time is the product of an underlying baseline hazard function and an exponential

function of the predictor variables. Mathematically, it can be represented as:

h(t|X) = h0(t)× exp (β1X1 + β2X2 + · · ·+ βpXp), (1)

where h(t|X) is the hazard function at time t given the predictor variables X.

h0(t) is the baseline hazard function representing the hazard when all predictor

variables are zero. β1, β2, · · · , βp are the regression coefficients associated with

the predictor variables.

Ibeakuzie and Onyeagu [15] deployed the hazard rate function of the classical

Cox PH model in designing the parametric Cox PH model. They demonstrated

the usage of the new parametric Cox PH model in modeling Bone Marrow data.

Theorem 1 (Parametric Cox PH model). Let Xi be predictor variables

(covariates) for survival data with coefficients βi, i = 1, 2, · · · , p. Define the

baseline hazard function h0(t) of the Cox PH model as the hazard function of

the exponential distribution that is h0(t) = λ, an improved Cox PH model can be

constructed as

hI(t|X) = λ× exp (β1X1 + β2X2 + · · ·+ βpXp), (2)

where h0(t) = λ is the baseline hazard function provided not all the predictors are

zeros.

Essentially, Bone marrow is the spongy tissue inside some bones, including

the hip and thigh bones. It contains immature cells called stem cells, which can

become red or white blood cells or platelets. Many people with blood cancers,

such as leukaemia and lymphoma, sickle cell anaemia, and other life-threatening

conditions, rely on bone marrow or cord blood transplants to survive. The two

types of bone marrow are red bone marrow, known as myeloid tissue, and yellow

bone marrow, known as fatty tissue. Both types of bone marrow are enriched

with blood vessels and capillaries. Bone marrow makes more than 220 billion new

blood cells every day. Most blood cells in the body develop from cells in the bone

marrow.
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Figure 1: Human Bone Marrow.

People need healthy bone marrow and blood cells to live. When a condition

or disease affects bone marrow so it can no longer function effectively, a marrow

or cord blood transplant could be the best treatment option. For some people,

it may be the only option. In many clinical studies, subjects are followed up

repeatedly, and response data is collected, for example, a biomarker. The time

of an event is also usually of interest, which might be explicit, e.g., death, or

implicit, e.g., dropout. Bone marrow transplantation (BMT) is the treatment of

choice for many leukaemias, solid tumours, and metabolic diseases. The field of

bone marrow research is highly dependent on in vivo experimentation because in

vitro techniques do not mimic these complicated in vivo systems, Duran-Struuck

and Dysko [16]. Historically, the field of bone marrow transplantation (BMT)

has been highly dependent on in vivo models. Regarding numbers, the mouse

is the mammal used most frequently for BMT studies. Murine models have

clear advantages in their physiologic and pathologic traits similarities with

other mammals, including humans. The small mass of mice, their large litter

sizes, short pregnancy period, availability of diverse stocks and strains, and

transgenic, knockout, and knock-in lines have made them one of the most

valuable and versatile experimental animal models for human and veterinary

biomedical research. During BMT, recipient mice may receive a genetically

identical bone marrow graft or, often, a genetically disparate graft. If genetically

disparate BM grafts are transplanted, a severe immune reaction from the donor

cells attacks the hosts’ tissues. However, if the host immune system is not
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pretreated (that is, immunosuppressed to some degree), failure of engraftment

or graft rejection (of the donor BM) may occur. Many methods are used

to ablate the immune system. The easiest and most commonly used method

experimentally is total-body irradiation (TBI), which is achieved by placing the

mice in specifically designed irradiators; the dose of whole-body gamma irradiation

causes the animals to become either transiently or chronically immunosuppressed.

Because of the animal’s weakened immune system, strict veterinary and husbandry

care requirements are needed to ensure the well-being of these animals.

More precisely, the process of BMT should be termed hematopoietic or

hematopoietic stem cell transplantation because the stem cells responsible for

reconstituting the immune system can now be harvested directly from the

circulation. Currently, most transplants deliver peripheral-blood-mobilized stem

cells, not cells harvested directly from the BM by aspiration. Another source of

stem cells used currently is the umbilical cord, Urbano-Ispizua [17]. During BMT,

a donor inoculum is given to a recipient. The inoculum contains pluripotent

hematopoietic stem cells and more mature hematopoietic cells arising from

the myeloid, lymphoid, and erythroid lineages. These hematopoietic cells are

harvested from bone marrow (for example, the iliac crest or long bones) or from

the circulation after administration of granulocyte colony-stimulating factor or

other growth factors that mobilize these cells to the peripheral circulation. In

small animal models such as mice, the bone marrow from a donor mouse is the

most common source of stem cells; however, in larger species such as dogs, pigs,

and primates, peripheral blood stem cells can be harvested more easily due to

the greater blood volume of the animals. Two types of progenitors reconstitute

the recipient’s immune system after hematopoietic stem cell transplantation:

short-term and long-term hematopoietic cell progenitors.

Cancer has become an impediment to human longevity and high quality of life.

According to the latest global cancer statistics from GLOBOCAN 2020, colorectal

cancer ranked third in terms of new cases, with 1.93 million accounting for 10% of

all new cancers, and second in terms of deaths, with 940,000 accounting for 9.4% of

all deaths due to cancer in that year, Sung et al. [18]. This time-to-event outcome
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may censor the longitudinal data. Due to the importance of this medical condition,

many researchers have investigated Cancer vis-á-vis bone marrow from different

perspectives. For instance, Transverse colon cancer has been reported to account

for about 10% of colorectal cancers, West et al. [19]. The transverse colon is in a

special high position between the ascending and descending colon, in the middle

and anterior part of the entire colon, excluding the hepatic and splenic flexures.

It has a maximum length of about 50 cm. Since the transverse colon differs from

the rest of the colon in terms of embryonic development, anatomical structure,

blood supply, and pathogenetic characteristics, it is necessary to delineate the

different segments of the colon clearly and to provide precise and individualized

treatments according to the specific characteristics of the transverse colon, which

is also in line with contemporary medical concepts. However, most studies on

colorectal cancer have focused on the ascending and descending colon, which have

obvious differences. The transverse colon, the link between the two, has received

little attention in research. Adenocarcinoma arises from the glandular epithelium,

ducts, or secretory epithelium and is characterized by adenoid structure formation.

It is the most common clinical type of colon cancer, accounting for 90-95% of

cases, and has a better prognosis than other pathological types. Research on

adenocarcinoma of the transverse colon (ATC) would help improve the clinical

outcomes, Su et al. [20].

Modelling the longitudinal (data that is collected through a series of repeated

observations of the same subjects over some extended time frame) and event-time

outcomes separately, for example, using linear mixed models Laird and Ware [21]

or Cox regression models Cox [3] can therefore be inefficient, and can lead to biased

effect size estimates if the two outcome processes are correlated Ibrahim et al. [22].

Research into joint modelling of longitudinal and time-to-event data has received

considerable attention during the past two decades Ibrahim et al. [22], Asar et

al. [23], Henderson et al. [24], Rizopoulos [25] and Wulfsohn and Tsiatis [26].

The motivation for this study are

1. To estimate the parametric Cox PH structure parameters using the classical
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maximum likelihood estimation.

2. To compare the parametric Cox PH structure with the classical Cox PH and

logistic regression in simulation studies.

3. To Compare the parametric Cox PH structure with the classical Cox PH

regression model using simulation studies.

2 Simulation Studies

Parametric simulation offers numerous benefits over traditional cost estimation

methods. Here are some key advantages: - Improved accuracy: Parametric

simulation considers a wide range of variables and their interactions, resulting in

more realistic and accurate cost estimates. A Monte Carlo simulation is adopted

for sample sizes n = 25, 50, 100, 150, 200 at 1000 replication. The parameters are

estimated using the maximum partial likelihood iterative algorithm in R software

for the parametric Cox PH model.

• Define a score vector

U(β) =

(
∂`p(β)

∂β1
, · · · , ∂`p(β)

∂βk

)′

and the k × k information matrix I(β) whose (I, j)th element is
∂2`p(β)
∂βi∂βj

.

• Get the first approximation β(1) = β(0) + I−1
(
β(0)

)
U
(
β(0)

)
. Second

approximation β(2) = β(1) + I−1
(
β(1)

)
U
(
β(1)

)
and so on.

• The iterative method will converge at (r+1)th. Stop if β(r) and β(r+1) agree

upto certain decimal places and then ML estimates β̂ = β(r) or β(r+1).

• Further β(0) from β̂ more is r i.e. less likely is the convergence to β̂.

Earthline J. Math. Sci. Vol. 14 No. 4 (2024), 817-839



824 Precious O. Ibeakuzie and Sidney I. Onyeagu

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Kaplan−Meier Curve (n = 25 )

Time

S
ur

vi
va

l P
ro

ba
bi

lit
y

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Kaplan−Meier Curve (n = 50 )

Time

S
ur

vi
va

l P
ro

ba
bi

lit
y

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Kaplan−Meier Curve (n = 100 )

Time

S
ur

vi
va

l P
ro

ba
bi

lit
y

0 20 60 100 140

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Kaplan−Meier Curve (n = 150 )

Time

S
ur

vi
va

l P
ro

ba
bi

lit
y

0 20 40 60 80 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Kaplan−Meier Curve (n = 200 )

Time

S
ur

vi
va

l P
ro

ba
bi

lit
y

Figure 2: Kaplan-Meier curves for the simulated parametric Cox PH model.

Notice that the confidence intervals for various sample sizes in Figure 2 are

wider than in Figure 3. These indicate that the parametric Cox PH model

considerably provides more allowance for error in estimates than the classical

Cox PH model. Though narrow estimates represent better precision, however,

precision is vague if it predicates error tolerance. So, the trade-off is aptly the

level of tolerance or confidence interval produced by the Kaplan-Meier curves.

On this basis, the proposed parametric Cox PH model performs better than the
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classical Cox PH model using the simulation result. A quick look at Figure 4

reveals a lot, and a thorough discussion will justify the comparison of the logistic

regression with the proposition. ROC curves in logistic regression are used for

determining the best cutoff value for predicting whether a new observation is

a “failure” (0) or a “success” (1). First, let’s cover what a classification cutoff

is doing. When you choose a classification cutoff (let us say you choose 0.5),

you are saying that you would like to classify every observation with a predicted

probability from the model equal to or greater than 0.5 as a “success”. Note

that you will classify observations meeting this criterion as a success regardless

of whether the outcome was observed to be a success. Your observed outcome in

logistic regression can only be 0 or 1. The predicted probabilities from the model

can take on all possible values between 0 and 1. So, for a given observation, the

predicted probability from the model may have been 0.51 (51% probability of

success), but your observation was a 0 (not a success).

Each dot on the curve in Figure 4 represents a different possible cutoff value

for classifying predicted values. You could feasibly pick any value between 0 and

1 as the cutoff, but doing this manually for every possible meaningful cutoff value

would be exhausting. So what a ROC curve does is look at every possible cutoff

value that results in a change of classification of any observation in your data set

(if stepping the classification cutoff up from 0.5 to 0.6 does not result in a change

in how the observations are classified, well then it is not an interesting step to

consider). A dot is placed on the plot for every classification cutoff that results in

a classification change. Notice that there are no identifiable points on each of the

AOCs. Sure, the points make up the curves since, from basic geometry, a curve

is a set of collinear points.

Earthline J. Math. Sci. Vol. 14 No. 4 (2024), 817-839
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Figure 3: Kaplan-Meier curves for the simulated classical Cox PH model.
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Figure 4: AOC for the simulated logistic regression model.

Whatever cutoff you choose, a certain number of the rows of data will be

correctly classified (you predicted the correct value for that row), and a certain

number will be misclassified. Sensitivity and specificity are two metrics for

evaluating the proportion of true positives and true negatives, respectively. In

other words, sensitivity is the proportion of 1s you correctly identified as 1s using

that particular cutoff value or the true positive rate. Conversely, specificity is the

proportion of 0s you correctly identified as 0s or the true negative rate.

ROC with the cutoff produces an area of coverage with probabilities indicated.

The area can be viewed as a confidence interval of the parameter estimates. One

can easily see how wide these regions are in Figure 4, even better than the proposed
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parametric Cox PH model. However, due to the specificity of objectives underlying

the Cox PH model vis-á-vis its parametric counterpart, this comparison cannot

be extended when the real data set is deployed to demonstrate the utility of

the proposed model. In statistical inference, it is important to closely study the

model’s behaviour before choosing the best model so that the one’s choice will

not mislead the users. On the above premise, a plot of the MSE of the logistic

regression is made in Figure 5, and this reveals that the model is not good enough

in the face of a large sample since, as the sample size increases, the mean square

error (MSE) also increases.
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Figure 5: MSE for the simulated logistic regression model.
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Table 1: Simulation result for the parametric Cox PH model.
n covariates βj ecoefs e−coefs L-95 U-95 LR Wald p-value con. MSE

25

X1 0.6786 1.9712 0.5073 0.5839 6.6544

1.6891 1.6891

0.2743

0.8603 61.5595

X2 -0.8654 0.4209 2.3760 0.0937 1.8907 0.2589

X3 -1.0048 0.3661 2.7314 0.1002 1.3378 0.1286

X4 0.2929 1.3403 0.7461 0.3632 4.9462 0.6602

X5 -1.2953 0.2738 3.6522 0.0657 1.1413 0.0753

X6 0.9535 2.5949 0.3854 0.6045 11.1384 0.1996

X7 1.0240 2.7844 0.3592 0.5445 14.2379 0.2187

X8 0.0357 1.0364 0.9649 0.2323 4.6237 0.9627

X9 -0.5851 0.5571 1.7952 0.1663 1.8664 0.3429

X10 -1.5228 0.2181 4.5849 0.0345 1.3805 0.1058

50

X1 -0.1766 0.8381 1.1932 0.5608 1.2524

0.9043 0.9043

0.3888

0.7765 55.0041

X2 -1.0451 0.3517 2.8436 0.1927 0.6416 0.0007

X3 0.0892 1.0933 0.9147 0.7502 1.5933 0.6426

X4 -0.5060 0.6029 1.6586 0.3788 0.9597 0.0329

X5 0.1971 1.2178 0.8212 0.7297 2.0325 0.4509

X6 -0.4876 0.6141 1.6285 0.3543 1.0643 0.0822

X7 0.0769 1.0799 0.9260 0.7278 1.6025 0.7025

X8 -0.0215 0.9787 1.0217 0.6179 1.5504 0.9271

X9 0.1114 1.1178 0.8946 0.6487 1.9263 0.6883

X10 0.6665 1.9475 0.5135 1.3087 2.8982 0.0010

100

X1 0.2180 1.2436 0.8041 0.9324 1.6588

2.3906 2.3906

0.1379

0.6029 47.1506

X2 0.1476 1.1590 0.8628 0.8277 1.6228 0.3903

X3 -0.3366 0.7142 1.4001 0.5348 0.9538 0.0226

X4 0.0472 1.0483 0.9539 0.8117 1.3540 0.7176

X5 -0.0720 0.9306 1.0746 0.6837 1.2665 0.6472

X6 -0.1059 0.8996 1.1117 0.6917 1.1698 0.4296

X7 0.1597 1.1731 0.8524 0.8786 1.5664 0.2791

X8 0.0466 1.0477 0.9545 0.7869 1.3950 0.7497

X9 -0.0444 0.9566 1.0454 0.7117 1.2858 0.7688

X10 -0.0198 0.9804 1.0200 0.7220 1.3313 0.8990

150

X1 -0.0645 0.9375 1.0667 0.7699 1.1416

0.4552 0.4552

0.5207

0.5963 42.3309

X2 0.0522 1.0536 0.9491 0.8516 1.3036 0.6305

X3 0.0809 1.0843 0.9223 0.8433 1.3940 0.5280

X4 -0.1491 0.8615 1.1608 0.6585 1.1270 0.2767

X5 -0.0892 0.9147 1.0933 0.7039 1.1886 0.5046

X6 -0.0284 0.9720 1.0288 0.7567 1.2486 0.8242

X7 0.0609 1.0628 0.9409 0.8184 1.3801 0.6478

X8 -0.1980 0.8204 1.2190 0.6593 1.0208 0.0759

X9 -0.0263 0.9740 1.0267 0.7715 1.2298 0.8249

X10 0.1100 1.1163 0.8958 0.8698 1.4327 0.3874
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From the result in Table 1, the MSE reduces as the sample size increases.

It is the fundamental property of all machine learning algorithms to improve

performance with more available training data. If you only have a few dozen cases

to test your model, the performance will likely depend on the particular train/test

split you performed. This implies that the estimation precision improves in the

case of the parametric Cox PH model than that of classical Cox PH and logistic

models; see also Tables 2 to 6.

Furthermore, the total number of Concordant pairs is counted and divided by

the total number of pairs. This will give us the value of the concordance ratio. The

higher the concordance ratio, the better the model. Comparing the parametric

Cox PH with the classical Cox PH models using Tables 1 to 4, it is obvious that

the proposed parametric Cox PH model is better than the classical Cox PH for

large sample sizes.

Table 2: Simulation results for the parametric Cox PH model continues.
n covariates βj ecoefs e−coefs L-95 U-95 LR Wald p-value con. MSE

200

X1 -0.0151 0.9850 1.0153 0.7630 1.2715

0.3047 0.3047

0.9075

0.5943 29.4991

X2 0.0925 1.0969 0.9116 0.8848 1.3600 0.3989

X3 -0.2105 0.8102 1.2342 0.6536 1.0043 0.0548

X4 -0.0222 0.9780 1.0225 0.7893 1.2118 0.8390

X5 -0.0338 0.9668 1.0344 0.7823 1.1947 0.7544

X6 -0.1569 0.8548 1.1698 0.6771 1.0793 0.1872

X7 -0.0822 0.9211 1.0857 0.7289 1.1640 0.4913

X8 0.0875 1.0914 0.9162 0.8839 1.3477 0.4163

X9 -0.0294 0.9710 1.0298 0.7623 1.2370 0.8119

X10 0.0314 1.0319 0.9691 0.8573 1.2421 0.7396
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Table 3: Simulation results for Cox PH model.
n covariates βj ecoefs e−coefs L-95 U-95 LR Wald p-value con. MSE

25

X1 77.4377 42.0000 0.0000 0.0000 Inf

0.7012 0.7012

0.9770

1.00 127.56

X2 -75.5699 0.0000 660.0000 0.0000 Inf 0.9760

X3 -1.3786 0.2519 3.9695 0.0000 Inf 0.9996

X4 62.8667 20.0000 0.0000 0.0000 Inf 0.9708

X5 -123.4589 0.0000 414.0000 0.0000 Inf 0.9538

X6 77.0365 28.0000 0.0000 0.0000 Inf 0.9720

X7 -57.6077 0.0000 104.0000 0.0000 Inf 0.9711

X8 -202.9387 0.0000 136.0000 0.0000 Inf 0.9200

X9 -60.6836 0.0000 226.0000 0.0000 Inf 0.9747

X10 239.8216 14.0000 0.0000 0.0000 Inf 0.9314

50

X1 0.3786 1.4602 0.6848 0.7735 2.7566

0.9621 0.9621

0.2429

0.68 105.88

X2 0.0436 1.0446 0.9573 0.6414 1.7013 0.8608

X3 -0.6242 0.5357 1.8667 0.3070 0.9348 0.0280

X4 -0.4404 0.6438 1.5533 0.3509 1.1810 0.1549

X5 0.2325 1.2617 0.7926 0.5912 2.6928 0.5478

X6 0.3548 1.4260 0.7013 0.6020 3.3775 0.4199

X7 0.2612 1.2985 0.7701 0.8088 2.0848 0.2795

X8 -0.4552 0.6343 1.5765 0.3374 1.1924 0.1575

X9 0.2511 1.2854 0.7780 0.8003 2.0645 0.2990

X10 -0.5589 0.5718 1.7488 0.3355 0.9746 0.0399

100

X1 0.1294 1.1381 0.8786 0.8363 1.5489

0.0001 0.0001

0.4106

0.64 122.56

X2 -0.2804 0.7555 1.3237 0.5091 1.1211 0.1639

X3 0.1327 1.1419 0.8757 0.7947 1.6408 0.4731

X4 -0.2856 0.7516 1.3306 0.5490 1.0288 0.0746

X5 -0.2306 0.7941 1.2593 0.4999 1.2614 0.3288

X6 0.3381 1.4023 0.7131 0.9264 2.1226 0.1099

X7 -0.1916 0.8256 1.2112 0.5754 1.1845 0.2981

X8 -0.0320 0.9685 1.0325 0.6878 1.3638 0.8547

X9 -0.3149 0.7299 1.3701 0.5135 1.0374 0.0792

X10 -0.1006 0.9043 1.1058 0.6372 1.2834 0.5734

150

X1 -0.0706 0.9319 1.0731 0.6962 1.2474

0.5197 0.5197

0.6353

0.59 112.76

X2 -0.1576 0.8542 1.1707 0.6236 1.1700 0.3262

X3 -0.2653 0.7670 1.3038 0.5577 1.0549 0.1028

X4 0.2184 1.2441 0.8038 0.9612 1.6103 0.0970

X5 -0.1481 0.8623 1.1596 0.6588 1.1287 0.2808

X6 -0.0360 0.9647 1.0366 0.7086 1.3133 0.8192

X7 0.1024 1.1079 0.9026 0.8811 1.3930 0.3806

X8 -0.0233 0.9769 1.0236 0.7728 1.2350 0.8452

X9 -0.0433 0.9576 1.0442 0.7417 1.2364 0.7399

X10 0.0882 1.0922 0.9155 0.8203 1.4544 0.5459
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Table 4: Simulation results for Cox PH model continues.
n covariates βj ecoefs e−coefs L-95 U-95 LR Wald p-value con. MSE

200

X1 -0.0715 0.9310 1.0741 0.7437 1.1653

0.3154 0.3154

0.5324

0.58 113.36

X2 -0.0373 0.9634 1.0380 0.7749 1.1978 0.7370

X3 -0.0398 0.9610 1.0406 0.7949 1.1619 0.6813

X4 0.0474 1.0485 0.9538 0.8241 1.3340 0.7000

X5 0.1379 1.1478 0.8712 0.9226 1.4280 0.2161

X6 0.0255 1.0259 0.9748 0.7966 1.3211 0.8431

X7 -0.0984 0.9063 1.1034 0.7285 1.1273 0.3768

X8 0.1443 1.1552 0.8657 0.9148 1.4588 0.2256

X9 0.0394 1.0402 0.9614 0.8616 1.2557 0.6820

X10 -0.1380 0.8711 1.1480 0.6998 1.0842 0.2164
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Table 5: Simulation results for logistic regression.
n covariates βj MSE p-value con. AUC Odds ratios

25

(Intercept) 8.68051

0.00000

0.99990 1.00000 1.00000 5887.02500

X1 34.24979 0.99975 0.92915 0.92915 749.00000

X2 47.20628 0.99981 0.88576 0.88576 3.00000

X3 53.08038 0.99969 0.80645 0.80645 113.00000

X4 35.15189 0.99969 0.82627 0.82627 185.00000

X5 59.22412 0.99954 1.00000 1.00000 52.00000

X6 43.94169 0.99949 0.92915 0.92915 121.00000

X7 5.62246 0.99995 0.88576 0.88576 276.56800

X8 8.67823 0.99989 0.80645 0.80645 5873.63700

X9 3.31478 0.99998 0.82627 0.82627 27.51642

X10 56.16050 0.99954 1.00000 1.00000 246.00000

50

(Intercept) 0.00236

0.10662

0.99632 0.92915 0.92915 1.00237

X1 0.57602 0.21549 0.88576 0.88576 1.77895

X2 0.68382 0.25198 0.80645 0.80645 1.98143

X3 1.27006 0.03338 0.82627 0.82627 3.56105

X4 0.86462 0.09591 1.00000 1.00000 2.37410

X5 0.73476 0.24738 0.92915 0.92915 2.08499

X6 0.57201 0.27501 0.88576 0.88576 1.77182

X7 0.86884 0.18723 0.80645 0.80645 2.38413

X8 0.82376 0.19414 0.82627 0.82627 2.27905

X9 0.71369 0.17877 1.00000 1.00000 2.04151

X10 0.94881 0.06223 0.92915 0.92915 2.58263

100

(Intercept) -0.53049

0.13762

0.08411 0.88576 0.88576 0.58832

X1 0.73491 0.02106 0.80645 0.80645 2.08529

X2 0.76254 0.03319 0.82627 0.82627 2.14371

X3 0.37477 0.19535 1.00000 1.00000 1.45466

X4 0.53135 0.06696 0.92915 0.92915 1.70123

X5 1.21547 0.00096 0.88576 0.88576 3.37189

X6 1.07398 0.00347 0.80645 0.80645 2.92701

X7 0.66229 0.03958 0.82627 0.82627 1.93923

X8 0.42158 0.12796 1.00000 1.00000 1.52436

X9 0.43350 0.16340 0.92915 0.92915 1.54264

X10 0.78122 0.02595 0.88576 0.88576 2.18412

150

(Intercept) -0.48238

0.17064

0.01934 0.80645 0.80645 0.61731

X1 0.38372 0.03244 0.82627 0.82627 1.46773

X2 0.27390 0.17730 1.00000 1.00000 1.31509

X3 0.53356 0.01684 0.92915 0.92915 1.70499

X4 0.44024 0.03531 0.88576 0.88576 1.55308

X5 0.50765 0.01484 0.80645 0.80645 1.66138

X6 0.33315 0.15416 0.82627 0.82627 1.39536

X7 0.52399 0.02550 1.00000 1.00000 1.68876

X8 0.40714 0.07107 0.92915 0.92915 1.50252

X9 0.55804 0.01276 0.88576 0.88576 1.74724

X10 0.60001 0.00829 0.80645 0.80645 1.82213
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Table 6: Simulation results for logistic regression continues.

n covariates βj MSE p-value con. AUC Odds ratios

200

(Intercept) -0.05497

0.17085

0.75407 0.82627 0.82627 0.94652

X1 0.18612 0.28712 1.00000 1.00000 1.20457

X2 0.27986 0.11214 0.92915 0.92915 1.32295

X3 0.16563 0.36128 0.88576 0.88576 1.18013

X4 0.53927 0.00454 0.80645 0.80645 1.71476

X5 0.19542 0.30814 0.82627 0.82627 1.21582

X6 0.65330 0.00077 1.00000 1.00000 1.92187

X7 0.44013 0.02187 0.92915 0.92915 1.55291

X8 0.48515 0.01066 0.88576 0.88576 1.62442

X9 0.82019 0.00004 0.80645 0.80645 2.27092

X10 0.32600 0.07666 0.82627 0.82627 1.38541

3 Discussion of Results

1. We utilized the hazard rate of the exponential distribution used as the

baseline hazard function in the classical Cox PH model to produce what

is now known as the parametric Cox PH model given as hI(t|X) =

λ× exp (β1X1 + β2X2 + · · ·+ βpXp) where h0(t) = λ is the baseline hazard

function provided not all the predictors are zeros. This model was proposed

by [15].

2. From the simulation results, the confidence intervals for various sample sizes

in Figure 2 are wider than in Figure 3. These indicate that the parametric

Cox PH model considerably provides more allowance for error in estimates

than the classical Cox PH model. Though narrow estimates represent better

precision, however, precision is vague if it predicates error tolerance. So, the

trade-off is aptly the level of tolerance or confidence interval produced by

the Kaplan-Meier curves. On this basis, the proposed parametric Cox PH

model performs better than the classical Cox PH model using the simulation

result.
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3. It was observed from the ROC of the logistic regression that the regions’

width in Figure 4 are better than the proposed parametric Cox PH model.

However, due to the specificity of objectives underlying the Cox PH model

vis-á-vis its parametric counterpart, this comparison cannot be extended

when the real data set is deployed to demonstrate the utility of the proposed

model. In statistical inference, it is important to closely study the model’s

behaviour before choosing the best model so that the one’s choice will not

mislead the users. On the above premise, a plot of the MSE of the logistic

regression is made in Figure 5, and this reveals that the model is not good

enough in the face of a large sample since, as the sample size increases, the

mean square error (MSE) also increases.

4. From the result in Table 1, the MSE reduces as the sample size increases. It

is the fundamental property of all machine learning algorithms to improve

performance with more available training data. If you only have a few

dozen cases to test your model on, the performance will likely depend on the

particular train/test split you performed. This implies that the estimation

precision improves in the case of the parametric Cox PH model than that

of classical Cox PH and logistic models; see also Tables 2 to 6.

5. Furthermore, the total number of Concordant pairs is counted and divided

by the total number of pairs. This will give us the value of the concordance

ratio. The higher the concordance ratio, the better the model. Comparing

the parametric Cox PH with the classical Cox PH models using Tables 1 to

4, it is obvious that the proposed parametric Cox PH model is better than

the classical Cox PH for large sample sizes.

6. Because the assumptions of the Cox PH model were not violated in this

study, given that the exponential distribution has a constant hazard rate,

it is therefore recommended that other choices of non-constant hazard rate

functions be made and deployed in the classical Cox PH model to attain

some variant parametric Cox PH models.
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